CHEMICAL DYNAMICS IN CONDENSED PHASES

Relaxation, Transfer and Reactions in Condensed Molecular systems

Abraham Nitzan, Tel Aviv University

CONTENTS

PA	RT I	BACKG	ROUND	1
1	Rev	iew of som	ne mathematical and physical subjects	3
	1.1		matical background	3
		1.1.1	Random variables and probability distributions	3
		1.1.2	Constrained extrema	6
		1.1.3	Vector and fields	7
		1.1.4	Continuity equation for the flow of conserved entities	10
		1.1.5	Delta functions	11
		1.1.6	Complex integration	13
		1.1.7	Laplace transform	15
		1.1.8	The Schwarz inequality	16
	1.2	Classic	eal mechanics	18
		1.2.1	Classical equations of motion	18
		1.2.2	Phase space, the classical distribution function, and	
			the Liouville equation	19
	1.3	Quantu	ım mechanics	22
	1.4	Thermo	odynamics and statistical mechanics	25
		1.4.1	Thermodynamics	25
		1.4.2	Statistical mechanics	29
		1.4.3	Quantum distributions	34
		1.4.4	Coarse graining	35
	1.5	Physica	al observables as random variables	38
		1.5.1	Origin of randomness in physical systems	38
		1.5.2	Joint probabilities, conditional probabilities, and	
			reduced descriptions	39
		1.5.3	Random functions	41
		1.5.4	Correlations	41
		1.5.5	Diffusion	43
	1.6	Electro	ostatics	45
		1.6.1	Fundamental equations of electrostatics	45
		1.6.2	Electrostatics in continuous dielectric media	47
		1.6.3	Screening by mobile charges	52

xiv Contents

2		tum dyn idinger e	amics using the time-dependent	57		
	2.1	U	solutions	57		
	2.1			5 <u>9</u>		
	2.2		mple: The two-level system	63		
		Time-dependent Hamiltonians				
	2.4		level system in a time-dependent field	66		
	2.5	_	ession on nuclear potential surfaces	71		
	2.6	_	sing the time evolution in terms of the Green's operator	74		
	2.7	-	entations	76		
		2.7.1	The Schrödinger and Heisenberg representations	76		
		2.7.2	1	77		
	• •	2.7.3	Time-dependent perturbation theory	78		
	2.8	-	am dynamics of the free particles	80		
		2.8.1	Free particle eigenfunctions	80		
		2.8.2	Free particle density of states	82		
		2.8.3	Time evolution of a one-dimensional free particle wavepacket	83		
		2.8.4	The quantum mechanical flux	86		
	2.9	-		89		
		2.9.1	Elementary considerations	89		
		2.9.2	The raising/lowering operators formalism	93		
		2.9.3	The Heisenberg equations of motion	95		
		2.9.4	The shifted harmonic oscillator	96		
		2.9.5	Harmonic oscillator at thermal equilibrium	100		
	2.10	Tunnel		101		
		2.10.1	Tunneling through a square barrier	101		
		2.10.2		105		
	2A	Some of	operator identities	109		
3	An O	verview (of Quantum Electrodynamics and Matter–Radiation			
		Interacti	The state of the s	112		
	3.1	Introdu	action	112		
	3.2	The qu	antum radiation field	114		
		3.2.1	Classical electrodynamics	114		
		3.2.2	Quantum electrodynamics	115		
		3.2.3	Spontaneous emission	119		
	3A		diation field and its interaction with matter	120		
4	Intro	duction t	o solids and their interfaces	131		
-			periodicity	13		

			Contents	XV
	4.2	Lattice	vibrations	132
		4.2.1	Normal modes of harmonic systems	132
		4.2.2	Simple harmonic crystal in one dimension	134
		4.2.3	Density of modes	137
		4.2.4	Phonons in higher dimensions and the heat capacity	
			of solids	139
	4.3	Electro	onic structure of solids	143
		4.3.1	The free electron theory of metals: Energetics	143
		4.3.2	The free electron theory of metals: Motion	145
		4.3.3	Electronic structure of periodic solids: Bloch theory	147
		4.3.4	The one-dimensional tight binding model	150
		4.3.5	The nearly free particle model	152
		4.3.6	Intermediate summary: Free electrons versus	
			noninteracting electrons in a periodic potential	155
		4.3.7	Further dynamical implications of the electronic	
			band structure of solids	157
		4.3.8	Semiconductors	159
	4.4	The wo	ork function	164
	4.5		e potential and screening	167
		4.5.1	General considerations	167
		4.5.2	The Thomas–Fermi theory of screening by metallic	
			electrons	168
		4.5.3	Semiconductor interfaces	170
		4.5.4	Interfacial potential distributions	173
5			to liquids	175
	5.1		ical mechanics of classical liquids	176
	5.2		and ensemble average	177
	5.3		ed configurational distribution functions	179
	5.4		vable implications of the pair correlation function	182
		5.4.1	X-ray scattering	182
		5.4.2	The average energy	184
		5.4.3	Pressure	185
	5.5	_	stential of mean force and the reversible work theorem	186
	5.6	The vii	rial expansion—the second virial coefficient	188
Pa	rt II N	METHOI	OS	191
6			ion functions	193
	6.1		nary systems	193
	6.2	Simple	e examples	195

xvi			Contents			
		6.2.1	The diffusion coefficient	195		
		6.2.2	Golden rule rates	197		
		6.2.3	Optical absorption lineshapes	199		
	6.3		cal time correlation functions	201		
	6.4		im time correlation functions	206		
	6.5	Harmo	nic reservoir	209		
		6.5.1	Classical bath	210		
		6.5.2	The spectral density	213		
		6.5.3	Quantum bath	214		
		6.5.4	Why are harmonic baths models useful?	215		
7	Introduction to stochastic processes					
	7.1		ture of stochastic processes	219		
	7.2		stic modeling of physical processes	223		
	7.3		ndom walk problem	225		
		7.3.1	Time evolution	225		
		7.3.2	Moments	227		
		7.3.3	The probability distribution	230		
	7.4 Some concepts from the general theory of stochastic		concepts from the general theory of stochastic processes	233		
		7.4.1	Distributions and correlation functions	233		
		7.4.2	Markovian stochastic processes	235		
		7.4.3	Gaussian stochastic processes	238		
		7.4.4	A digression on cumulant expansions	241		
	7.5	•		242		
		7.5.1	The power spectrum	242		
		7.5.2	The Wiener–Khintchine theorem	244		
		7.5.3	Application to absorption	245		
		7.5.4	The power spectrum of a randomly modulated			
			harmonic oscillator	247		
	7A	Momei	nts of the Gaussian distribution	250		
	7B	Proof o	of Eqs (7.64) and (7.65)	251		
	7C	Cumul	ant expansions	252		
	7D	Proof o	of the Wiener–Khintchine theorem	253		
8	Stochastic equations of motion					
	8.1	Introdu	action	255		
	8.2	The La	ngevin equation	259		
		8.2.1	General considerations	259		

262

The high friction limit

8.2.2

			CONTENTS	XV11
		8.2.3	Harmonic analysis of the Langevin equation	264
		8.2.4	The absorption lineshape of a harmonic oscillator	265
		8.2.5	Derivation of the Langevin equation from	
			a microscopic model	267
		8.2.6	The generalized Langevin equation	271
	8.3	Master	equations	273
		8.3.1	The random walk problem revisited	274
		8.3.2	Chemical kinetics	276
		8.3.3	The relaxation of a system of harmonic	
			oscillators	278
	8.4	The Fo	kker–Planck equation	281
		8.4.1	A simple example	282
		8.4.2	The probability flux	283
		8.4.3	Derivation of the Fokker–Planck equation	
			from the Chapman–Kolmogorov equation	284
		8.4.4	Derivation of the Smoluchowski equation	
			from the overdamped Langevin equation	287
		8.4.5	Derivation of the Fokker–Planck equation	
			from the Langevin equation	290
		8.4.6	The multidimensional Fokker–Planck equation	292
	8.5	_	e time distributions and the mean first passage time	293
	8A		ing the Fokker–Planck equation from the	
			nan-Kolmogorov equation	296
	8B		ing the Smoluchowski equation from the overdamped	
		_	vin equation	299
	8C		tion of the Fokker-Planck equation from the Langevin	
		equation	on	301
9	Introd	luction t	to quantum relaxation processes	304
	9.1		ole quantum-mechanical model for relaxation	305
	9.2	-	igin of irreversibility	312
	J. 2	9.2.1	Irreversibility reflects restricted observation	313
		9.2.2	Relaxation in isolated molecules	313
		9.2.3	Spontaneous emission	314
		9.2.4	Preparation of the initial state	315
	9.3		fect of relaxation on absorption lineshapes	316
	9.4		tion of a quantum harmonic oscillator	322
	9.5		um mechanics of steady states	329
		9.5.1	Quantum description of steady-state processes	329
		9.5.2	Steady-state absorption	334
		9.5.3	Resonance tunneling	334

XV11	VIII CONTENTS		CONTENTS	
	9A	Using p	rojection operators	338
	9B		Evaluation of the absorption lineshape for the model	
			9.2 and 9.3	341
	9C	Resonar	nce tunneling in three dimensions	342
10	Quan	tum mec	hanical density operator	347
	10.1		nsity operator and the quantum	
		Liouvill	le equation	348
		10.1.1	The density matrix for a pure system	348
		10.1.2	Statistical mixtures	349
		10.1.3	Representations	351
		10.1.4	Coherences	354
		10.1.5	Thermodynamic equilibrium	355
	10.2	An exar	mple: The time evolution of a two-level system in the	
		density	matrix formalism	356
	10.3	Reduce	d descriptions	359
		10.3.1	General considerations	359
		10.3.2	A simple example—the quantum mechanical basis	
			for macroscopic rate equations	363
	10.4	Time ev	volution equations for reduced density operators:	
		The qua	antum master equation	368
		10.4.1	Using projection operators	368
		10.4.2	The Nakajima–Zwanzig equation	369
		10.4.3	Derivation of the quantum master equation using	
			the thermal projector	372
		10.4.4	The quantum master equation in the interaction	
			representation	374
		10.4.5	The quantum master equation in the Schrödinger	
			representation	377
		10.4.6	A pause for reflection	378
		10.4.7	System-states representation	379
		10.4.8	The Markovian limit—the Redfield equation	381
		10.4.9	Implications of the Redfield equation	384
		10.4.10	Some general issues	388
	10.5	The two	o-level system revisited	390
		10.5.1	The two-level system in a thermal environment	390
		10.5.2	The optically driven two-level system in a thermal	
			environment—the Bloch equations	392
	10A		y of a coupled 2-level system to a spin $\frac{1}{2}$ system in	
		a magne	etic field	395

		Contents	xix
11	Linea	r response theory	399
	11.1	Classical linear response theory	400
		11.1.1 Static response	400
		11.1.2 Relaxation	401
		11.1.3 Dynamic response	403
	11.2	Quantum linear response theory	404
		11.2.1 Static quantum response	405
		11.2.2 Dynamic quantum response	407
		11.2.3 Causality and the Kramers–Kronig relations	410
		11.2.4 Examples: mobility, conductivity, and diffusion	412
	11A	The Kubo identity	417
12	The S	pin–Boson Model	419
	12.1	Introduction	420
	12.2	The model	421
	12.3	The polaron transformation	424
		12.3.1 The Born Oppenheimer picture	426
	12.4	Golden-rule transition rates	430
		12.4.1 The decay of an initially prepared level	430
		12.4.2 The thermally averaged rate	435
		12.4.3 Evaluation of rates	436
	12.5	Transition between molecular electronic states	439
		12.5.1 The optical absorption lineshape	439
		12.5.2 Electronic relaxation of excited molecules	442
		12.5.3 The weak coupling limit and the energy gap law	443
		12.5.4 The thermal activation/potential-crossing limit	445
		12.5.5 Spin–lattice relaxation	446
	12.6	Beyond the golden rule	449
Par	t III A	PPLICATIONS	451
13	Vibra	tional energy relaxation	453
	13.1	General observations	453
	13.2	Construction of a model Hamiltonian	457
	13.3	The vibrational relaxation rate	460
	13.4	Evaluation of vibrational relaxation rates	464
		13.4.1 The bilinear interaction model	464
		13.4.2 Nonlinear interaction models	467
		13.4.3 The independent binary collision (IBC) model	468
	13.5	Multi-phonon theory of vibrational relaxation	471
	13.6	Effect of supporting modes	476
	13.7	Numerical simulations of vibrational relaxation	478
	13.8	Concluding remarks	481

xx Contents

14	Chem	nical reactions in condensed phases	483
	14.1	Introduction	483
	14.2	Unimolecular reactions	484
	14.3	•	489
		14.3.1 Foundations of TST	489
		14.3.2 Transition state rate of escape from	
		a one-dimensional well	491
		14.3.3 Transition rate for a multidimensional system	492
		14.3.4 Some observations	496
		14.3.5 TST for nonadiabatic transitions	497
		14.3.6 TST with tunneling	499
	14.4	Dynamical effects in barrier crossing—The Kramers model	499
		14.4.1 Escape from a one-dimensional well	500
		14.4.2 The overdamped case	502
		14.4.3 Moderate-to-large damping	505
		14.4.4 The low damping limit	508
	14.5	Observations and extensions	512
		14.5.1 Implications and shortcomings of the Kramers theory	513
		14.5.2 Non-Markovian effects	516
		14.5.3 The normal mode representation	518
	14.6	Some experimental observations	520
	14.7	Numerical simulation of barrier crossing	523
	14.8	Diffusion-controlled reactions	527
	14A	Solution of Eqs (14.62) and (14.63)	531
	14B	Derivation of the energy Smoluchowski equation	533
15	Solva	tion dynamics	536
	15.1	Dielectric solvation	537
	15.2	Solvation in a continuum dielectric environment	539
		15.2.1 General observations	539
		15.2.2 Dielectric relaxation and the Debye model	540
	15.3	Linear response theory of solvation	543
	15.4	More aspects of solvation dynamics	545
	15.5	Quantum solvation	548
16	Electi	ron transfer processes	552
	16.1	Introduction	552
	16.2	A primitive model	555
	16.3	Continuum dielectric theory of electron transfer processes	559
		16.3.1 The problem	559
		16.3.2 Equilibrium electrostatics	560

			Contents	xxi
		16.3.3	Transition assisted by dielectric fluctuations	561
		16.3.4	Thermodynamics with restrictions	561
		16.3.5	Dielectric fluctuations	562
		16.3.6	Energetics of electron transfer between two	
			ionic centers	567
		16.3.7	The electron transfer rate	570
	16.4	A mole	cular theory of the nonadiabatic electron transfer rate	570
	16.5		rison with experimental results	574
	16.6	_	-controlled electron transfer dynamics	577
	16.7	A gener	ral expression for the dielectric reorganization energy	579
	16.8	The Ma	rcus parabolas	581
	16.9	Harmor	nic field representation of dielectric response	582
	16.10	The nor	nadiabatic coupling	588
	16.11	The dis	tance dependence of electron transfer rates	589
	16.12	Bridge-	mediated long-range electron transfer	591
	16.13	Electron	n tranport by hopping	596
	16.14	Proton	transfer	600
	16A	Derivat	ion of the Mulliken–Hush formula	602
17	Electr	on trans	fer and transmission at molecule-metal and	
	molec	ule–semi	conductor interfaces	607
	17.1	Electro	chemical electron transfer	607
		17.1.1	Introduction	607
		17.1.2	The electrochemical measurement	609
		17.1.3	The electron transfer process	611
		17.1.4	The nuclear reorganization	614
		17.1.5	Dependence on the electrode potential: Tafel plots	614
		17.1.6	Electron transfer at the semiconductor–electrolyte	
			interface	616
	17.2	Molecu	lar conduction	618
		17.2.1	Electronic structure models of molecular conduction	619
		17.2.2	Conduction of a molecular junction	621
		17.2.3	The bias potential	625
		17.2.4	The one-level bridge model	626
		17.2.5	A bridge with several independent levels	629
		17.2.6	Experimental statistics	631
		17.2.7	The tight-binding bridge model	633
18	Specti	oscopy		640
	18.1	Introdu		641
	18.2	Molecu	lar spectroscopy in the dressed-state picture	643

xxii	Contents

18.3	Resona	nce Raman scattering	651	
18.4	Resonance energy transfer			
18.5	Therma	al relaxation and dephasing	664	
	18.5.1	The Bloch equations	665	
	18.5.2	Relaxation of a prepared state	665	
	18.5.3	Dephasing (decoherence)	666	
	18.5.4	The absorption lineshape	667	
	18.5.5	Homogeneous and inhomogeneous broadening	668	
	18.5.6	Motional narrowing	670	
	18.5.7	Thermal effects in resonance Raman scattering	674	
	18.5.8	A case study: Resonance Raman scattering and		
		fluorescence from Azulene in a Naphtalene matrix	679	
18.6	Probing	g inhomogeneous bands	682	
	18.6.1	Hole burning spectroscopy	683	
	18.6.2	Photon echoes	685	
	18.6.3	Single molecule spectroscopy	689	
18.7	Optical	response functions	690	
	18.7.1	The Hamiltonian	692	
	18.7.2	Response functions at the single molecule level	693	
	18.7.3	Many body response theory	696	
	18.7.4	Independent particles	698	
	18.7.5	Linear response	699	
	18.7.6	Linear response theory of propagation and		
		absorption	701	
18A	Steady-	state solution of Eqs (18.58): the Raman scattering flux	703	