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The stochastic classical trajectory approach is extended through introduction of a systematic class of
phonon mode densities. Convenient algorithms are presented for generating the required random forces
and damping integrals corresponding to mode spectra which approach, as closely as desired, the Debye
spectrum. Extension to realistic mode densities involving irregular and discontinuous features is discussed.
Application to vibrational relaxation of impurities in solids demonstrates that rates can depend sensitively

on the structure of the phonon density of states, particularly at low temperatures.

1. INTRODUCTION

In two recent papers, ' we have applied the method
of stochastic classical trajectories, first proposed by
Adelman and Doll, 3 to the study of interactions of a
foreign atom or molecule with a solid. In the first pa-
per, the scattering and adsorption of atoms on solid sur-
faces was examined,' Related studies have been re-
ported by others.*~® In the second? (paper I of this se-
ries), we applied the same approach to the study of vi-
brational relaxation of impurity molecules in the bulk
of a solid matrix, The assumption taken in paper I is
that the two major factors which determine the relaxa-
tion process are the interaction of the impurity mole-
cule with its nearest neighbors and the gross features
of the solid density of vibrational modes. Thus, the de-
tails of the solid structure are disregarded and the dy-
namics of a small system including the impurity mole-
cule and its nearest neighbors is followed in the pres-
ence of random forces and damping kernels which ac-
count for the effects of the rest of the lattice. The ran-
dom forces and damping kernel# have to be constructed
so that they represent realistically the effect of an in-
finite collection of lattice modes with the appropriate
density of states.

The construction of random forces and damping ker-
nels that satisfy the above requirement and are compu-
tationally feasible is not straightforward. In the former
works, we have simulated the solid by random force and
damping which are characterized by a spectral density of
form

-2 w?A (w)
g(w)_ﬂ [wz_gf_wAs(wT]T_,_waAf(w) s (I.1)
where
2
Ac(w)=A0 (u—,z——wﬁoa’o——z—)z—mz , (1-2)
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and

wl(w? - wi+4%)

W' =wp) +tfw

As(w)=Ao ( (I. 3)

This form arises in the theory of the Brownian harmonic
oscillator,” The parameters Q, w,, 8, and A, are chosen
to achieve as close a fit as possible to a given spectrum
(e.g., a Debye spectrum), The main deficiency of this
density of states is the absence of a sharp cutoff at high
frequency. Instead, Eqs. (I. 1)-(I. 3) exhibit a highfre-
quency tail whichfalls off as w®. This is likely to be unim-
portant for processes like atom—surface scattering and de-
sorption for which the atom—solid interaction takes
place in a relatively short time interval. The absence
of a sharp cutoff in the spectral density at high frequen-
cy will introduce errors only in the long-time correla-
tions, so Eqs. (I. 1)-(I. 3) should be acceptable in situations
where long-time correlation effects play a minor role,
On the other hand, the vibrational relaxation of impurity
molecules imbedded in a solid is a relatively long-time
process in which the interaction is always present, This
implies that the detailed features of the density of states
function may be important in determining the nature of
the relaxation process. The most important feature, of
course, is the sharp Debye cutoff. An impurity molecule
with frequency w above the entire range of frequencies
of the solid (e.g., w > wy for a Debye solid) can decay
only in the presence of anharmonic interactions, How-
ever, with the model density of states produced by Eqs.
(I.1)~(I.3), the impurity frequency will always be im-
bedded in the ™ high frequency tail, resulting in some
decay even in a totally harmonic system.

In the present paper, we describe a method by which
the random force and damping functions can be con-
structed in a computationally feasible way for a solid
with a spectral density which can approach a Debye spec-
trum as closely as we wish, This spectral density func-
tion is given by

w?
gw)=N T /o (1.4)
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where w, is the Debye frequency and N is a normaliza-
tion constant, Asn -, g(w) approaches a real Debye
spectrum while the case # =4 produces a w™® tail, as with
the model we used before [Eqs, (I.1)~(I.3)]. The func-
tions given by Eqgs. (I.1)=(I.3) and by Eq. (I.4) for sev-
eral n’s are shown in Fig. 1.

What we mean by a computationally feasible model is
one for which a procedure can be found such that the
non-Markoffian stochastic equations, obtained when the
original set of equations of motion is projected onto the
small space consisting of the impurity and its relevant
nearest neighbors, can be solved in a Markoffian way.
In the following sections, we describe how this can be
done for a solid characterized by the spectral density
glw) of Eq. (I.4). Following this, we use the procedure
to investigate the dependence of the relaxation process
on the form of the density of modes function given by
the choice of » in Eq. (I.4). It is found that, at zero
temperature, lifetimes and, in fact, the full relaxation
behavior are quite sensitive to the choice of n. The
behavior at nonzero temperature is much less sensitive
ton and n» =4 seems to be sufficient for most high tem-
perature studies., We repeat some of the studies of pa-
per I and show that the qualitative conclusions concern-
ing the parameter dependence of the relaxation rates re-
main intact even though the absolute rates may vary.

1. REDUCED REPRESENTATION OF LOCAL
PROCESSES

In this section, we cast the equations of motion for the
impurity molecule and the lattice atoms in a form which
involves the coordinates of the impurity molecule and
the lattice normal modes. We then replace the full dy-
namical description by a reduced form containing ap-
propriate random forces and damping kernels. The pro-
cedure is essentially equivalent to the projection oper-
ator procedure used before.'™® However, it is done in
a way that insures that the unperturbed motion of the
nearest neighbor lattice atom is characterized by the
spectrum (I.4). The method can be extended for more
complicated density spectra characterized by cutoff be-
havior similar to that of Eq. (I.4), as discussed at the
end of this section.

For simplicity, we start with a one-dimensional ex-
ample in which one impurity coordinate x is coupled
through a potential U[x — (R3%+y,)] to the coordinate y,,
which measures the deviation of a lattice atom from its
equilibrium position R} in the Ith lattice site, The equa-
tions of motion of the free harmonic lattice can be writ-
ten quite generally in the form

5"k=-;Akk'yk' .

In the presence of the impurity atom, the equations of
motion become

(I.1)

eq
:_%gg._[_x%:}l])_] , (11.2)
. 1 2 :
yz=-zl:Awyw—M3; Ulx - (RS +y,)] (r.3)
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FIG. 1. Spectral densities obtained from Eq. (I.4) for various
values of ». The dashed curve is the Debye spectrum. The
dot—dash curve is from Eq. (I.1).

yk:—Z;Akl’yl' (k=1) , (1. 4)
where m is the impurity and M, is the lattice atom
masses, The coefficients A;; appearing in Eqs. (IL.3)
and (I, 4) are, in general, different from those corre-
sponding to the free lattice [Eq. (II.1)]. Equations
(I1.3) and (II.4) can be rewritten in the form

y=Ay+b, (IL.5)
with
1 ey 0
My »n :
p==— L U == i. v (I1. 8)
Ml ayl Ml ayl
N 0
V]
Let S be the (Hermitian) matrix which diagonalizes A:
SAS'=D (diagonal) . aw
Define
Sy=z (II. 8)
so that
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(IL.9)

Then, from Eq. (II,5), we obtain the equations of mo-
tion for the z coordinates

8z, 1 aU
== - — I1.10
Z, Dz, %, M o, ( )
or
9
fe=Dren ST .1

Putting D, =w?, w, is seen to be the frequency of the nor-
mal mode % in the lattice characterized by a vacant site
at the equilibrium position of the impurity atom. The
formal solution of Eq. (II.11) is

24(0)= 24(0) cos )+ o ,(0)sinlw,)

S [F aU\ sinfw,(t - 7)]
==L —) —=_ 2, II.12
Y A dT(ax), o, (I1.12)

Multiplying by S;:, and summing over all k£, we get

v, () =E S I:zk(o) cos{w,t) + 1 2,(0) sin(w,,t‘):l
kR wk .

1t feU
+Mfo dt<§>TF(t-T),

where
F(t) =Zk: | S |2 -m%‘:i’it—)=fdwg(w) f’% . (1.14)

with g(w) being a weighted density of modes function de-
fined from this equation. Equations (II.2) and (II,13)
constitute a set equivalent to the original set of equa-
tions of motion (II. 2)-(II. 4).

(I1.13)

Consider now the function
* 1. .
R(D=Y s,,,[z,,m)cos(w,,t) + =2 ,(O)sin(h)| ,  (1.15)
3 kR

which contributes to the rhs of Eq. (II.13). Knowing the
transformation matrix S and given z,(0) and é’k(O) for
each &, R,(f)is acompletely deterministic function. In
fact, the initial values 2,(0) and Z,(0) can be separated
into two parts each: a systematic part which describes
an actual given initial deviation from equilibrium and
a random part which vanishes at zero temperature, In
what follows, we assume that the systematic part of
R,(0) vanishes. (See Appendix A for a discussion of the
modification which follows otherwise.) In this case,
z,(0) and z,(0) are Gaussian random variables which sat-
isty.

(29 =(2p =0, (I1.16)
(|24|® =ksT/Mu? | (I1.17)
(|2:]» =ksT/M1 (11.18)

with all the mixed correlation functions being zero.
Therefore, R,(t) is also a Gaussian random process with

(R,t)=0
and

(11.19)

2527

RO R0 = 2 |80 |2 (| 24(0)]?) coslw,t)
k
= Eﬁ%; S cos(iw%kt)

- ’E;I—T [ do g((—:‘;—) cos(wt) . (11. 20)
In a free lattice, g{w) is just the density of modes func -
tion for that lattice. Even for this case it is not gener-
ally known, Howéver, we expect that for our needs the
most important feature of g(w) is its truncated behavior,
We therefore model this function by Eq. (I.4) which ap-
proaches a Debye spectrum for » -~ «, We note in pass-
ing that this is a model spectrum for a three-dimension-
al lattice so that the 3D feature of the system is intro-
duced at this point.

Another important assumption which is necessary for
reducing the complexity of the computational problem is
made at this point. Rather than performing the integra-
tion of the equations of motion for a given set of initial
conditions {z,(0)}, {2,(0)} and then averaging over the
ensemble of initial conditions, we regard the equation

t _ eq
y,(t)=R,(t)+;—4f0 dr{w[—"gﬁ#ﬂﬂ}mm F(t=7)

y=y1 (1)

(1r.21)
as a stochastic integral equation for y,, with R,(¢) play-
ing the role of a Gaussian random “force” characterized
by Eq. (II. 19) and (II. 20). The numerical procedure
should generate this random process during the integra-
tion step by step.

So far we have discussed a one-dimensional problem

-of a single impurity atom coupled to the lattice through

a single lattice atom. To get closer to the real physical
situation without adding yet to the mathematical com-
plexity of the problem, we consider the same model

used in paper I. It consists of a diatomic molecule sub-
stituting a single atom in a monoatomic lattice and makes
use of the following simplifying assumptions; {(a) The
interaction between the impurity molecule and the lattice
is an additive combination of atom pair interactions with
nearest neighbor lattice atoms. (b) Only interactions
with nearest neighbors seated along the impurity axis
are considered and impurity rotations and librations are
disregarded. (c) Each lattice atom which interacts with
the impurity is coupled to its own lattice. We thus ne-
glect correlations between the motion of the lattice atoms
except those generated by their coupling through the im-
purity,

These assumptions, their implications, and the extent
to which they can be relaxed were discussed in paper I.
The model now consists of a diatomic impurity molecule
coupled by atom pair interactions to two lattice atoms
in a collinear geometry as shown in Fig. 2. The two
lattice atoms are coupled each to its own model three
dimensional lattice. The equations of motion become

2
v 1 ol 8 ]

T o, - .22
Fa ma[,zlz o, | ox, V(| =% )] (I1.22)
o o 1 & 18 B
xb__mb[g oy +§,,V(l"a-xb|)] , (11.23)
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r’Um(xu- X| )TV( Xp—Xg

- p€ _ pt
X = qu+y| Xq Xp Xo~ R2q+y2

FIG. 2. Coordinates defining the four-atom model. Atoms 1
and 2 are host atoms, atoms a and b are impurity atoms.

B 1t 3y, 8l
y,(t)—R,(t)+Mj; d-r( o, +Txb—>TF(t—-r) s (11.24)
with

Un = Ullx, = (R +9))|], n=a,b, (I1. 25)

and with R, satisfying Eqs, (II.19) and (II. 20) and F sat-
isfying Eq. (II.14). V is the intramolecular potential
which determines the internal motion of the diatomic
impurity. Both [ and V were assumed to depend on the
absolute value of the distance between the corresponding
atom pair. In the actual calculations of the present
work, we used the same model potentials as in paper I,
namely, harmonic or Morse functions for V:

(II.25a)
(1. 25b)

e { 1K (e, =2, = 74P (harmonic),

D{1 —exp[ - alx, =x, =7, )} (Morse) ,
where 7,, is taken to be the equilibrium bond length of

the free impurity molecule, and an exponential repulsive
or a Lenndard Jones functions for [

Aexp(-alx, ~x;|) (exponential), (II.26a)

- 12 [
Uns = 4([( g ) —( g ) ] (Lennard-Jones) ,
Xp =X Xn = X;

(I1. 26b)

where x, =R}*+y,;. Equations (II.22)-(II. 26) constitute
the dynamical equations underlying the time evolution of
our impurity lattice system. This is a set of stochastic
integrodifferential equations which is in principle very
difficult to solve numerically., The difficulties are as-
sociated with generating on the computer the random
function R,(t) which satisfies Eqs. (I1.19) and (I1.20)
and with calculating the integral appearing in Eq. (II.24),
which is an integral over a memory kernel involving at
any moment all the past history of the system. These
difficulties limited us in paper I to considering the par-
ticular model [Eqs. (I.1)-I.3)] for the density of modes

1
(121
1 D ™ [2a,b, sinla,x) + (5} ~af) cosla)]
F@)=—]) #%
Wp 1/2(n=8)

Relaxation phenomena. |1

function for which a convenient algorithm could be found
by which the computation could be carried out by solving
an enlarged set of simple differential equations.! In the
following section we describe a procedure for doing the
same for the model defined by Eq. (I.4).

To end this section, we note again that a Debye spec-
trum is not a realistic model of the lattice mode density.
General trends like the dependence on the impurity fre-
quency and on the temperature are expected to be de-
termined mainly by the truncated nature of the density
of modes. Absolute rates as well as fine details of the
general trends can depend, of course, on the detailed
nature of the phonon spectrum, particularly on the pres-
ence of local or resonance modes. It should be kept in
mind that some of these features are implicit in our
present model: The local or resonance mode associated
with the one-dimensional interaction of the impurity
molecule with the approximately Debye solid is part of
the dynamics described by Eqs. (II.22)-(II.24). We can
build in more structure to the density of states function
by considering a bigger cluster of lattice atoms as part
of the dynamical system, attaching a Debye lattice to
the end atoms of this dynamical cluster. As in paper I,
this can be done in a way that will leave some free pa-
rameters that can be fitted to a desired density of modes
function while still retaining the essential truncated be-
havior as given by Eq. (I.4).

1H. COMPUTATION OF THE RANDOM NOISE AND
THE LATTICE RESPONSE FUNCTIONS

In this section, we describe procedures for calculating
the random function R,(¢) and the lattice response func-
tion [the integral term in Eq. (II.24)] by reducing them
to sets of Markoffian differential equations., We note
that these two functions are interrelated as both essen-
tially describe lattice vibrational properties. The for-
mal connection is given by the relation (II.14) and (II. 20)
from which we obtain

M d

2L IiI. 1
kg T dt ( )

F(t)=- (R, ()R, (O) .

It is therefore important to evaluate the lattice response
and random terms in a consistent manner.
A. Lattice response function

Consider a function of‘the form

1 t
Ult) = —f dtF(it-7) (1), (111, 2)
- M
where F(t) is given by Eq. (II.14) and £{(7) is any func-
tion, In Appendix A, we show that for the model (I.A)
we have

{(n even) ,
(1m. 3)

e [2a, b, sin(a,x) + (b} ~a?)cos(a,x)]+3e™ (1 odd) ,
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where
x=wpt , (1. 4)
a,=cos[gziz+n—1)1] ) (111, 5)
[@p+1)
b,=sm[—p—z;z—11] , (111 6)
and
-1
o'=<2 sins—"> ] (I, 7
2n

Now, define

5 =ftdrexp[- bywp(t = 7)]sinfa,wp(t - 7)] F(7),
0

(111. 8)
§
(1/2».-1[ s » |
2a, b, S;(t) + (b —a?) S5(¢)
U(t)=M1 ; p Op Op » »
WpT ) 1/2(n-3)

25629

sj(t)=ftdrexp[-b,w,,(t ~T1)]cosla,wp (t-T)]f (1),
0
(111.9)

S,(t)=ftd1exp[—wp(t—-r)]f('r) . (I11.10)
o

These function satisfy the differential equations

dsy/dt = =b,wp S5 +a,wp S (m1.11)

dS;/dt = =bywp S5 =aywp Sy + f(8) (11.12)

dS./dt==wp S+ f(t) , (0I1.13)
with the initial conditions

S§(t=0)=8(t=0)=0 (all p) ,

S (t=0)=0 . (I11.14)

In terms of these functions, the lattice response function
Ult) takes the form

> [2a,5,5) +(03 -af) S@)] - $5,8) (n 0dd) .

p=0

Equations (III.11)—(III. 15) with the definitions (II1.5)-
(I11.7) reduce the calculation of U(¢) to an integration

of a Markoffian system of differential equations which
can be accomplished step by step together with the inte-
gration of the equations of motion.

B. Lattice random displacements

Next, we consider the random function R{f) which we
assumed to be a Gaussian random function satisfying
[cf. Eqs. (II.20) and (II.21)]

REH=0

and

(Im.16)

RO RO) = 2L [ 4 glw) 232E (111 17)

M 7 W'
where g(w) is again defined by Eq. (I.4), and its nor-
malization constant is given by Eq. (A10). Our goal is
to be able to generate R on the computer in a Markoffian
way. This can be achieved in principle by having R as
a member of a higher dimensional Markoff process. ’

In Appendix B, we show that R(f) can be obtained as
the solution of the differential equation

(n/2)~1 4z d
[ [d——)z(w,,t +2b, o) +l] R(t)=p(t) (n even() , |
I1.18a
d (3372 22 4
[d(wpt) +1] LI [d(wnt)z 208 g *1]R(t) =p(t)
(n odd), (III.18b)

‘where p(¢) is a Gaussian Markoffian random process sat-
isfying

{p(th =0 (I11.19a)

(n even) ,
(I11.15)
]
and
{p(ty) plt )y =CB(t, =15) , (II. 19b)
with C given by
3 Ii 1
212 gin T IT gin T2
c=ksT e (111, 20)
M wp :

The parameters b, entering into Eqs. (III.18) are the
same as those defined by Eq. (III. 6). Equations (1II,18)
can also be written in the form

((n/Z)—l][ d

. d n n~1
[(n/2)-1] eoo
{B" [d(wuﬂ] + Bt d(wpﬂ] *

+ /o1 d———-(j 5 +B{" 2"1}R(t) =p(t) (Il.21a)
D

for » even and

d n d n-1
Dc(n-z;)/a][ ] [(n-3)/2] s
{ m Twph)) TP dwpn) T

+D|i(n-3) /21

(I11. 21b)

Hpd) * Dé"‘”“}R(t)=p(n

for n odd. In these equations, the coefficients B satisfy
the following recursion relations:

By =Bau” +20, B + BV, m=2,3,4,...,2¢k

H

(111. 22a)
Bioa =B +2b, B, (111. 22b)
Bi" =2b,B§*™" + B{*" (I1I. 22¢)
Bk =BV =1, (1. 22d)
By" =B*V =1, (111. 22e)

J. Chem. Phys., Vol. 69, No. 6, 15 September 1978

Downloaded 03 Feb 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2530 Nitzan, Shugard, and Tully

while the D coefficients are given in terms of the B coef-
ficients in the form

pi/p=pi/a- oy (111. 23a)
DB("IZ)-U =BB‘"/Z)'“ =1 , (III. 23h)
and
DE:"/?‘)'“=BS,‘,"/2"”+B§,(,'1{2)'” , m=1,2,....n .
(111.23c)

In Egs. (I1I.23), » is even,

In Eqs. (1. 21), R, the input into Eq. (III. 24), is ob-
tained as a member of a n variable random process in-
cluding also its first n~1 derivatives. To check the
validity of the procedure, we have computed the Fourier
transform of the correlation function (R({)R(0)) after ob-
taining R from the numerical solution of Eq. (III. 18).
From Eq. (IIL. 17), this should yield the density of
modes function g{w). The results from this computation
are shown in Fig. 3.

The application of the method described here to the
calculation of impurity relaxation in solid matrices is
described in the following section,

{V. RESULTS AND DISCUSSION

The results of the computations based on Eqs. (. 22)-
(I1. 24) are summarized in Figs. 4~7 and in Table I. To
get these numbers, we ran trajectories of 10~10° points
with a time increment of the order of 0.06w™! (v being
the impurity frequency). Six to ten trajectories were
used to average over the finite temperature behavior and
the initial phase of the impurity oscillation. The longest
run took about 15 sec of Honeywell 6000 computer time,
In addition to averaging over trajectories, the instan-
taneous energy of the impurity was averaged over a time
interval of the order of 5-10 impurity periods. This
has the effect of eliminating the high frequency (and
some low frequency) fluctuations from the energy relaxa-
tion curves. Since we did not exercise much averaging
and used a rather small number of trajectories, the re-
sults obtained are accurate only to between 15% for the
fastest relaxing zero temperature case and 409 for the

3
o
N
t sk
3

0O ) | 1.5

w/wy

FIG. 3. Fourier transform of the position autocorrelation

function (R(})R(0)). Solid lines: w™g(w) from Eq. (I.4), for
n=2 and n=8. Open and closed circles: results of numerical
procedure of Sec. III for n=2 and 8, respectively. Scatter of
points results from finite number of time steps sampled.
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FIG. 4. Impurity energy as a function of time for 7'=0°K,

n=4, and several values of w (in units of wp).
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FIG. 5. Same as Fig. 4, but n=18.
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TABLE 1. Dependence of energy relaxa-
tion rates on n.*

Impurity Temp. Rate
n frequency °K) (10!? sec™)
4 2w 0 9.0
8 20, 0 b
12 2w 0 8.8
16 2wp 0 4.3
20 2wp 0 2.5
4 20), 20 36
10 2wy 20 25
18 2w, 20 18
4 2wp 100 76
18 2wp 100 30
4 3w, 0 0.90
8 3wp 0 6
12 3w 0 0.13
16 3w, 0 0.15
20 3wp 0 0.12
4 3w 10 7.0
12 Swp 10 5.0

AParameters used are v, =2 A, and ex-
ponential coupling [Eq. (II. 26a)] with A
=8.0x10° eV and @ =5.44 A",

PNonlinear behavior (see text).

slowest rates calculated. Faster finite temperature
rates are good to within 20%-30%.

As a test case for computation, we took as in paper I
a system with parameters similar to Cl, in the ground
state (r,,=2.0 A) or in the excited B state (ree=2.2 A)
coupled to nearest neighbor argon lattice atoms by a
Lennard-Jones potential with parameters appropriate
to Ar—-Ar interaction [¢=117.7°K and o= 3.314 A in Eq.
(I. 26a)], or an exponentially repulsive potential [Eq.
(I1. 26b)] with parameters chosen to fit the repulsive part
of the Ar—Ar Lennard-Jones potential in the appropriate
energy range (A=8x10° eV, a=5.44 A™Y),

We found that replacing the Lennard-Jones potential
by its repulsive part made only little change on the re-
sulting rates and the rates reported here are based
mostly on the repulsive interaction which is less time
consuming in the computation.

- —
L \MPURITY PERIOD

IMPURITY ENERGY (°K)

[¢] 100 200
t (wp™h
FIG. 6. Short-time behavior of impurity energy decay for

w=2wpand n=4 or 18 at T=0°K,
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FIG. 7. Dependence of relaxation rate on impurity frequency

wfor n=4 and 2=18 at T=0°K. The dashed line is from
quantum mechanical perturbation theory of Ref. 9 (valid only
for w/wp>> 1) for a Debye lattice,

Table I gives the energy relaxation rates k defined
from

dE/dt=-kE . . 1)

where E is the total internal energy of the impurity
molecule,® obtained for different choices of » in Eq.

(1. 4) for a system characterized by Cl,(ground state)-
Ar parameters except that the impurity molecule is
taken harmonic with w=2 or 3 (in units of w,=65 cm™),
This frequency corresponds to the energy spacing be-
tween higher vibrational levels of the Cl, molecule. We
see that beyond some strange behavior (to be remarked
upon later), the rates seem to be converging for high n,
The convergence is better for higher w as may be ex-
pected. It is also seen that, for nonzero temperatures,
the rates obtained are much less sensitive to the choice
of n,

Some decay curves obtained for different choices of
w are shown in Fig. 4 for n=4 and in Fig. 5 for n=18.
It should be noted that the presence of a sharper cutoff
in the phonon mode density in the n=18 case leadsto a
more fluctuating behavior of the relaxation curve. This
was smoothed out to some extent by our averaging pro-
cedure, but is still present as shown in Fig. 6, where
the short time behavior of the w=2, n=4, 18 cases is
displayed,
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The dependence of the relaxation rate on the harmonic
frequency is displayed for the cases n—4,18 in Fig, 7.
It is seen that the qualitative behavior characterized by
an exponential energy gap law is similar in both cases.
However, the slope in the n=18 case is larger, as ex-
pected, so that the absolute rates are comparable for
w<2w,, while for w~4w, [order of the spacing between
the lower vibrational levels of the Cl, in the excited
B37(0;) state] they differ by an order of magnitude,

Figure 7 also shows the results of a quantum mechan-~
ical perturbation theory for a Debye lattice.® The quan-
tum theory is expected to be accurate for large w, and
in fact is seen to predict rates similar to the =18 cal-
culations at the highest values of w shown in Fig. 7.

The following conclusions can be drawn from these
results: (1) The absolute rates and the relaxation pat-
tern itself are very sensitive to the form of the density
of states at zero temperature and are much less sensi-
tive to it (i.e., to details which go beyond the presence
of a cutoff at w=wp) at finite temperatures. We should
remember, however, that classical mechanics itself is
probably not valid at temperatures approaching zero,”

The sensitivity to the structure of the density of states
function appears to be an outcome of two factors. The
unphysical tail in the density of states that we are using
contributes a little to the rate and is responsible for the
slow convergence of the large n behavior as seen in
Table I. In addition, the close to singular structure of
the function g(w), especially for large n, may give rise
to strange relaxation patterns usually characterized by
a relatively rapid relaxation followed by very slow ones.
For the case n=18, we found this behavior to charac-
terize all impurity frequencies between 0. dwy and 1. Swp
It is seen also in the cases marked “nonlinear behavior”
in Table I. This behavior, which indicates trapping of
localized trajectories and forming of quasilocal modes,
is very sensitive to the functional form of g(w) and we
could not find a general pattern which will explain it, It
should be mentioned that even though we do not find this
behavior for larger impurity frequencies, the trajec-
tories used in these cases are short relative to the re-
laxation time and we can not exclude the possibility that
such nonlinear behavior also happens there, We do not
expect this to be the case, however, because this behav-
jor seems to be connected with a small distance between
the impurity frequency and the lattice cutoff frequency.
Nonlinear relaxation patterns associated with a small
distance from a cutoff in a continuous spectrum are
known also in other contexts.!

(2) General trends like the energy gap law, tempera-
ture dependence, and dependence on coupling param-
eters are qualitatively independent of the form of glw)
and follow the pattern described in paper I. In particu-
lar, the relaxation rate of a harmonic impurity decreas-
es exponentially with increasing w. Rates for impuri-
ties of larger w can be estimated roughly from plots like
Fig. 7 by extrapolation of the “cheaper to calculate”
rates of lower frequency fictitious impurities having the
same coupling parameters.

Nitzan, Shugard, and Tully: Relaxation phenomena. 11

V. CONCLUSION

In this work, we have extended the stochastic classi-
cal trajectory approach to vibrational relaxation in
solids to include more realistic solid mode density mod-
els. The approach enabled us to study the effect of the
model used, We have seen that the zero temperature
absolute rates are very sensitive to the form of the den-
sity of modes of the solid. General trends like the de-
pendence on potential parameters and on the nature of
the impurity show only small sensitivity. Also, for
nonzero temperatures, the dependence on the detailed
form of the mode density is much weaker.

The method is still extendable in several directions.
A three dimensional model which includes librational
and rotational degrees of freedom is of interest. Also,
more complicated density of modes functions with more
structure can be constructed and fitted to actual densi-
ties of states. Finally, polyatomic impurity molecules
can be considered and (matrix assisted) internal energy
transfer can be studied. It should be noted that slow
rates which are too expensive to calculate on the com-
puter may possibly be estimated by extrapolation using,
for example, the energy gap law (Fig. 7).

The main problems associated with the application of
the present method lies in the need to know the structure
of the impurity cavity and the form of the impurity lat-
tice interaction potential. Another shortcoming is asso-
ciated with our insufficient understanding of the problems
related to the use of classical mechanics for this quan-
tum mechanical problem, With an advance made in this
last point, we expect the method to become a valuable
tool in qualitative and even semiquantitative analysis of
vibrational relaxation processes of impurity molecules
in solids.

Finally, the method of stochastic classical trajecto-
ries has potential uses for other problems and fields.
Being essentially a method for obtaining computer gen-
erated heat baths of various properties, it can be ap-
plied in a host of problems in statistical dynamics and
offers a substantial saving in computation expenses rel-
ative to standard molecular dynamics calculations.
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APPENDIX A. SYSTEMATIC INITIAL CONDITIONS
Consider Eq. (II.13) in the form

t
(=R + RO+ [ arfOF(-1), (a1)
0
where R now stands for the random part and R* for the
systematic part of the free modes motion and where
F=1/M)(8U/8x). At T=0, R,;=0 and the systematic
part is the only contribution to the unperturbed evolution
of the initial conditions. This time evolution is given by

Ri(t)= 2; Sy [z;(o) cos(wyt) + wik 23(0) sin(w,t)] s (A2)

where 2%(0) and 25(0) are the given initial amplitudes of
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the different modes. An initial condition of practical

importance for our purpose is obtained by imagining a
constant force f operating on the lattice atom [ before

time zero. In the presence of such constant force and
at T=0, y,(#) is given by

v, ()= Z S:,[ 23(0) cos(wyt)

+ _— zk(O) sm(wkt)] +ff dTF(T). (A3)

Inserting F(t) from the first equality of Eq. (II.14), we
obtain

y,(t):Z[S 23(0) = f]5, | ]cos(w,t)
kR
1, : 2 1
+3 . — 2,0 sin(wd) +7 2 |Su)? 3 -
® We & We
The magnitude of f is related to the normal mode ampli-

tudes by the requirement that y,(#) is time independent
in the presence of the stationary force f. Therefore,

(a4)

3O =f 3 |Su]?7 , (A5)
] Wy
220)=0 (all k), (A86)
2500) =Sy ~ . (a7
We

Equation (A5) determines the magnitude of the fictitious
force f in terms of the given y,(0)

= [ Idw &(w%,l]*yl(o) .

Inserting this into Eq. (A7), multiplying the latter by
Sh; coSw,t, and summing over all k leads to

(a8)

Rit)= Zk:s,f, 23(0) cos{w,8) =B (#)y, 0}, {A9)
with
p()= [ [aw EL]" [ 40 €9 costun), (a10)

or if g{w) is given by an exact Debye spectral function

i
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B(t)=sin(wpt)/wpt. (a11)

Thus, in the presence of a systematic initial deviation
of y, from zero, Eqs. (II.13) and (I1. 21) should be re-
placed by

t
y,(t)=g<z)y,(0)+zz,(t)+}u fo dT(%)TF(t—T), (a12)

and similarly a term 8(¢)y,(0) should be added into the
rhs of Eq. (I, 24).
APPENDIX B. EVALUATION OF THE FUNCTION F(t)

Here, we outline the derivation of Eq. (III.3) for F(¢),
starting from

g()

Fl)= f do £ sin(wr), (B1)
with
glw)=N —(i/ﬁ’lﬁz—z— . (B2)
1+ (w/wp)™"
Defining
a®)= [ 4w &%) cos(), (B3)
0
we have, from Eqs. (B1) and (B3),
Fi)=-ZL a) (B4)
dt :
Equations (B2) and (B3) lead to
a(t):—Nz— jmdw ——1——2— elvt (B5)
208 .7 14 (w/wp)™"
or, with y=w/w, and x= wpt,
_L ” 1 ' iyx
a(t)_Zw J:mdy mﬁ e
efy:r
Zw,, .[ 4y (BE)

{y —exp[ri@m + l)/2n]}

ms

The integral in Eq. (B6) can be evaluated by complex
integration closing a contour in the upper half plane.
The result is

(n/2)-1
i e*m*[q, sin(a,x) + b,, cos(a,x)]
m=

a(t)= {n=3) 72 (B7)
wp22 Y H sin? — e [a, sin(a,x) + b, cosla,x)]+ 3¢
=1 me
[
where
N=2¥mDggin (EI ﬁ sin? ut4 Twp » (B10)
2m+1 2n/ 31 2n
m=C€0S —% =1, (B8) .
n and, using Eq. (B4), we establish the result ({II. 3) for
2m+1 F(#).
b,=s 7 T (B9)

From Eq. (B3), we see that (d/df)a(t),.,=0 while

[~ d?a(t)/dt?),.,=1. These results provide us with both
a consistency check and a way to fix the value of N. We
obtain

APPENDIX C. AN ALGORITHM FOR THE RANDOM

DISPLACEMENT FUNCTION

In this Appendix, we describe the deri?ation of Eqs.
(I11. 18)—(IT1. 20). These equations or the equivalent
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equations (III. 21) make it possible to evaluate the ran-
dom displacement functions R, () step by step during the
integration process.

Equations (III. 17), (II.33), and (B10) lead to

* 1

RHORO) =09 I dy "% i (c1)
where

x=wpt (C2)
and

X 2819 gip (gﬁ sin? (ll)
o= kT i 2n (C3)
M 21w} :
We define
“ 1
alx)= J- dy e** 3_)2"—+—1_ (C4)

and note in passing the close relationship between a and
a defined by Eq. (B5). The denominator of the integrand
of Eq. (C4) can be factorized in the form

o <i2m+1>]
1] |y ~exe{m =3,
_ﬁ e (,2m+1 2
- y xp m zn

m=0

y2"+1:

) (C5)

and the integral in Eq. (C4) can be evaluated by closing
a contour in the upper half plane (for x >0). Consider
now the function

n-1

H [d( )~ exP {mi[@m + 1)/2n] }] alx)

H (y —exp{mi[@m +1)/2n]})
— j dy eiyx m=0

y'ln +1 (06)
The rhs of Eq. (C6) is obtained by taking the derivative
of a(x) as defined by Eq. (C4) inside the integral. Com-
paring the rhs of Eq. (C6) and Eq. (C5), we see that in
the integrand of Eq. (C6) all the poles on the upper half
complex y plane have been eliminated and therefore the
integral in Eq. (C6) vanishes.

Thus,
n-1 d
H{——iexp{m’[(2m+ 1)/2n]}]a(x)=0. €
m=( dx
It is possible to simplify Eq. (C7) further. For this,

we consider separately the cases of even and odd n. For
even n, it is easy to show that

ﬁ (dix —iexp{ri{@m+ 1)/2n]})

J

fi ﬁ[m— exp {mi[ (2% + 1)/2n] }][E(‘-%?‘)"

ka0 3=0

Nitzan, Shugard, and Tully:

exp {~ni[(21+ 1)/2n]}} (R(x)R(x"))=Cs(x ~x").

Relaxation phenomena. 1l

l_iexp{ni[(ZM'*‘ 1)/271]} 2 ’

dx

(n/2)=-1
| (c8)

so that Eq. (C7) yields for this case

(n/2)-1 2
d Q2m+ I)WJ_q_
{d 7+ 28l [ 2n dx+1}a(x)=0’ (C9)

m=0

For n odd, we obtain

n-1
H (a—é—iexp {mi[@m + 1)/2n]}>

m=0

32 ) 2
=<_+1) 'a;-iexp{wi[(ZM+1)/2”]}
me (C10)

and Eq. (C7) then leads to

<£+1> (3L{;722+2s [(Zmz-:ll)fr]d +1}a(x)

m=0
(c11)

Denoting R(x)=R(t)=R(x/wy), we see that (R(x)R(0))
= ¢palx) and therefore this correlation functjon also
satisfies the differential equations (C9) or (C11).
write generally

L. R(x)EO)=0,

where L, is the linear differential operator defined by
the lhs of Eq. (C7) or by the lhs of Eq. (C9) for n even

(C12)

and of Eq. (C11) for » odd. We now seek a stochastlc
differential equation of the form

L,R(x)=p(x), (C13)
where p(x) is a white Gaussian noise

(p(x))=0, (C14)

{p(x)p(x")=Co(x~x'), (C15)

so that the stochastic function R (x) which is the solution
of Eq. (C13) will have the property

(R(x)R(x"))=odalx—-x'). (C16)

Note that Eq. (C13) together with the fact that {p(x)R(0))
=0 for x >0 imply that Eq. (C12) holds. In other words,
Eq. (C13) is consistent with Eq. (C12) and the only re-
maining task is to find the correct C in Eq. (C15) which
yields in Eq. (C16) the coefficient ¢ given by Eq. (C3).
To this end, we start with Eq. (C13) with L, taken in

the form implied by Eq. (C7):

n~1
T1(-2 - sexp fritem + 0/m1}) R0 = pl).

m=(

(c1mn
We multiply this equation by its complex conjugate writ-

ten with ¥’ as variable and then average over the distri-
bution which determines f.© We obtain

(C18)

Utilizing Eqs. (C16), (C4), and (C5), the lhs of Eq. (C18) takes the form

n-1 =
¢g[%‘.’—x5- exp {mi[ 2k + 1)/2n] }] [Bffx_)" exp{—mi[(2k+ 1)/2n] }] L dy

J. Chem. Phys., Vol. 69, No. 6, 15 September 1978

Downloaded 03 Feb 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Nitzan, Shugard, and Tully: Relaxation phenomena. |l 2535

expliy(x —x")]

X

k=0

Equations (C18) and (C19) finally yield
C=2r¢.

Equations (C13), (C14), and (C20) are equivalent to Eqs.
(111, 18)~(I11. 20) that we had set to prove, Note that C
of Eq. (III. 20) is equal to C/wp, the wp factor resulting
from the x — ¢ transformation.

(C20)

M. Shugard, J. C. Tully, and A. Nitzan, J. Chem. Phys.
66, 2534 (1977).

M. Shugard, J. C. Tully, and A. Nitzan, J. Chem. Phys.
89, 336 (1978), paper I of this series.

33, A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375

ﬁ (y —exp {mi[(2k + 1)/2n] )(y ~ exp {- mi[ (2k + 1)/2n] }) -

=¢ deyexp[iy(x—x’)]=2w¢6(x—x’). (C19)

(1976), and references therein.

a) E. O. Siré and G. H. Kohlmaier, Ber. Bunsenges. Phys.
Chem, 80, 504 (1976); (b) G. H. Kohlmaier, E. Nowak, and
E. O. siré, Ber. Bunsenges. Phys. Chem, 80, 515 (1976).

3. A. Adelman and B. J. Garrison, J. Chem. Phys. 65,
3751 (1976).

7. D. Doll and D. R. Dion, J. Chem. Phys. 85, 3762 (1976).

'M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).

8For very slow rates, we sometimes used the total energy of
the four atom system as a measure of the internal energy of
the impurity.

A. Nitzan, S. Mukamel, and J. Jortner, J. Chem. Phys. 60,
3929 (1974); 63, 200 (1975).

M. L. Goldberger and K. M. Watson, Collison Theory
(Wiley, New York, 1964), p. 450.

J. Chem. Phys., Vol. 69, No. 6, 15 September 1978

Downloaded 03 Feb 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



