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Abstract 

 

Electron transmission through chiral molecules induced by circularly polarized light can 

be very different for mirror image structures. This behaviour is described in terms of 

current transfer:  the transfer of both charge and momentum. We review recent theoretical 

developments on the theory of current transfer and discuss related experimental studies of 

electron transmission through chiral molecular structures adsorbed on surfaces.  
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1. Introduction 

   Charge transfer between donor and acceptor species mediated by a molecular bridge is of 

wide interest in chemistry, physics, biology and nanoscience [1-9].  The manipulation of 

charge transfer, electric currents, and magnetic moments in molecular junctions is of 

crucial importance in molecular electronics [10-12] and the development of attosecond 

laser pulses opens exciting new directions for the coherent control of electronic motion in 

atoms and molecules [13-15].  Indeed, novel experiments use attosecond laser pulses to 

probe and control ultrafast electronic dynamics in atoms and in small molecules [16-27]. 

Theoretical and computational studies indicate that  an important application of attosecond 

laser pulses will be the generation of currents and induced magnetic moments in 

molecules.  Circularly polarized  attosecond laser pulses can be tailored to induce electric 

currents in linear [28-29] and  ring-shaped molecules such as benzene and Mg-porphyrins 

[30-32]. Importantly, the laser-generated  ring currents and their magnetic moments can be 

much larger than those generated by static magnetic fields [30-35]. Therefore, the 

development of  theoretical and computational tools for the analysis of current 

propagation through molecules is central to the fields of molecular electronics and 

quantum control.  

  Experiments by Naaman, Waldeck and coworkers [36,37] show that the relative yield of 

electron transfer (ET) induced by circularly polarized light (CPL) through helical 

molecular structures adsorbed on surfaces depends on the relative handedness of the 

bridge and on the optical circular polarization, in spite of the identical underlying 

electronic energy spectra. Reversing the direction of the circular polarization or of the 

molecular handedness has similar effects on the yields, while the transmission of electrons 

generated by unpolarized light is not influenced by the handedness of the molecule.  

      Here, we review tight-binding models that account for the above mentioned ET yield 

asymmetries in the context of the more general phenomenon of current transfer [38,39]. 

Current transfer is charge transfer where the transferred charge carrier maintains at least 

some of its linear and/or angular momentum (phase). A recent photoemission experiment 

[40] demonstrated  current transfer as a biased linear momentum distribution created on a 

Cu (100) surface was observed in the angular distribution of the photoemitted current.  
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 As an application of current transfer theory, we examine bridge-mediated electron 

transport through chiral bridges and we demonstrate that the through-bridge transmission 

of an electronic state carrying angular momentuma or current is affected by the 

handedness of the bridge [38]. Our model explains the main features of the experimental 

data in [36,37] and provides a starting point for understanding how to control through-

bridge transmission of electron phase, current, or angular momentum by manipulating the 

structure of the bridge [38,39]. 

 

2.The transmission of polarized electrons through chiral molecular layers 

             In Ref. 36, unpolarized and polarized photoelectrons are ejected from a Au 

substrate through Langmuir-Blodgett thin films of chiral molecules, L- or D- stearoyl-

lysine, deposited on the substrate. The main observation of  [36] is that the handedness of 

the layer determines the transmission of the photoelectrons generated by right (denoted  ) 

versus left (denoted  ) circularly polarized light. The molecular handedness does not 

affect the transmission of photoelectrons generated by unpolarized light ( 0 ). If Y   is the  

relative electron quantum yield scaled to unity for transmission of unpolarized electrons 

through an L layer, i.e., [0, ] 1Y L  , then the measured yields in [36] are [0, ] 1.07Y D  , 

[ , ] 1.11Y L  , [ , ] 0.92Y D  , [ , ] 0.89Y L  ,  and [ , ] 1.21Y D   with errors of 1%-5%.  

Therefore, the average asymmetry in transmission through the L layer 

is [ ] [ ] [ ] 0.11A L Y L Y L    , where [ ] [ , ] [ , ]Y L Y L Y L      and 

[ ] [ , ] [ , ]Y L Y L Y L    , and for the D layer it is [ ] 0.14A D   . The asymmetry is of the 

order of 10%, and the yield asymmetry reverses sign when the handedness of the layer is 

switched.  

          In Ref. [37], monolayers of chirally substituted porphyrins are attached to Au 

electrodes and are immersed in an electrochemical cell. The Cys end of the molecules is 

attached to Au and the porphyrin group lies in solution. The porphyrin is excited with 

right- or left-circularly-polarized light,  creating a polarized excited state.  The porphyrin 

excited state is reduced by the Au. The observation in  [37] is that the photocurrent 

induced by right-circularly polarized light differs from the photocurrent induced by left-

circularly-polarized light, and this  photocurrent asymmetry depends on the handedness of 

the molecular layer. In particular, for the L monolayer, the average photocurrent 

asymmetry is  [ ]A L   [ ] [ ]J L J L   0.005 0.001  , and for the D monolayer it is 

[ ] 0.004 0.002A D   . 
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        Although the transmission asymmetry in the porphyrin system [37] is much lower 

than the asymmetry in  the photoelectron transmission experiment [36], it is surprising that 

both experiments produce a transmission asymmetry, and  that  the effect on transmission 

of reversing the bridge handedness is equivalent to the effect of reversing the polarization 

of the CPL.  

  Photoelectrons generated by CPL carry total angular momentum polarization. We 

propose that the yield asymmetry obseved in [36] arises from the change in the orbital 

angular momentum polarization of the photoelectrons induced by the reversal of the 

exciting light’s polarization [38]. Similarly, the photocurrent asymmetry observed in the 

porphyrin system [37] arises from the change in the orbital angular momentum of the 

photogenerated hole.1 The difference in asymmetry magnitudes in the two experiments is 

attributed to a difference in bridge energetics relative to the energy of the photoelectrons 

(the weak effect in Ref. [37] is due to electron transmission via a tunneling mechanism).  

  

3.Time dependent current transport analysis  

 A standard model for electron transfer in  donor (D)-bridge(B)-acceptor(A) 

systems describes the donor, bridge, and acceptor species as tight-binding chains [2-9]. 

The corresponding Hamiltonian is: ˆ ˆ ˆ ˆ ˆ ˆ
D A B BA BDH H H H V V     , where 

 
1

( ) ( )
, 1 ; , ,

j K KK
K K

K K
K K K K Kj j

j K j K

H E j j V j j K D A B


 
      (1) 

and 

      
'
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' ',
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KK K Kj j
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ˆ
DH , ˆ

BH , and ˆ
AH  are the Hamiltonians of D, B and A.  B̂DV and B̂AV  describe the D-B and 

B-A interactions.  We will discuss models where each of the D, B and A moieties have 
identical site energies and inter-site couplings, and where all D-B, (A-B) site pairs have 

identical couplings: ( )

jK

K
K E  ; ( , )

, 1K K

K K
K j jV    ;     

'

( , ')
' ,K K

K K
KK j jV V  [38,39].   

     Consider a tight-binding  model for a structure with a donor ring, a helical 

                                                 
1 Au photoelectrons are spin polarized due to the high spin-orbit coupling of the metal. 

Therefore, an alternative mechanism for the transmission asymmetry obseved in [36] 

could be based on changes in the photoelectron spin angular momentum. We do  not 

attribute the yield assymetry to spin polarization because the stearoyl-lysine monolayers in 

[36] contain only low atomic number atoms that do not scatter spin.  
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bridge, and a model acceptor. (Fig. 1a). In comparison to the system studied in [37], the 

ring represents the porphyrin moiety, the helical bridge the peptidic linker and the single 

atom the gold contact electrode. The model in Fig. 1a is also applicable to the 

photoelectron experiment  [36] in the sense that it incorporates the handedness of the 

stearoyl-lysine multilayer and the orbital  polarization of the incoming (initial) electrons.  

 
Figure 1 (a) Tight-binding donor–bridge-acceptor model where the donor moiety is a ring  (sites jD), the 

bridge  is a right- or left-handed helical chain (jB), and the acceptor (jA) is an atom connected to the end of 

the bridge. (b) Simplified representation of the model that emphasizes the different  ring-to-bridge tight-

binding couplings for left- and right-handed helices. The arrows indicate population relaxation rates for 

donor and acceptor sites.  

 

 For the system in Fig. 1a, we assume that excitation induced by the circularly-

polarized light produces  a Bloch type state on the donor 

   
1

1
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N




      (3) 

( 6DN  ). Since coupling between D and B is assumed to be negligible among all but the 

nearest two sites of D and B, the bridge-coupled fragment of the DM  state is 
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 1 exp[ ] 2 6
DD M Dik a  for the right-handed helical bridge and 

 1 exp[ ] 6 6
DD M Dik a    for the left-handed bridge. Reversing the bridge 

handedness is equivalent to reversing the current direction  D DM M . Indeed, this 

equal footing for bridge handedness and for the polarization of the excited states is 

consistent with the ET yields reported in Refs. [36,37]. 

 We use a simplified version of the model in Fig. 1a to examine the effect of donor-

current direction reversal on the electron-transfer yield following initial excitation of 

donor states DM  [38] that captures the physics of the electron transmission asymmetry 

reported in Refs. [36,37] (Fig. 1b).  We represent  the opposite initial circular currents on 

the donor by the initial states                        

        1
1 2

2
i

in D De    ;      * 1
1 2

2
i

in D De                                (4) 

(the phase   can be thought of as 
DMk a , but is not restricted to this value, and we have 

changed the normalization of the state). In addition, we assume that 1D  in in  is 

characterized by a finite lifetime / D  and that the electron-transfer signal is associated 

with the decay of the acceptor state Aj  with rate / A . These population relaxations are 

described by replacing 
Kj

E  by  (1/ 2)
Kj KE i   in Eq. (1) for the corresponding donor 

and acceptor sites, i.e., ( )ˆ (1/ 2) , ,
K

K
K K Kjj H j E i K D A   . 

Starting from a given initial state in , the probability that the acceptor state Aj  

is populated at time t is  
2ˆ /

, | |
A

iHt
j in A inP t j e     ( Ĥ  is the (non-hermitian) 

Hamiltonian of Eq. (1).  The Hamiltonian has site-energies  (1/ 2)j jE i  ) . The 

probability can be computed in terms of the right and left eigenvectors,  R
qX  and 

 L
qX  of Ĥ , and the corresponding eigenvalues, 2q q qi     ( 0q  ):  

 
ˆ  // ( ) ( ) ( ) ( )

, ,
1

| | R  ; = | |q

A A

N
i tiHt q q R L

A in A q q inj in j in
q

j e e R j X X 


     (5) 

(N is the total number of sites in the DBA system). The yield of the irreversible flux out of 

the acceptor is  
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    ,0
 

A

A

A j in
j

Y in dt P t


         (6) 

The circularly polarized excitation ( DM  vs.  DM ) produces asymmetry: 

 
   
   

D D

D D

Y M Y M
A

Y M Y M

 


 
,       (7) 

Reversing the handedness of the bridge produces the same asymmetry.  In the model of 

Fig 1b, DM corresponds to in  in Eq. 4 and DM to *
in . 

Dephasing.   

 The current transfer described here is a coherent phenomenon, sensitive to 

dephasing. To investigate environmental dephasing effects, we incorporate additional 

relaxation of coherences in the site representation of the Liouville equation for the 

system’s density matrix ~ : 

          , , , , , / 2 / 2j l j k k l j k kl j l jl j l
k

d
i t H t t H i i t

dt
             ,       (8) 

Here, as above, the population relaxation rates j  are non-zero only for donor and 

acceptor states. The probability  ,Aj inP t  =  ,A Aj j t  needed in Eq. (6) is obtained from 

Eq. (8) using the initial condition  ˆ 0 .in int     

    In the model of Fig 1b, all bridge site-energies are taken equal ( ( )

B

B
j BE  ), and 

similarly for the bridge nearest-neighbor couplings ( ( , )
, 1B B

B B
j j BV   ), and for the donor-

bridge and acceptor-bridge couplings (      , , ,
1 ,1 2 ,2 ,D B D B B A

D B D B B A
N jV V V V   ). The complex energies 

of the donor sites (1D and 2D) and of the acceptor site (jA) are taken to be (1/ 2)D Di  , 

D , and  1/ 2A Ai   (where D A  ). Using Eqs. (6) and  (7), this leads to 

                 2 *( ) ( ) ( )
, , ,

,0
1

R R R
  2 Im

2 ( ) ( )
A A A

A

q q qN N
j in j in j in

j in
q q qq q q q q

dt P t
i 




   

            
    ,  (9)  

where q q qi     are the eigenenergies of the dissipative Hamiltonian, and    

( ) ( ) ( )
, = | |q R L

fi q q infi inR X X  . We solve Eq. (8) using 

  * *ˆ 0 orin in in int      with ( ) / 2 0D A  .  Donor coherence relaxation is 

accounted for by taking 12 0  .   We calculate the yield asymmetry using Eqs. (6) and 

(7).   
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 In Fig. 2, we show the computed asymmetry A, Eq. (7) vs. the bridge length for 

resonant ( ( ) 0B D A   ) and non-resonant ( ( ) 3eVB D A   ) bridges, for different donor 

and acceptor lifetimes, and in the absence of dephasing. The parameters used (donor and 

acceptor lifetimes in the range 3-30 fs and tight-binding couplings of order 1 eV) are 

reasonable for nonfluorescing excited electronic states with covalent intersite bonding. It 

should be emphasized, however,  that other values of lifetimes and couplings will generate 

yield asymmetries. The yield asymmetry becomes independent of length for long bridges 

and is about an order of magnitude larger in the resonant case compared to the off-

resonant case.   increases with decreasing donor and acceptor lifetimes in both resonant 

and off-resonant cases.  More detailed findings indicate that the donor lifetime effect is 

dominant in this regard.  For parameters in the range studied, and for sufficiently short 

donor lifetimes, effects are found of the order observed in the experiments (~10% for a 

resonant bridge [36] and <1% in the off-resonant case [37]). The asymmetry disappears 

for extremely short donor (acceptor) lifetimes.  

 
Figure 2. Yield asymmetry vs.  bridge length brN , for the model of Fig. 1b, for resonant ( ( ) 0B D A   , 

squares, solid lines), and off-resonant ( ( ) 3eVB D A   , circles, dashed lines) bridges. Black and blue 

correspond to 0.02 eVD A   , and 0.2 eVD A   , respectively. The other parameters are 

0.5 eVB  ,  1.0 eVV  , / 4   and , 0i j   for i j . 

Fig. 3 shows the effect of dynamic interactions with the thermal environment, in 

particular the effect of decoherence arising from nuclear motion. Fig. 4 shows the effect of 
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donor decoherence.  The figure plots   vs. 12  for resonant and non-resonant bridges. It 

should be noted that, although increasing decoherence eventually destroys the asymmetry, 

the loss of yield asymmetry only arises for unphysical large 12  for the resonant-bridge 

case.  Similar results are obtained in the presence of bridge decoherence. 

 
Figure 3. The yield asymmetry vs. donor decoherence (model of Fig. 1b) for resonant and non-resonant 

bridges of different lengths. Parameters used (except 12 ) are the same as in Fig. 2  with 

0.2 eVD A   . The behavior of the asymmetry with respect to donor decoherence shown above is 

obtained for a wide range of values of ( )D A .   

 

The simple model of Fig. 1b is not expected to  reproduce the experimental results 

of 6 and 7 quantitatively, but it does yield three distinctive and robust features that 

characterize our model in a relatively large range of system parameters.  These include an 

independence of bridge length for long molecular bridges, an asymmetry that increases as 

donor lifetime shortens (within physically reasonable values), and an asymmetry that 

persists in the presence of decoherence.  For a reasonable range of system parameters, the 

calculated asymmetry is the same order as that seen experimentally for reversed circular 

polarization. Importantly, the resilience of this asymmetry  to decoherence rationalizes the 

observed behavior in condensed thermal environments. Introduction of site-energy and 

nearest-neighbor coupling disorder in the Hamiltonian can reduce the magnitude of the 

asymmetry for resonant transport. Indeed, the experiments of Ref. [36] find that the 

asymmetry disappears when, in a molecular layer of a given handedness, as few as 1%  of 

the molecules are substituted by molecules of the opposite handedness.  

The model of Fig. 1b does not rely on the bridge’s chiral structure, but rather on 
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the nature of the donor excitation and the proximity effects (derived from the chiral 

structure) that determine the nature of the donor-bridge coupling. These proximity effects 

are apparent in chiral molecules and nanostructures. We suggest that electron donor –

bridge –acceptor devices could carry electron phase information by optically creating 

angular-momentum-polarized electron states and by manipulating the bridge’s 

connectivity to the donor and acceptor. Semiconductor nanoparticles linked by DNA or 

helical polypeptides are particularly promising [41]. In many of these imagined device 

systems, the experiments involve generation and observation of steady state currents. It is 

thus important to extend current-transfer theory to the steady-state regime, as we describe 

next [39].  

 
 

 

4. Steady-state transport analysis 

 

In the previous section, we examined the time evolution that follows excitation of 

a ring current in the donor (Fig. 1a). The ring state DM  is an eigenstate of the donor 

moiety with the eigenvalue    2 cos
D DM D ME K K a   and with time evolution 

 M D
iE K t

DM e
 

, where  2
DM D DK M aN is quantized. Hence, the injection energy of 

the electron was determined by the energy of a photo-prepared donor state. We now 

examine a case where the donor (D) is a wire that is coupled to an acceptor (A) wire 

directly or through a bridging (B) wire. The D wire is restricted to carry a constant current 

DJ and we explore the steady state response of the rest of the system. All charge carriers in 

the system originates from this wire. The injection energy can now take any value within 

the D-wire energy band. 

The models displayed in Figs. 4a and b that respectively represent the direct (DA) 

and the bridge-mediated (DBA) systems correspond to a tight-binding Hamiltonian with 

nearest neighbour couplings indicated by the arrows connecting different sites. In the DA 

system we investigate the current transfer from D and A through couplings between DAN  

pairs of neighbouring atoms on different wires. In the DBA system we examine the charge 

transfer from D to A through B. In this case, DBN , BAN  and BN denote, respectively, the 

number of site pairs connecting the wires D and B, the number of sites on B between these 

coupling regions.  
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Figure 4.  Simple models of current transfer. In both models a driving current DJ  in wire D is transferred to 

wire A. In (a) the transfer is direct while in (b) it is mediated by a “bridge” wire B.  

 

As in the time-dependent case, the relevant sites on the driver wire are those  

directly coupled to the A wire of the DA system or to the B wire of the DBA system (e.g., 

sites 1 and 2 of Figs. 4a and b). The driving conditions on these sites are represented by 

the Bloch wave   

         /
1 2 1 21 2 1 2 i Et

D t c t c t c c e                                        (10a)                                  

2 1
Dik ac c e                                                                                                      (10b) 

where a is the lattice constant and Dk is the wave vector of the D wire that is related to the 

injected electron energy E by the dispersion relation 

 2 cosD D DE k a                                                                                     (11) 

The time dependent Schrödinger equation of the Hamiltonian in Eqs. (1), (2) of the 

DBA system (or its equivalent for the DA system) in the site representation is 

,
n

n n n
dc

iE c i V c
dt  


                                                                               (12) 

where α sums over all sites that couple with coupling element ,nV   to site n.  

The infinite extent of the bridge and acceptor wires in Figs. 4a and b provides an 

effective dissipation mechanism. This mechanism allows the systems to reach a steady state 

that yields solutions at long times of the form 

  /iEt
n nc t c e                                                                                               (13) 
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for all the amplitudes of the A and B wires. Inserting Eq. (13) into Eq. (12) leads to a set of 

equations for the steady state amplitudes nc  

  ,0 n n ni E E c i V c 


                                                                            (14) 

Eqs. (14) define the steady-state wavefunction of the DBA (or DA) system, 

   , nn B A
t c t n


  . Terms involving coefficients on the driving wire appear in the 

inhomogeneous part of these equations.  

In the time-dependent case (section 3), this was achieved by assigning (real and 

positive) population-relaxation rates j  to some sites by replacing jE  by  1/ 2)j jE   

for these sites in Eqs. (1), (2) and (12). In the steady-state approach, the infinite set of 

equations (12) and (13) becomes finite by separating the overall system into interior and 

exterior parts, and accounting for the effect of the latter on the dynamics of the former by 

introducing energy-dependent “self energy” term. In particular, in Fig. 4a, the effect of an 

exterior part defined as the infinite linear chain extending right to the cut-off site 5 on A is 

provided by modifying Eq. (14) 

   5 4 20 A A A ADi E E E c i c iV c                                                       (15) 

where  A E  is the self energy of a one-dimensional tight binding wire, with real and 

imaginary parts  A E  and   / 2Ai E  respectively, 

       
2 24

2 2
,

K K K
K K K

E E E E i
E E E

K B A




   
    



                                   (16) 

The finite set of steady state equations for the model in 4b, for example, is 

        

  
 
 
 
 

3 4 1

4 3 5 2

5 4 6

6 5 7

7 6 8 9

0

0

0

0

0

B B B BD

B B B BD

B B B

B B B

B B B BA

i E E E c i c iV c

i E E c i c i c iV c

i E E c i c i c

i E E c i c i c

i E E c i c i c iV c



 

 

 

 

     

     

    

    

     
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  
  

8 7 10

9 10 7

10 9 8

0

0

0

B B B BA

A A A AB

A A A AB

i E E E c i c iV c

i E E E c i c iV c

i E E E c i c iV c







     

     

     

                                                   (17) 

   

or  
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            Mc d                                                                                                           (18) 

where c is the column vector  3 4 5 6 7 8 9 10transpose , , , , , , ,c c c c c c c c , M is the matrix 

multiplying this vector in Eq. (17), and d is the driving vector 

 1 2transpose , ,0,0,0,0,0,0BD BDiV c iV c .  

Inverting M in Eq. (18) and using Eq. (13) produces all of the steady state 

coefficients in terms of the steady state amplitude 1c . In the next section, we use these 

coefficients to evaluate all of  the currents in the system in terms of the driving current DJ . 

 

5. Steady-state currents and asymmetry factors 

The steady state (SS) equation for the population on site n derived from Eqs. (12)-

(14) with  n nE E  replacing nE  when n is an edge site is 

           
     2

2, *
,

2
0 Imn n n

n n n edge

SS

d c t V E
c c c

dt








 
   
 
 

  
                         (19) 

The sum in Eq. (19) runs over all sites coupled to site n with coupling 

,nV  ( ,n KV    if n and α are nearest neighbours (NN) on the same wire K;  , , 'n K KV V   

if these sites are NN belonging to different wires K and K’).      2 Imn nE E     

contributes only if site n is an edge site on A ( n A  ) or B ( n B  ). 

 Eq. (19) implies that the net current from site 1n  to site n on  a wire K is 

    *
11

2
ImK

n nK n nJ c c


  


                                                                         (20) 

and the current out of the system at the edge site n on K is 

  
  2K

nK n out

E
J c


 


                                                                                 (21) 

We denote current from left to right as positive. In addition, positive assignments 

are also chosen for the D A , D B and B A directions.  

The currents out of the A wire to the right and to the left in the DA system are  

     2*
1

2
Im Aright A

eright eright erightA

E
J c c c





 
 

                                        (22) 

     2*
1

2
Im Aleft A

eleft eleft eleftA

E
J c c c





 
 

                                                 (23) 

where eleft and eright denote respectively the left and right edge sites in the interior part 
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of the A wire. Symmetry requires that    right left
A D A DJ k J k  . A non-zero current 

asymmetry factor for the DA model of Fig. 4a 

 1

left right
A A
left right
A A

J J
A

J J





                                                                                          (24) 

denotes current transfer from D to A. 

For the DBA model in Fig. 4b, we consider the total charge transmitted to the A 

wire and measured by total left right
A A AJ J J   with regard to the direction of the driving 

current.  Hence, in the case of the DBA system, we examine the following current 

asymmetric factor 

   
   2

total total
A D A D
total total
A D A D

J k J k
A

J k J k

 


 
                                                                                 (25) 

that is directly related to the observations in Refs. [36,37]. 

The following normalized differences are also of use 

1

left right
A A

D

J J
A

J


                                                                                           (26) 

   
2

total total
A D A D

D

J k J k
A

J

 
                                                                       (27) 

where DJ  is the donor (driving) current. 

 

 

 

Figure 5. Wire A current distribution for the DA system shown in the inset, characterized by 7-sites 

coupling between the D and A wires. Here, 1DJ  , 0D AE E  , 0.1D A   , 0.01DAV   and 
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the injection energy is 0.17E   . The phase  arccos 2D D Dk a E E       is taken positive, 

implying that the driving current goes from left to right. 

The current distribution is shown in Fig. 5 for the A wire of the inset. Here and 

below, the coupling between the NN sites on each wire ( ,  and D B A   ) are chosen to be 

0.1 and all other energy units are determined accordingly. The driving current on the D 

wire induces left and right going currents at the left and right edge sites, respectively, on 

the A wire. The current transfer character of the process is expressed by the larger leftward 

current with respect to the rightward current on A displayed in Fig. 5.  

Fig. 6 shows the current asymmetry factor 1 of Eq. (24), displayed vs. the number 

of links, DAN , connecting the D and A wires in a DA system of Fig. 4a. The inset shows 

the same data, presented in terms of the normalized difference 1A  of Eq. (26), plotted 

vs. DAN . Fig. 7 shows the corresponding property 2A of Eq. (25) for the DBA system of 

Fig. 4b displayed against the number of links, DBN  connecting the D and B wires. The 

inset shows the same data, presented in terms of the normalized difference 2A  of Eq. (27), 

plotted against DBN . In the case that only one site couples directly to the D wire, no 

information about the direction of the electrons on the D wire is transferred to the A wire 

in either systems. Hence, in the case of the DA system 1 1= 0.0A A   and in the case of the 

DBA system, 2 2= 0.0A A � . In both systems, asymmetry increases and then saturates near 

1 (when the response current becomes nearly unidirectional) as the number of links to the 

D wire increases.  

 

Figure 6. The current asymmetry factor 1A  as a function of the number of links, DAN  connecting the D 
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and A wires in the DA system displayed in Fig. 4a. The inset shows the same data, presented in terms of 1A  

plotted as a function of DAN . Parameters are similar to those in Fig. 5.  

 

 

 

Figure 7.  Current asymmetry 2A  as a function of the number of links DBN  connecting the D and B wires 

in the DBA system displayed in Fig. 4b. The system parameters are 

0; 0.1D B A D B AE E E         , 0.01DB BAV V  , NBA=2 and the injection energy is 

0.17E   .  The same data, presented as 2A  vs DBN  are shown in the inset. 

  

Substantial current transfer asymmetry is indicated by the large asymmetry factors 

in Figs. 6-7 for both direct and bridge-assisted transfer. The calculated asymmetry factors 

are much smaller for short bridges.  The steady-state scenario is different from the 

transient process considered in section 3 where, for short pulses, reflection does not set in 

appreciably during the process lifetime.  

An important factor discussed in section 3 (Ref. [38]) is the energy dependence of 

current transfer. The results displayed in Figs. 5-7 correspond to resonance transmission in 

which site energies in all wires are equal  D B AE E E  . The equivalent superexchange 

mechanism for non-resonant transfer, would be the DBA system where the site energies of 

the B ("bridge") wire are different from the site energies of the “donor” and “acceptor” 

wires, B D AE E E  . In the calculation below, we take 0D AE E  , 

0.1D A B     , an injection energy 0.17E   , and display the current transfer 

dependence on the B wire energy, BE . The energy bands in these tight-binding wires 

range within 2K KE   (K=D, B, A). Hence, the non-resonant transfer sets in as EB 
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decreases below 0.37BE   or increases above 0.03BE  .  

Fig. 8 shows the current-transfer process in the DBA system for the off-resonance 

regime, 0.03BE  . In Fig. 8, the current transfer property decays quickly as we go into the 

off-resonance transfer regime. We find a strong exponential damping of the current 

transfer property expressed by the asymmetry factor 2A .  

 

Figure 8. The current asymmetry factor 2A  as a function of the bridge site energy EB for the DBA system in 

the off-resonance regime, 0.03BE  . The parameters used in this calculation are 0D AE E  , 

0.1D B A     , 0.01DB BAV V  , 0.17E   , 3DBN  , 2BN  , 2BAN  . Coarse 

grained averaging was used to reduce numerical errors that results from computing small differences 

between relatively large numbers.   

 

6. Steady state current transfer in case of dephasing 

 As discussed in section 3, it is of interest to examine the effect of dephasing on the 

efficiency of current transfer. We assume that the driving wire D remains coherent (i.e. the 

Bloch wave holds, Eqs. (10)), and study the effect of dephasing on the "acceptor" (A) wire 

in the DA system and the "bridge" wire (B) in the DBA system. For this purpose, we shift 

from the local-site representation of the steady-state analysis to the density matrix (DM) 

representation and to the ensuing Liouville-space dynamics. Within the DM framework, 

we can study  effects of “pure” dephasing in which non-diagonal elements of the DM are 

damped while the population (diagonal elements) dynamics is not affected.   

 The transition from the Schrödinger equation  description, ˆi d dt H   ,  of 

a closed quantum mechanical system to a Liouville space description, ˆˆ ˆ,i d dt H      

is useful. To explore dephasing effects in particular, the density matrix elements 
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*
nm n mc c  of our tight-binding model in the site representation can be obtained using Eq. 

(12). We use Eq. (13) to deduce that, at steady state, 0nmd dt  . Furthermore, 

population damping enters in the time evolution of diagonal density-matrix elements as 

...nn n nnd dt     and in the corresponding equations for non-diagonal elements as 

 ... (1/ 2)nm n m nmd dt      (section 3). This holds also in steady-state situations 

involving infinite wire systems, where apparent damping results from the imaginary part 

of the self energy of edge sites, as discussed in section 3, i.e. 

    0 ... (1/ 2)nm n m nmd dt E E       .  

We follow the procedure of Segal and Nitzan [42-43] to implement the driving 

conditions on the D wire in these steady-state Liouville equations [39].  We now describe 

results that show the effect of dephasing on current-transfer processes. In these results, we 

assigned dephasing rates n   to the DAN  sites of the A wire that are linked to the D 

wire in the DA system (Fig. 4a) and to the DB B BAN N N   sites on the B wire that 

connect between the D and A wires in the DBA system (Fig. 4b).  

Fig. 13 shows the current transfer process in the presence of dephasing in the case 

of the DA and DBA systems, respectively. As observed above (section 3), while the 

current transfer efficiency drops with increasing γ, the effect persists up to relatively large 

values of the dephasing rate (of the order of other energetic parameters in the system such 

as NN coupling in the wires).  

 

Figure 9. The current asymmetry factors 1A  and 2A as a function of the dephasing rate γ. The black solid 

line is 1A  for a DA system (Fig. 4a) characterized by the parameters 6DAN  , 0.01DAV  . The phase 
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arccos
2

D
D

D

E E
k a





 
 
 

 was taken positive, implying leftward driving current on the D wire. The red 

dashed line is 2A  for a DBA system (Fig. 4b) characterized by the parameters 6DBN  , 3BN  , 

1BAN  , 0BE  , 0.1B  , 0.01DB BAV V  . For both systems, 0D AE E  , 

0.1D A    and 0.17E    

  

 

7. Conclusions 

Current transfer shifts both charge and momentum from donor to acceptor. We 

reviewed time-dependent [38] and steady-state [39] descriptions of current transfer 

through chiral bridges [36, 37]. In the tight-binding models, current transfer arises from 

coherent interferences between resonant or tunneling paths. This kind of interference has 

received attention in recent studies of molecular wires and nanodots [44].  

In the models reviewed here, one-dimensional chains represent the donor (D), 

bridge (B) and acceptor (A) moieties. In the first model described here, this current is time 

dependent, and the time evolution of the system is computed.  In the second model, this 

driving current is constant, and a steady-state current is computed.   

In the time-dependent analysis, we address the yield asymmetry of the irreversible 

flux from the acceptor (A) wire for opposite directions of currents on D. This calculated 

yield-asymmetry peaks for short bridges and is independent of length for the long bridges. 

Moreover, the asymmetry is larger in the resonant case, in which the site energies of the 

D, B and A wires are equal, compared to the off-resonant case where the B wire site 

energy is different from the D and A site energies. These results suggest that ET yield 

asymmetries may be used to distinguish between resonant and superexchange charge-

transfer mechanisms. Moreover, the time dependent calculations indicate that the yield 

asymmetry increases as the D wire lifetime shortens.  

In the steady-state analysis of a donor wire that is coupled directly to an acceptor 

wire (the DA system), the direction of current on D is transferred to A. In this case, we 

address the asymmetry in the left and right currents on the A wire. This calculated 

asymmetry increases with the number of links between the D and A wires and then 

saturates near 1. In the steady-state analysis of the indirect transfer (the DBA system), we 

address the asymmetry in total charge transferred from D to A with respect to the direction 

of the driving current on D. In a similar manner to the case of direct transfer, this 

asymmetry increases with the number of links between the D and B wires and then 
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saturates near 1. These large asymmetry factors in the steady-state approach indicate 

substantial current transfer in both the direct and the bridge-assisted transfers. This 

calculated asymmetry in the total charge transfer in the case of the DBA system damps 

exponentially with the site energy of the bridge as transport enters the off-resonance 

regime.  

For both time-dependent and steady-state models, coherent dephasing is taken into 

account by phenomenological terms in the off diagonal time derivatives of the density 

matrix elements that appears in the Liouville dynamics. In the time dependent model, 

increasing the donor or bridge decoherences decreases the yield asymmetry and eventually 

destroys it only for unphysical large dephasing constants. Ina similar manner, in the 

steady- state analysis, both the asymmetry in the left and right currents (in the DA system) 

and the asymmetry in the total charge transferred from D to A (in the DBA system) drop 

with  increasing dephasing. As in the time dependent case, the effect of current transfer in 

the steady-state approach persists up to relatively large values of dephasing rates.    

The time-dependent and steady-state models reviewed here can also be used to 

analyze the current transfer in a setup of a ring molecule attached to a current carrying 

molecular wire. In this setup, the current in the linear wire would drive a circular current 

in the ring molecule that may be detected by its magnetic field [45]. 
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