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ABSTRACT A lattice relaxation algorithm is developed to solve the Poisson-Nernst-Planck (PNP) equations for ion transport
through arbitrary three-dimensional volumes. Calculations of systems characterized by simple parallel plate and cylindrical
pore geometries are presented in order to calibrate the accuracy of the method. A study of ion transport through gramicidin
A dimer is carried out within this PNP framework. Good agreement with experimental measurements is obtained. Strengths
and weaknesses of the PNP approach are discussed.

INTRODUCTION

The mechanism and properties of ion transport through
channel proteins embedded in lipid bilayers (e.g., cell walls)
is a subject of wide current interest (Hille, 1992; Cooper et
al., 1985; Fishman, 1985; Eisenberg, 1996, 1998). These
structures provide gates for ions like Na1, Cl2, K1, and
Ca21 to enter or leave the cell. By regulating passage
through these gates, cells can maintain desired internal ion
concentrations (which are often quite different from their
concentration in the surrounding bulk solution) (Aidley and
Stanfield, 1996). Important functions such as energy storage
and signal transduction are also mediated via ion flow
through biological pores.

Theoretical treatments of ion transport through channel
proteins may be broadly classified as kinetic models, elec-
trodiffusion models, and stochastic models (Cooper et al.,
1985). One expects that with progress in computing power
and techniques, molecular dynamics (MD) methods (Roux
and Karplus, 1993; Elber et al., 1995) will also become
increasingly useful. Here we focus on the electrodiffusion
framework, in which the mobile ions are represented as a
continuous charge density and the dynamics is described by
the Poisson-Nernst-Planck (PNP) theory (see, for example,
Eisenberg (1996) and references therein). PNP theory com-
bines Nernst-Planck theory of electrodiffusion with the rec-
ognition that the electric field established in the channel
interior depends on the concentration profile of the mobile
ions in it. The latter feature results in the need to solve the
Poisson equation of electrostatics including contributions to
the electrical charge density arising from the mobile ion
concentration in the channel. Ultimately, PNP theory re-
quires self-consistent solution of the Poisson equation and

drift-diffusion equations for all the ionic species moving
through the channel.

The PNP theory of electrodiffusion has for a long time
been applied to liquid junctions and membrane electro-
chemistry (see, e.g., Newman (1991)). Numerical solutions
of these nonlinear partial differential equations for ionic
transport at liquid junctions demonstrated the limits of lin-
earized approximations used in analytical solutions, and the
relevance of this observation to ion transport through the
membrane channel was suggested (Riveros et al., 1989).
Due to their relative complexity, actual applications within
the latter context have been restricted to simplified geome-
tries and involved simplifying assumptions (Levitt, 1991a,
b; Barcilon et al., 1992; Chen et al., 1992; Syganow and von
Kitzing, 1995; Chernyak, 1995; Woolley et al., 1997). A
fully self-consistent solution of the coupled PNP equations
for three-dimensional (3D) systems was first targeted for a
cylindrical channel model in Barcilon et al. (1992) and Chen
et al. (1992). The resulting set of equations, in leading order
and certain limits which reduce the 3D equations to a 1D
representation, has been applied to various channel systems
(Barcilon et al., 1992; Chen et al., 1992; Chen and Eisen-
berg, 1993a, b; Chen et al., 1997a, b). Such a reduction,
however, is not possible a priori in the general case of
arbitrary channel geometry and complicated nonsymmetric
assembly of partial electric charges embedded in the pro-
tein. Clearly, a realistic description of the ion channel sys-
tem must in general be three-dimensional. It requires knowl-
edge of the 3D structure of the channel protein in the lipid
membrane. Presently, several 3D channel structures are
known to high precision (Venkatchalam and Urri, 1983;
Unwin, 1995; Cowan et al., 1992; Weiss and Schulz, 1992;
Kreusch and Schulz, 1992; Song et al., 1996; Doyle et al.,
1998). Given reliable information about the channel struc-
ture, one then needs the mathematical methodology and
computational resources to solve the PNP equations numer-
ically. We note that the special case of the PNP problem
corresponding to no ion flow, i.e., when the mobile ions are
in thermal equilibrium with their surroundings, has been

Received for publication 16 June 1998 and in final form 14 September
1998.

Address reprint requests to Dr. Rob D. Coalson, Dept. of Chemistry,
University of Pittsburgh, Pittsburgh, PA 15260. Tel.: 412-624-8261; Fax:
412-624-8611; E-mail: coalson@vms.cis.pitt.edu.

© 1999 by the Biophysical Society

0006-3495/99/02/642/15 $2.00

642 Biophysical Journal Volume 76 February 1999 642–656



extensively scrutinized via 3D modeling. In this case, the
PNP equations reduce to the Poisson-Boltzmann equation,
for which flexible, efficient, and reliable numerical solution
procedures exist (Nicholls et al., 1990; Luty et al., 1992;
Coalson and Duncan, 1992; Walsh and Coalson, 1994;
Ben-Tal and Coalson, 1994).

The purpose of the present paper is to apply similar
numerical techniques to solve the 3D steady-state PNP
equations under rather general conditions: arbitrary macro-
ion geometries, charge distributions embedded in the mac-
roions, dielectric constant profiles, etc. The application to
calculation of the current through the gramicidin A channel
demonstrates that the continuum theory approach can give
valuable insight into the understanding of ion-channel
interactions.

Representing the mobile ions as a charge density and the
protein and water environment as dielectric continua obvi-
ously ignores potentially important molecular characteris-
tics of the system. For example, the nature of the ion
solvation changes upon entering a narrow channel and this
change is not easy to include in a continuum theory. Even
within the framework of PNP theory, one sometimes must
choose values for parameters which are not available from
experimental studies. We have utilized the simplest physi-
cally justifiable parameters in such instances. For example,
we use constant ionic concentrations in the intracelluar and
the outer reservoirs, even very close to the membrane and
the entrance of the channel. One could argue that the ionic
distribution should not be uniform near the channel entrance
and exit, but it is not known at present what this distribution
should be. [Note that models for this charge distribution,
and the associated “access resistance,” have recently been
discussed within the PNP framework (Chen and Eisenberg,
1993a; Ramanan et al., 1994; Novak, 1997).] Despite the
limitations outlined above, our calculation demonstrates
that with careful 3D modeling of the channel based on the
experimentally determined channel structure, the results
obtained using PNP theory compare well to those obtained
in experimental studies.

The outline of the paper is as follows. In Theory, essential
elements of the PNP theory are briefly reviewed. The details
of the numerical solution of the 3D PNP equations for an
arbitrarily shaped and charged channel are described in
Computational Methods. Calibration of the Accuracy of the
3D code presents calculations on prototypical parallel plate
and cylinder systems designed to calibrate the accuracy of
our 3D algorithm. Then, in the next section, 3D PNP theory
is applied to calculation of the ionic current through the
gramicidin A channel. Finally, discussion and conclusions
are presented.

THEORY

The steady-state PNP procedure combines steady-state so-
lutions of the Smoluchowski equation with solutions of the
Poisson equation, performed self-consistently. It is perhaps

most easily explained by initially considering motion of a
Brownian particle in a prescribed external potentialV(RW ) (RW

being the particle’s position) under conditions of high fric-
tion, where the Smoluchowski equation applies (Chan-
drasekhar, 1943).

Steady-state solutions of the
Smoluchowski equation

The Smoluchowski equation (SE) details the time-evolution
of the probability distribution of the Brownian particle, or,
equivalently, the concentration dependencec(RW , t) of an
ensemble of these particles. It has the form of a continuity
equation:

c~RW , t!

t
5 2¹W z jW~RW , t! (1)

where the particle flux is given by:

jW~RW , t! 5 2D@¹W c~RW , t! 1 b¹W V~RW !c~RW , t!# (2)

with D the diffusion constant andb 5 1/kT (k is Boltz-
mann’s constant andT the absolute temperature). The two
terms contributing to the flux have clear physical meanings.
The first is due to diffusional processes, as quantified by
Fick’s first law. The second contribution is due to the drift
velocity2¹W V(RW )/h induced by the systematic external force
2¹W V(RW ) and friction quantified by the friction constanth.
(The Stokes-Einstein relationD 5 kT/h is then invoked to
obtain the second term on the r.h.s. of Eq. 2.)

We are interested in steady-state solutions, i.e.,c(RW , t)/
t 5 0 everywhere. The fluxjW then also becomes time-
independent. Any steady-state solution of the SE satisfies
the equation 05 ¹W z jW, or equivalently:

0 5 ¹W z @¹W c~RW ! 1 b¹W V~RW !c~RW !# (3)

Given c(RW ) on the boundary surface, this equation has a
unique interior solution. Once the solution has been com-
puted it is easy to determine the value of the flux vector to
which it corresponds at any point in space (cf. Eq. 2).

Many ionic species and electrostatic interactions

In the problem of ion diffusion through channels two addi-
tional complications arise. First, the potential felt by each
ion includes, in addition to effects of short-range forces
(hard or soft core repulsion from atoms forming the channel
wall), long-range electrostatic interactions with other
charged species in the system. Second, there are in general
several ionic species. In the standard, mean field approxi-
mation, direct correlation between the motion of ions in the
channel is neglected. Hence we write the total potential
energy experienced by theith ion species as:

Vi~RW ! 5 U~RW ! 1 zief~RW ! (4)
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Here U(RW ) is the potential due to nonelectrostatic interac-
tions, which for simplicity is assumed identical for all ion
species.f(RW ) is the electrostatic potential,zi is the ion’s
valence, ande is the magnitude of the charge of the electron.
The electrostatic potentialf depends on the distribution of
charges in the system, as well as the dielectric constant
profile and the assumed boundary values (due, for example,
to an external voltage applied across the system).f is
determined by solving the Poisson equation self-consis-
tently with steady-state SE’s for each ionic species (below).

Thus, the PNP procedure requires us to solve the Poisson
equation taking into account all charges present in the
system. These are of two types, charges which are embed-
ded in the membrane protein, and charges carried by the
mobile ions. Since the density of mobile ions depends on the
solution of the SE, and the solution of the SE depends on the
electric potential, the following set of equations must be
solved:

0 5 ¹W z @¹W ci~RW ! 1 b¹W Vi~RW !ci~RW !#; i 5 1, . . . ,N (5)

The Poisson equation must be solved self-consistently with
these:

¹W z ~e~RW !¹W f~RW !! 5 24pFrf~RW ! 1 O
i51

N

zieci~RW !G; (6)

here i labels the ionic species,e is the dielectric constant
profile, andrf is the density of fixed charges embedded in
the macroions found in the system (e.g., the channel pro-
tein). The steady-state SE’s appearing in Eq. 5 are often
referred to as “drift-diffusion” equations [for example, in
the semiconductor device design literature (Selberherr,
1984)] and as “Nernst-Planck” (NP) equations [for exam-
ple, in the biophysics community (Barcilon et al., 1992)].
Below we use these designations interchangeably.

COMPUTATIONAL METHODS

While the form of the PNP Eqs. 5 and 6 is well known,
explicit solution in 3D has only been attempted in a few
cases, all of which to our knowledge have arisen in the
context of semiconductor device design (Selberherr, 1984).
In this work we develop a simple, reliable, and efficient
lattice relaxation scheme which parallels widely used meth-
ods for solving the Poisson and Poisson-Boltzmann equa-
tions in biophysical (Nicholls et al., 1990; Luty et al., 1992)
and colloid science (Coalson and Duncan, 1992; Walsh and
Coalson, 1994; Ben-Tal and Coalson, 1994) applications.
Two algorithms for solving the NP Eq. 5 are described in
Appendices 1 and 2. In Appendix 1 we use the Slotboom
transformation (Slotboom, 1969) in order to transform the
NP equation to a Laplace equation (i.e., Poisson equation
with no source charge) with a peculiar effective dielectric
constant profile. Using the resulting Laplace equation, so-
lution of the coupled Eqs. 5 and 6 can be obtained utilizing
standard 3D lattice Poisson equation solvers (Nicholls et al.,

1990; Luty et al., 1992; Coalson and Duncan, 1992; Walsh
and Coalson, 1994; Ben-Tal and Coalson, 1994). We also
provide, in Appendix 2, a simple, explicit Successive Over-
Relaxation (SOR) (Press et al., 1992; Coalson and Beck,
1998) scheme for solving the NP equation directly, includ-
ing easy and general implementation of zero-flux boundary
conditions, which arise naturally in the applications of in-
terest here. Both methods have proven effective in test
calculations.

In addition to a generic computer code for solving Eqs. 5
and 6, applications to biophysical systems require a method
for discretizing 3D biological structures (e.g., the channel
protein and cell membrane) onto a cubic lattice. Fortunately,
the same issue arises in studying electrostatic and equilib-
rium electrolyte properties of biophysical systems via the
Poisson and Poisson-Boltzmann equations, respectively.
Thus we have utilized Delphi (Nicholls et al., 1990), a
well-known Poisson/Poisson-Boltzmann equation solver,
which allows mapping of the protein onto a 3D grid. The
Delphi source code was modified to include a procedure for
wrapping a membrane around the channel protein and map-
ping this membrane onto the 3D grid as well. The overall
system was partitioned into two regions. The first region is
characterized by a low dielectric constantem and represents
the protein and the membrane in which it is embedded. The
second region, representing the solvent reservoirs and the
permeable channel itself, is characterized by a high dielec-
tric constantea. In other wordse(RW ) in Eq. 6 was set to

e~RW ! 5 H em, if RW [ $protein or membrane%
ea, otherwise

The protein-solvent boundary is determined as the sol-
vent-accessible van der Waals surface using the method of
Connolly (1983), as implemented in Delphi. The Delphi
code was further modified to include steady-state Nernst-
Planck equations (cf. Appendix 2) along with the electro-
static Poisson equation solver. Other modifications included
the possibility of setting different salt concentrations in the
solvent on different sides of the membrane, as well as a
potential difference on opposite boundaries of the box (cor-
responding to an applied potential created, for example, by
electrodes).

The calculations were performed on uniform cubic lat-
tices of up to (170)3 grid points. The boundary condition for
the flux equation is zero current through the channel wall,
i.e.:

jW' 5 0uRW 5RW b, (7)

where RWb is a channel boundary point andjW' is the flux
component normal to the boundary. Implementation of
zero-flux boundary conditions on a cubic lattice is discussed
in Appendix 2.

A fixed electric potential and ion concentrations were set
on the upper and lower faces of the computational box. The
channel was oriented normal to these two faces (along the
z-axis). On the side faces the potential was set according to
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a linear variation between upper and lower values along the
vertical coordinate. Inside the membrane and protein, mo-
bile ion concentrations were set to zero. The concentrations
of the positive and negative ions were equal to each other on
both top and bottom faces to ensure charge neutrality in the
reservoirs. Ion concentrations were allowed to change only
in the interior of the channel.

For the cylinder calculations presented below, a cylindri-
cal hole of the desired radius oriented from top to bottom of
the box was made through the membrane layer (cf. Fig. 1).
The dielectric constants were set toem 5 2 andea 5 80. The
gramicidin geometry reflects its molecular structure as de-
scribed below. The choice of dielectric parameters for the
gramicidin channel calculations will be discussed later.

Our program was executed on a DECa21164a-clone
workstation with 512Mb of RAM. The computational time
varied from 10 min/point of the current-voltage character-
istic on a 1003 100 3 100 grid, to several hours/point,
depending on the external salt concentrations (at the low
ionic strength the computation time required increases) and
epsilon values chosen (see below).

CALIBRATION OF THE ACCURACY OF THE
3D CODE

It is a challenge to calibrate the accuracy of the full 3D PNP
code, which consists of coupled lattice relaxation of 3D
scalar fields representing the electrical potential and the
densities of all mobile ion species. Analytical solutions exist
only for a few special cases (see below). Moreover, no other
computer algorithms that solve the 3D PNP equations in the
context of biological channel proteins or related problems

were available to us. Nevertheless, we tested our 3D PNP
code against several limiting case solutions.

The calculations presented below assume that the salt
concentrations are given at the entrance and the exit of the
channel. These concentration boundary conditions are set so
as to enforce charge neutrality at these positions. In the case
of monovalent cations and anions, this means that the con-
centrations of cations and anions are the same at the en-
trance to the channel (label this concentrationc0) and at the
exit from the channel (label this concentrationcL). [In the
gramicidin channel problem discussed below, it is not
known precisely whether the bulk concentration reservoirs
extend right up to the entrance to the channel, as implied by
the boundary conditions adopted here. Preliminary calcula-
tions on cylinder systems indicate that the current-voltage
characteristic is not very sensitive to this choice. A more
complete analysis of the ion flow through a cylinder within
PNP theory will be presented elsewhere.]

We have focused our calibration efforts on the case that
the ion channel is represented by a cylinder of lengthL and
radiusR, whose interior is a high dielectric region,ea 5 80,
permeable to water and simple ions. The exterior of the
cylinder represents the cell membrane, which is a low
dielectric region withem 5 2 and is impermeable to water
or ions. A typical system is illustrated in Fig. 1.

For this geometry, the case of no applied voltage has a
simple exact solution. Namely, the concentrations of both6
ions is given by:

c~z! 5 c0 1 ~cL 2 c0!z/L (8)

Note that the concentration is independent of the transverse
directionsx andy. Obviously, there is no net electric charge
anywhere in the system and the voltage on the boundary of
the system is zero, so the electric potentialf 5 0 every-
where. Equation 8 is clearly a solution of the 3D drift-
diffusion equation for both6 ions whenf 5 0, and it
satisfies the desired boundary conditions. In particular, the
concentration gradient in the transverse directions (radially
out from the center of the cylinder) is zero, hence (withf 5
0) there is no flux through the cylinder walls, as desired. We
have checked that when we solve the full 3D PNP equations
by lattice relaxation for the case of zero applied potential,
the solution just described emerges.

When a potential is applied on the boundaries, it polarizes
the mobile charge in the middle. This generates a net charge
distribution in the cylinder and makes the solution of Pois-
son’s equation and, in turn, the solution of the drift-diffu-
sion equations considerably more complex. At steady state
the electric potential and ion concentrations are complicated
functions ofz and r 5 =x2 1 y2, for which no analytical
solution is apparent. However, we can partially test our code
by imposing an electric potentialf(z) which is independent
of x andy, but otherwise arbitrary. Given only two types of
monovalent ions, namely, cations of concentrationc1 and
anions of concentrationc2, with equal diffusion coeffi-
cients, the steady-state concentration profiles inside the

FIGURE 1 Geometry of cylindrical pore system. The coordinate system
adopted in the text is shown and the radius and the length of the cylinder
are indicated.

Kurnikova et al. Algorithm for 3D PNP Theory 645



cylinder are also independent ofx and y, and can be ob-
tained by using the formula:

c6~z! 5 exp@7f# ~z!#$c0exp~6f# 0!@S~L! 2 S~z!#

1 cLexp~6f# L!S~z!%/S~L!

(9)

with f# 5 ef/kT and

S~z! ; E
0

z

dz9exp@6f# ~z9!#

In Fig. 2 we show the variation of positive ion density with
z along the channel center when a linear potential ramp
V0 2 VL 5 200 mV is applied, and the concentrations at the
entrance and exit of the cylinder channel arec0 5 25 mM
andcL 5 3 mM, respectively, at a temperature of 25°C (i.e.,
kT 5 25.7 meV). 3D solutions of the NP equations using
various grid sizes are compared to the 1D result given by
Eq. 9 (specialized to the case of a linear potential profile). It
is clear that the 3D result approaches the 1D formula as the
grid size becomes finer. We have also found, in accord with
the theory, the 3D solution is independent of the radius of
the channel chosen for the calculations. We have usedR 5
10 Å, 20 Å, and 30 Å for these calculations and found no
difference in the final concentrations.

Next, we note that when the cylinder is very wide,R3
`, we recover the problem of ion transport between parallel
plates of infinite extent. In this limit, both the NP and
Poisson equations become strictly one-dimensional (varying
in the z direction only). The concentrations are then given
exactly by Eq. 9, with the electric potential determined
(self-consistently) from the 1D Poisson equation:

d2f~z!/dz2 5 ~24pe/ea!@c
1~z! 2 c2~z!# (10)

Note that there is only mobile (no embedded) charge in the
system, and the dielectric constant is chosen to be that of
water. In Fig. 3 flux vs the transmembrane voltage for
cylinders of various widths are shown. These were obtained
using the full 3D PNP solver code. [Note that flux calcula-
tions depend on the appropriate diffusion constants. Here
we consider the case thatD1 5 D2, as indicated in the
caption to Fig. 3.] Once a self-consistent solution of the
PNP equations is achieved, the resultant concentrations of
the mobile ion species and the electrical potential yield the
particle fluxesjW6(RW ) via Eq. 2. Each curve obtained from the
3D code is compared with the curve obtained from 1D PNP
theory (Eqs. 9 and 10 above). The 1D calculation yields a
constant electrical current density. [Note that the flux of
electric charge is given bye( jW1 2 jW2).] It is clear that as the
channel becomes wider, the fully 3D cylinder results in-
creasingly resemble the 1D parallel plate limit results.

APPLICATION TO THE GRAMICIDIN A CHANNEL

Gramicidin A (GA) is a small polypeptide fromBacillus
breviswhich is known to form an ion channel in the bac-
terial cell wall or in artificial lipid membranes (Wallace,
1990; Andersen and Koeppe II, 1992; Venkatchalam and
Urri, 1983). The GA channel is ab-helix dimer, comprised
of identical subunits A and B (cf. Fig. 4a), which forms a
narrow open pore permeable to simple monovalent cations
K1, Na1, and Cs1. The 3D structure of the dimer is known
from 2D NMR and NOE spectroscopy studies to a resolu-
tion of 0.86 Å (Arsen’ev et al., 1986). The GA sequence
consists of alternatingL andD nonpolar amino acids which
permit nonpolar side groups to extend into the membrane
while the pore is lined by polar peptide groups (see Fig. 4
a). The single-channel current has been studied (Aidley and
Stanfield, 1996; Hille, 1992) under a variety of conditions.

FIGURE 2 Positive ion density for the case of linear electric potential
drop of 200 mV across cylinder lengthL 5 100 Å. Open circles represent
the 1D analytical solution whenc0 5 25 mM andcL 5 3 mM. Large, filled
circles correspond to the 3D solution on a 113 11 3 11 grid. Shaded
squares correspond to the 3D solution on a 613 61 3 61 grid.

FIGURE 3 Flux versus voltage for three wide cylindrical channels of
different width-to-length ratio versus 1D parallel plate PNP solution (open
diamonds). For the cylinder channels, cylinder dimensions are (radius/
length): 5 Å3 100 Å (R/L 5 0.05), dashed line; 5 Å3 30 Å (R/L 5 0.17),
dot-dashed line; 10 Å3 30 Å (R/L 5 0.33), open circles. Salt concentra-
tions at the entrance and the exit from the channel arec0 5 25 mM andcL

5 3 mM; diffusion constants areD1 5 D2 5 1.273 1026 cm2/s.
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Because it is relatively small and well characterized ex-
perimentally, GA has become a focal point for theoretical
efforts to explain the mechanism of ionic conduction in
protein channels (Barcilon et al., 1992; Roux and Karplus,
1993; Andersen and Feldberg, 1996). In the present work
we have utilized PNP theory to calculate this current as a
function of voltage applied across the channel.

The system considered consists of a polypeptide dimer, a
membrane surrounding it, a pore region inside the gramici-
din helix and, finally, inner and outer solvent regions rep-
resenting the electrolyte inside and outside of the cell mem-
brane. The layout of the GA channel on the grid is shown in
Fig. 4 b. The coordinates of heavy atoms of the protein

(Arsen’ev et al., 1986) were taken from the Protein Data
Bank (Bernstein et al., 1977). Partial charges for the GA
atoms were taken from the AMBER86 force field (Pearlman
et al., 1991). Atomic radii were taken from Delphi (Nicholls
et al., 1990); the radii of the polar hydrogens were set to 1.0
Å. The membrane and protein region (white area in Fig. 4b)
is described by the low dielectric constantem 5 2. Salt is
excluded from the interior of this region. The high dielectric
constantea 5 80 is assigned to the aqueous region, i.e., the
volume outside of the protein-membrane region (black and
gray regions of Fig. 4b). As indicated above, the electric
potential is set to assigned values (reflecting the applied
voltage) along the bottom and top faces of the simulation
box. On the side faces it is set by interpolating linearly
between top and bottom potential values. In the regions
indicated in black, mobile ion concentrations are held to
fixed “bath values,” whereas in the gray region mobile ion
concentrations are variable and are determined by solving
the PNP equations self-consistently.

It should be noted that our choice of dielectric response
distribution may be oversimplified. The dielectric constant
assigned to water in highly restrictive environments where
full molecular rotation is inhibited is considerably lower
than 80 (Bokris and Khan, 1993). At the same time the
appropriate epsilon for the protein environment may be
somewhat higher than the traditionally chosen value 2,
which accounts only for electronic polarizability of the
molecule. It was indicated recently (Warshel and Russell,
1984; Sharp and Honig, 1990) that vibrational polarizability
and conformational relaxation can be essential in the dielec-
tric response of the protein, and it is possible to account for
these contributions by setting the dielectric constant to a
higher value, such as 5. Takingea 5 80 in the present study
reflects the fact that the loss of dielectric screening by water
in the channel is probably compensated, to some extent, by
the response of the channel itself to the presence of ions.
Furthermore, the valueem 5 2 was chosen for the protein
and membrane region for the calculations reported in this
work after considering the fact that thea-helix comprising
the pore lining is a rigid structure, i.e., that vibrations of
polar groups in the backbone itself are restricted by mutual
interactions. To elucidate the effect of a lower dielectric
constant ratioea/em on the current-voltage characteristics
produced by the PNP calculations, we performed additional
calculations withea 5 30 andem 5 5. The resulting current-
voltage curve coincides with the one produced whenea and
em are set to 80 and 2, respectively, if one sets the diffusion
constant a factor of 1.37 times higher than the diffusion
constant chosen for theea 5 80, em 5 2 case. (See the
discussion of the choice of diffusion constants below.) Also,
we note that the computation time increased substantially
when the lower dielectric constant for the water was chosen
[taking several hours/point on our workstation (see Com-
putational Methods)]. This increase can be traced to the
strong electric fields generated by the point charges embed-
ded in the gramicidin molecule, which are less shielded in a
low dielectric medium.

FIGURE 4 (a) Gramicidin A dimer. The two subunits are colored in
light and dark gray and marked A and B, respectively; (b) gramicidin
lattice scheme. A 2D cut through the center of the simulation box along the
z axis illustrates the grid representation of the protein and the membrane.
The membrane and the protein region are shown in white, solvent reser-
voirs are shown in black; the channel region (where mobile ion concen-
trations are variable) is shown in gray. Grid size is 913 91 3 91; the
length of the simulation box is 30 Å.
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Within the PNP theory the computed steady-state ionic
currents scale linearly with the corresponding diffusion con-
stants. The diffusion constants for the positive and negative
ions, e.g., K1 and Cl2, have been measured to be approx-
imately equal to each other in bulk electrolyte (D1 5 D2 5
1025 cm2/s) (Hille, 1992). There is no experimental mea-
surement of appropriate values for these constants inside the
channel. A molecular dynamics simulation of an ion inside
a water-filled cylindrical pore having approximately the
same dimensions as the GA ion channel yielded diffusion
constants two to three times smaller (depending on ion
species) than their bulk values (Lynden-Bell and Rasaiah,
1996). In our calculations we have found that the values
D1 5 D2 5 1.273 1026 cm2/s gave results consistent with
experimental observations, and these values were used for
all our calculations (withea 5 80, em 5 2). No further
adjustment of parameters was attempted.

To understand the effect of partial charges in the GA
protein on the transport of mobile ions through the channel,
an additional calculation was performed with no partial
charges on the GA atoms (uncharged GA). For both calcu-
lations the ionic strengths of salt in the external regions
were set to 500 mM at the channel entrance and 40 mM at
its exit. The current-voltage relations for GA and uncharged
GA are shown in Fig. 5. The large difference in current
calculated for GA and uncharged GA demonstrates that the
embedded charge distribution in the channel molecule sig-
nificantly influences current through the channel.

For the GA protein with no partial charges on its atoms
andD1 5 D2, the net PNP current is essentially antisym-
metric with respect to the direction of the applied voltage.
This situation is illustrated in Fig. 6, where the positive and
the negative ion currents are shown separately. Figure 9
shows the potential and the positive ion density along the
channel center axis,r 5 0, as discussed in detail below.

In Fig. 7 the electrostatic potential distribution around the
channel is shown for both GA and uncharged GA. The

corresponding positive ion charge density profiles are
shown in Fig. 8.

For the uncharged GA, the change in the potential along
the channel is smooth (Fig. 7a). It is especially clear from
Fig. 9a that the shape of the potential in this case is largely
due to the external linear potential drop across the mem-
brane. For this parameter set, the potential generated by the
mobile charge density has a small effect on the current
through the channel. In contrast, for the GA with partial
charges turned on, one observes a nonuniform electric po-
tential distribution inside and around the channel (see Fig. 7
b) and, in particular, a large potential “well” roughly in the
center of the channel. In Fig. 8b, in which the correspond-
ing positive mobile charge density is shown, a significant
peak in the density is observed in the center of the channel.
Comparison of the electric potential and density profiles
along the center of the channel in Fig. 9,a andb for charged
and uncharged GA demonstrates the significant modifica-
tions induced by the partial charges on the atoms which are
exposed into the channel. The GA with partial charges is
permeable mainly to positive ions; the local positive ion
density rises as high as 8 M. In contrast, the concentration
of the negative ions in the channel is very low for all
voltages (see Fig. 9b). Additionally, in Fig. 9a the elec-
trostatic potential is shown for two external voltages, ap-
plied in opposite directions. Both profiles feature a potential
well inside the channel which attracts the mobile positive
charges into the channel while preventing the negative
charges from flowing inside at all voltages.

Consequences of this charge selectivity of the GA mol-
ecule for the electric current through the GA channel are
shown in Fig. 10, where the total current as well as the
currents of the positive and the negative ions are plotted
separately. In this case (in contrast to what is observed in the
simple cylinder or uncharged GA case), the negative ion
current is essentially negligible. Because of the concentra-
tion gradient this current exhibits no symmetry with respect
to direction of the applied voltage. The rectification of the

FIGURE 5 Current-voltage characteristics for charged GA (circles) and
uncharged GA (squares). Ionic strengths in the lower and upper reservoirs
arec0 5 500 mM andcL 5 40 mM, respectively. Diffusion constants are
D1 5 D2 5 1.273 1026 cm2/s.

FIGURE 6 Current-voltage characteristics for the uncharged GA. Solid
line is the total current, the line with “1” represents positive ion current,
line with “2”, represents negative ion current.
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current when the ionic strength on one side of the membrane
is different from the ionic strength on the other side is
observed only for the charged GA, as is the saturation of the
current at moderate voltage differences (discussed below).

FIGURE 7 Electrostatic potential around the GA channel calculated via
PNP theory. Potential variation over a vertical plane slicing through the
center of the computational box is depicted, when (a) there are no charges
on atoms (uncharged GA); (b) partial charges are set on the GA atoms
according to AMBER86 force field. Ionic strengths in the lower and upper
reservoirs arec0 5 500 mM andcL 5 40 mM, respectively. Potential
difference across the membrane is 300 mV. [Note the difference in color
scales for panels (a) and (b).

FIGURE 8 Positive ion density distribution inside the GA channel along
plane described in Fig. 7, when (a) there are no charges on atoms (un-
charged GA); (b) partial charges are set on the GA atoms according to
AMBER86 force field. Ionic strengths in the lower and upper reservoirs are
c0 5 500 mM andcL 5 40 mM, respectively. Potential difference across
the membrane is 300 mV. [Note the difference in shading scales for panels
(a) and (b).]
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A closer look inside the channel at the mobile charge and
potential distributions enables one to understand how the
channel protein molecule influences the charge density
flowing into it. A more detailed consideration of the density
profile dependence on the external potential difference
across the membrane and the external salt concentrations
allows us to identify possible attractive sites for the positive
ions. Before presenting this analysis we address the impor-
tant question of how well PNP model results compare with
known experimental properties of GA channels.

For comparison with experiment we have chosen results
of single-channel recording of GA in CsCl salt reported by
the group of O. Andersen (Oiki et al., 1994; Mazet et al.,
1984). In these measurements and in our corresponding

calculations the salt concentrations on the channel bound-
aries were taken to be equal. Current-voltage relations were
generated for two different salt concentrations: 0.01 M and
1.0 M. In Fig. 11, current calculated for 1 M ionic concen-
trations on both sides of the membrane is plotted versus
potential difference across the membrane and compared to
experimental data of Oiki et al. (1994). The calculated curve
closely resembles the experimental one. Both experimental
and calculated curves indicate that the GA channel exhibits
no rectification and there is essentially no saturation of the
current even at high voltages. TheI-V behavior at low salt
concentrations is significantly different. In Fig. 12 the cal-
culatedI 2 V curve is plotted for the external salt concen-

FIGURE 9 (a) Electrostatic potential at the center (r 5 0) of the GA
channel plotted alongz (channel)-axis obtained from the PNP calculation.
The dot-dashed line representsf(r 5 0, z) for the channel with no fixed
partial charges; line with circles is the corresponding result for the channel
with partial charges turned on. In both cases the external potential across
the membrane is set to1300 mV. The line with squares showsf(r 5 0,
z) for the channel with partial charges on and external potential across the
membrane is set to2300 mV. Ionic strengths in the entrance and exit
reservoirs arec0 5 500 mM andcL 5 40 mM. (b) Ionic concentration at
the center (r 5 0) of the GA channel plotted alongz (channel)-axis
obtained from the PNP calculation. Dot-dashed line representsc1(r 5 0, z)
for the channel with no fixed partial charges; the line with circles is the
same function in the channel with partial charges turned on. The line with
triangles represents the density of negative ionsc2(r 5 0, z) in the channel
with partial charges on. Ionic strengths in the lower and upper reservoirs
are c0 5 500 mM andcL 5 40 mM; the external potential across the
membrane is set to1300 mV.

FIGURE 10 Current-voltage characteristics for the GA with partial
charges on the atoms. Solid line is the total current, the line with “1”
represents positive ion current (indistinguishable from positive ion cur-
rent). Line with “2” represents negative ion current. Ionic strengths in the
lower and upper reservoirs arec0 5 500 mM andcL 5 40 mM, respec-
tively.

FIGURE 11 Current versus voltage calculated via PNP for the GA
channel (solid line). Ionic concentrations on both sides of the membrane
are 1 M. Circles represents the experimental data taken from Oiki et al.
(1994).
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tration of 0.01 M and compared to the experimental curve
(see inset) from Andersen (1983). For this concentration the
model again works reasonably well. At negative voltages
(not shown) the line extends antisymmetrically; thus there is
no rectification. The model also reproduces the saturation of

the current at high voltage, which is an important property
of many biological channels and is not reproduced by the
PNP model under consideration here if partial charges on
the channel atoms are not taken into account.

Let us now study the charge density profile inside the
channel as the current flows through it. At moderate to high
external salt concentrations (Fig. 13a andb) the calculated
density profile features four symmetrically located density
maxima; the height of these peaks rapidly increases as the
concentration rises from moderate (;1 M) to high (;10 M)
(Fig. 13 b). At very high concentrations the concentration
profile does not depend sensitively on external salt concen-
trations or the external potential (Fig. 13a). From this figure
it is clear that at a variety of salt concentrations the locations
of the peaks observed are independent of external condi-
tions. These peaks can be identified as sites of attraction (or
residence) for positive ions traveling through the channel. In
Fig. 14 their location is schematically represented with large
spheres placed inside the GA dimer channel according to
the locations of the ionic density maxima found in PNP
calculations, and corresponding to the four peaks of the
density observed in Fig. 13. The atomic groups closest to
this density maxima are polar oxygens of the peptide back-
bone in the following amino acids (along the channel):

FIGURE 12 Current versus voltage calculated via PNP for the GA
channel. Ionic concentrations on both sides of the membrane are 0.01 M.
Shown in the inset are the experimental data taken from Andersen (1983).

FIGURE 13 Mobile ion charge distribution along thez-(channel) axis.c0 5 cL for all lines. The appropriate applied potential difference and entrance/exit
concentrations are indicated on each panel. [Note that the applied voltage is 200 mV for all curves in panel (b).]
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Trp-11 and Ala-3 in subunit A, Ala-3 and Trp-13 in
subunit B.

At low salt concentrations and moderate voltages only
one or two charge density maxima occur roughly in the
center of the channel, as shown, for example, in Fig. 13c for
the external salt concentration 0.02 M and a 200 mV po-
tential difference across the membrane. The occurrence of
these central attractive sites is nearly independent of exter-
nal conditions, while the attractive sites at the entrance/exit
of the channel are not pronounced in this regime. The
persistence of the central attractive sites revealed in our
calculations suggests that the ionic permeability through the
GA channel is influenced by the molecular structure of the
protein in the middle of the channel. The experimentally
observed variation of the ionic current upon the substitution
of certain amino acids in the middle of the channel (e.g.,
Ala-1 to Tyr), and the relative lack of variation of the ionic
current when Trp-13 is replaced by Val or Tyr (Mazet et al.,
1984) support this hypothesis. A very high voltage drop
across the membrane (500 mV) at low salt concentrations
shifts the residence site to the side (exit) of the channel
(Trp-13) (see Fig. 13d) where the potential created by this
attracted positive charge compensates the external potential
and prevents more positive charge from going into the
channel.

An estimation of the location of cation binding sites from
the experimental structural data was previously provided by
Urri et al. (1982a, b) and later by Jing et al. (1995) using
NMR spectroscopy with13C-labeled gramicidin incorpo-
rated into lipid micelles. Changes in the NMR spectrum due
to the presence of the Na1 cation were observed for the
carbonyl carbon of Trp-11 and Trp-13, which is in accord
with our results. Studies performed using solid-state NMR
indicated that the carbonyls of Leu-10, Leu-12, and Leu-14
were affected by the presence of Na1 (Smith et al., 1995;
Separovic et al., 1994). Thus, most of the available struc-
tural experimental data indicate that there is a cation binding
site near the entrance of the channel at a distance of 9–10 Å
from the center of the dimer. A recent study of the binding
site of sodium in the GA channel (Woolf and Roux, 1997)
combined available experimental data with molecular dy-
namics simulation in order to refine the cation position at
the binding site in the channel. This study indicated that the
cation is located off the center of the channel and is coor-
dinated by carbonyl oxygens of Val-8, Leu-10, Trp-15, and
two single file water molecules. No large distortions of the
channel structure due to the presence of the ion in the
channel were observed and the largest deviation from its
equilibrium position in the ion-free channel was exhibited
by the carbonyl group of Leu-10–Trp-11 amide plane. This
is also in accord with our result of finding large density
peaks near Trp-11 and Trp-13. It appears that most previous
authors find no evidence that there is a cation binding site in
the center of the channel (Urri et al., 1982b; Separovic et al.,
1994; Woolf and Roux, 1997), while our calculations indi-
cate the existence of the deep potential well and therefore a
large density peak near Ala-3. We believe that further
investigations are needed to clarify this discrepancy be-
tween our results and the experimental studies. One possible
explanation may be that the channel is more rigid in the
center than in the entrance regions; therefore, its structure
does not change significantly when the ion binds at the
center of the dimer and hence cannot be resolved with NMR
spectroscopy. Another explanation may be that water mol-
ecules, which our model does not explicitly include, are
preferentially attracted to this site, thus preventing it from
attracting a cation.

DISCUSSION AND CONCLUSIONS

In this paper we have developed a numerical method for
solving the 3D Poisson-Nernst-Planck (PNP) equations.
The method is comprised of self-consistent solution of
elliptic partial differential equations using straightforward
successive over-relaxation (SOR) techniques. Although this
solution procedure can be applied to a variety of problems
in electrochemistry, we have focused here on an important
biophysical process, namely transport of simple ions
through channel proteins embedded in biological cell walls.
We considered in detail the case of the nearly cylindrical
pore created by the GA dimer, a system that has been much

FIGURE 14 Schematic picture of the GA dimer. Centers of the spheres
represent the calculated positive charge maximum positions inside the
channel. Size of these spheres is chosen arbitrarily.
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studied experimentally and theoretically. The flexibility of
our method allowed us to treat the full 3D structure of the
gramicidin protein, and all partial charges embedded in it.
We computed the induced ion current associated with a
range of applied voltages, i.e., the current voltage charac-
teristic, which agreed well with recent experimental mea-
surements of Andersen et al.

Obviously, the model and theory presented in this paper
are greatly oversimplified, and despite their apparent suc-
cess we should keep in mind their shortcomings. The fol-
lowing issues are particularly important:

1. The PNP model presented here is based on a continuum
picture. Ion sizes as well as the molecular nature of water
are disregarded;

2. The PNP theory is a mean field approximation in which
important correlations are neglected. Despite its known
successes, its validity in the narrow channel environment
(where the average number of ions at any time is typi-
cally one or less) should be questioned. Ion-ion correla-
tions such as the possible exclusion of an ion from a
channel that contains another ion of the same charge sign
are not included in this theory;

3. Some parameters and details of the calculation are un-
certain due to lack of knowledge about the actual system,
even though they could, in principle, be included within
the framework of the present treatment. For example, as
discussed above, the dielectric properties of water in the
channel are not known and the choice of diffusion con-
stant values made for both K1 and Cl2 in the GA
calculation should be regarded as a fitting procedure.

In view of the discussion above, the success of the present
calculation is remarkable. We leave for future studies the
question how much of this success is due to cancellation of
errors between contributing factors and how much because
the corrections involved are small. Some improvement of
the model may be obtained by considering ion-ion correla-
tions within the mean field level (Coalson et al., 1995).
More answers to these issues can, in principle, be provided
by MD simulations. However, realistic simulations of this
type on relevant length and time scales are beyond our
present capabilities. Dynamic Monte Carlo simulations can
also shed light on some of the issues by going beyond the
mean field level of the theory. Such simulations are cur-
rently underway.

APPENDIX 1

Mapping the Nernst-Planck equation to a
Laplace equation

Equation 3 can be transformed into the standard 3D Laplace equation with
a particular spatially dependent dielectric profile. As noted in the text, a
number of efficient grid methods have been developed to solve the 3D
Laplace equation (Press et al., 1992; Coalson and Beck, 1998).

Specifically, if we letc(RW ) 5 exp[2bV(RW )] c(RW ), then Eq. 3 above is
equivalent to

0 5 ¹W z ~eeff~RW !¹W c~RW !! (11)

with the effective “dielectric profile”eeff(RW ) [ exp[2bV(RW )]. [This effec-
tive dielectric constant profile is a mathematical construction that arises in
the mapping of a drift-diffusion equation to a Laplace-type equation. It
should not be confused with the physical dielectric constant profile which
enters into the solution of Poisson’s equation for the electric potential
distribution; see Eq. 6.] Given its value on the boundary surface,c(RW ) can
now be evaluated by standard lattice relaxation techniques.

Note that if the concentration of Brownian particles on the boundary is
Boltzmann-distributed, thenc 5 c0 (a constant) on the boundaries. The
interior solution in this case is alsoc 5 c0, i.e., Boltzmann equilibrium on
the boundary implies Boltzmann equilibrium in the interior, andjW 5 0.
Otherwise, the interior solution is nontrivial and the corresponding flux is
nonzero.

APPENDIX 2

Implementation of the successive over-relaxation
method for the Nernst-Planck equation

The Nernst-Planck (NP) equation for the mobile ion concentration of a
given species is solved by cycling around the lattice and updating each
lattice point based on the present value of its nearest neighbors. For
notational and diagrammatic simplicity, we will develop the desired for-
mulas for a 2D system. Results for the 3D case follow analogously and are
summarized below.

Fig. 15a shows the typical situation in the interior of the flow region in
2D. Each flux vector can be associated with the midpoint of the central grid
point and the nearest neighbor it connects to. For example, the flux in the
x direction halfway between (i, j) and (i 1 1, j) has the lattice (finite
difference) representation (cf. Eq. 2):

j i11
x 5 ci11,j 2 ci,j 1 b~Vi11,j 2 Vi,j!~ci11,j 1 ci,j!/2 (12)

[Note that the physical flux is2Dj i11
x /a, whereD is the diffusion constant,

a is the lattice spacing, andj i11
x is the expression in Eq. 12. However, the

factor 2D/a cancels out of the following manipulations and is therefore
ignored.] The condition thatci,j is at steady state is that there is no net flux
into the point (i, j), i.e.,

j i11
x 2 j i21

x 1 j j11
y 2 j j21

y 5 0 (13)

This is simply the lattice version of the NP equation (Eq. 5).
Substituting the explicit expressions for the flux components and solv-

ing the resulting equation for the concentration at the central point, one
finds:

ci,j 5 $ci11,j 1 ci21,j 1 ci,j11 1 ci,j21

1 ~b/2!@~Vi11,j 2 Vi,j!ci11,j 2 ~Vi,j 2 Vi21,j!ci21,j

1 ~Vi,j11 2 Vi,j!ci,j11 2 ~Vi,j 2 Vi,j21!ci,j21#%

4 $4 2 ~b/2!@~Vi11,j 2 Vi,j! 2 ~Vi,j 2 Vi21,j!

1 ~Vi,j11 2 Vi,j! 2 ~Vi,j 2 Vi,j21!%

This expression can be written in a more compact form if we label the
central point by subscript 0 and all neighboring points by the subscripti 5
1, . . . , 4;then:

c0 5
Oi51

4 @1 1 ~b/2!~Vi 2 V0!#ci

4 2 ~b/2!Oi51
4 ~Vi 2 V0!

, (14)

(The ordering of the four nearest neighbor sites is clearly irrelevant.) Then,
in an SOR scheme, the pointci,j is updated according to

ci,j 5 ~1 2 w!ci,j
old 1 wc0, (15)

whereci,j
old is the pre-update value ofci,j andw is a positive weight factor,

adjusted to get the most rapid convergence without losing stability.
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In the case that the central point (i, j) is adjacent to an impenetrable
boundary surface, as indicated in Fig. 15b, no particles flow through the
boundary surface so that, e.g.,j j21

y 5 0. In this case the condition of
steady-state concentrationci,j is

j i11
x 2 j i21

x 1 j j11
y 5 0. (16)

Now the concentration of the central point is given in terms of the
concentrations of its nearest neighbors, which are interior to the boundary,
by:

ci,j 5 $ci11,j 1 ci,j11 1 ci,j21

1 ~b/2!@~Vi11,j 2 Vi,j!ci11,j 1 ~Vi,j11 2 Vi,j!ci,j11

2 ~Vi,j 2 Vi,j21!ci,j21#%

4 $3 2 ~b/2!@~Vi11,j 2 Vi,j! 1 ~Vi,j11 2 Vi,j!

2 ~Vi,j 2 Vi,j21!#%

Again, this can be written more compactly using the notation adopted in
Eq. 14 above, as:

c0 5
Oi51

3 @1 1 ~b/2!~Vi 2 V0!#ci

3 2 ~b/2!Oi51
3 ~Vi 2 V0!

, (17)

where the sum runs over points which are nearest neighbors of (i, j) and are
in the interior of the flow region (these can be indexed in any order). An
analogous procedure applies when more than one nearest neighbor is
exterior to the flow region.

In 3D the analysis proceeds in the same way. For a point whose nearest
neighbors are all in the interior of the flow region

c0 5
Oi51

6 @1 1 ~b/2!~Vi 2 V0!#ci

6 2 ~b/2!Oi51
6 ~Vi 2 V0!

, (18)

the sum running over the six nearest neighbors of the central point. If a
point lies next to a boundary surface such that one of its nearest neighbors

is on the exterior side of the boundary, then

c0 5
Oi51

5 @1 1 ~b/2!~Vi 2 V0!#ci

5 2 ~b/2!O
i51

5 ~Vi 2 V0!
, (19)

with the sum running over the five nearest neighbors in the interior of the
flow region. Analogous formulas follow for the case of two or more nearest
neighbors outside the boundary.

We note in passing that the above reasoning applies equally well to the
case of constant concentration boundary conditions. Then, in 3D, Eq. 18 is
used to update all interior points. Those points which abut the boundary
require knowledge of the concentrations of lattice points on the boundary,
but the latter are prescribed by the boundary conditions.
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