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ABSTRACT: We investigate two key representative semiclassical approaches for
propagating resonant energy transfer (RET) between a pair of electronic two-level
systems (donor and acceptor) with coupled Maxwell−Liouville equations. On the
one hand, when the electromagnetic (EM) field is treated classically and Coulomb
interactions are treated quantum-mechanically, we find that a quantum−classical
mismatch leads to a violation of causality, i.e., the acceptor can be excited before
the retarded EM field arrives. On the other hand, if we invoke a classical
intermolecular Coulomb operator, we find that the energy transfer in the near
field loses quantitative accuracy compared with Förster theory, even though
causality is strictly obeyed. Thus, our work raises a fundamental paradox when
choosing a semiclassical electrodynamics algorithm. Namely, which is more
important: Accurate short-range interactions or long-range causality? Apparently,
one cannot have one’s cake and eat it too.

Light−matter interactions are an essential research area in
physics, chemistry, and engineering. A host of recent

experiments encountering strong light−matter interactions1−7

have demonstrated that the optical response of matter does not
always follow response theory and that we cannot always treat
the electromagnetic (EM) field as a perturbation.8−11 In order
to model such experiments, an optimal approach should
consider both the light and matter degrees of freedom on the
same footing.
For a nonperturbative model of electrodynamics in terms of

molecular properties, the usual approach is to perform a
Power−Zienau−Woolley (PZW) transformation,12,13 so that
the full quantum electrodynamics (QED) Hamiltonian reads
as follows

∫

∫ ∫
μ

̂ = ̂ +
| ̂ |

ϵ
+ | ̂ |

−
̂
ϵ

̂ +
ϵ

| ̂ |

⊥

⊥
⊥ ⊥

H H r
D r B r

r
D r

r r r

1
2

d
( ) ( )

d
( )

( )
1

2
d ( )

s

2

0

2

0

0 0

2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

(1)

Here, we ignore the magnetic and diamagnetic interactions for
the quantum subsystem. D̂⊥ and B̂ are the displacement and
magnetic field operators, Ĥs is the Hamiltonian for the
quantum subsystem, and ⊥̂ is the transverse polarization
operator of the quantum (molecular) subsystem that couples
to the EM field.14 Note that the transverse component of ̂
satisfies ∇· ̂ =⊥ 0, and the longitudinal component of ̂

satisfies ∇ × ̂ = 0. ̂ = ϵ ̂ + ̂
⊥ ⊥ ⊥D E0 and B̂ = ∇ × Â, where

Â is the vector potential. The canonical commutator
relationship is [D̂⊥(r), Â(r′)] = iℏδ⊥(r − r′), where δ⊥ is the
transverse δ-function. Formally, the regularized transverse δ-

function can be written as δ⊥ij(r) = δ δ δ+ −η
π ( )r( )ij r
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where i,j = x,y,z and η(r) = 0 at r = 0 to suppress the
divergence (but η(r) = 1 elsewhere).15 Note that for a neutral
system, the displacement field is exclusively transverse, (i.e., D̂∥
= 0), so that we can write D̂ or D̂⊥ interchangeably. Although
not discussed often, we note that eq 1 should formally include
the self-interaction of all charges (which is infinitely large
unless one introduces a cutoff); see eqs I.B.36 and IV.C.38 in
ref 15.
At this point, let us consider a system containing N separable

and neutral molecules. Here, one can write
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where the intermolecular Coulomb interactions V̂Coul
(nl) are (for n

≠ l)15
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In eq 3, the intermolecular Coulomb operator is defined as the
inner product of the longitudinal polarization operators for the
molecules n and l. When the molecular size is much less than
the intermolecular separation, one can make the point-dipole

approximation, i.e., μ δ̂ = ̂ −r r r( ) ( )
n n n( ) ( ) ( ) . The longitudi-

nal polarization operator is then
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Therefore, eq 3 can be reduced to the well-known
instantaneous dipole−dipole interaction Hamiltonian16
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Here, μ̂(n,l) is the dipole moment operator of molecule n or l
and r (r)̂ is the vector (unit vector) along the direction of
molecular separation.
At this point, one can prove causality through the following

argument. Consider the case of two molecules well separated

from each other (so that ∫ ̂ · ̂ =rd 0
n l( ) ( )

). Then, if we
substitute eqs 2 and 3 into eq 1, we find that all instantaneous
interactions between molecular pairs vanish by cancellation
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where we have used the identity
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Thus, QED strictly satisfies causality: molecules interact solely
through the retarded EM field. The Hamiltonians in eqs 1 and
5 are identical.
Semiclassical Algorithm for QED: Lack of a Unique Approach.

When dealing with realistically large systems, the many-body
Hamiltonians in eqs 1 and 5 are almost impossible to
propagate quantum-mechanically, and the only practical
method is usually time-dependent perturbation theory with
small light−matter interactions. To overcome this restriction,

one promising approach is to use semiclassical electro-
dynamics, whereby one treats the EM field classically while
treating the molecular subsystem quantum mechanically and
there is no small parameter.17−21 According to this approach,
one evolves the coupled Schrödinger−Maxwell or Liouville−
Maxwell equations
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Here, ρ̂, Ĥsc, and ̂ are (respectively) the density operator, the
semiclassical Hamiltonian, and the polarization operator for
the quantum molecular subsystem. For a subsystem containing
N molecules, the total density operator ρ̂ is expressed as ρ̂ =
ρ̂(1) ⊗ ρ̂(2) ⊗ ··· ⊗ ρ̂(N). In eq 7c, c = μ ϵ1/ 0 0 and J is the
current density operator that connects the quantum molecular
subsystem to the classical EM field. In eq 7d, J is defined by a
mean-field approximation,22,23 and therefore eq 7 can also be
called “‘Ehrenfest’” electrodynamics. As far as the notation
below, it will be crucial to distinguish between the operator ̂
(with a hat) and the average ρ= ̂ ̂Tr( ) (no hat).
Note that eq 7c can be separated into two different

equations for the transverse and perpendicular components
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Hamiltonian #I. When defining the semiclassical, electronic
Hamiltonian Ĥsc in eq 7a, there is no unique prescription. In
the Supporting Information, we provide a detailed approach
for constructing two different semiclassical Hamiltonians
starting from the PZW Hamiltonian. Here, we present only
the main results.
The first Hamiltonian13 reads
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Henceforward, we will refer to eq 10 as Hamiltonian #I.
In eq 10, there are two terms containing instantaneous

interactions: the nonlocal transverse E-field (E⊥) and the
intermolecular Coulomb interactions (V̂Coul

(nl) ). Just as for QED,
one would normally expect that eqs 7−10 should preserve
causality. This alleged cancellation should be obvious if we

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b02309
J. Phys. Chem. Lett. 2018, 9, 5955−5961

5956

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b02309/suppl_file/jz8b02309_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b02309


substitute in E⊥ = E − E∥ = E +
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Ideally, the second line of eq 11 should cancel (see eq 6).
However, note that in eq 11 one of the terms is treated
classically while the Coulomb interactions are treated fully
quantum-mechanically (see eq 3), and thus, there is no
guarantee of cancellation or strict causality. In fact, below we
will present numerical simulations showing that causality is not
strictly enforced. Thus, one may further ask, can we find a
different semiclassical Hamiltonian that does preserve
causality? Indeed, this is possible, which brings us to
Hamiltonian #II.
Hamiltonian #II. To preserve causality, one can make the

following approximation: ∀n,l,

∫

∫

̂ =
ϵ

· ̂

+
ϵ

· ̂

V t

t

r r r

r r r

1
d ( , ) ( )

1
d ( , ) ( )

nl n l

l n

Coul
( )

0

( ) ( )

0

( ) ( )

(12)

Compared with the quantum form of V̂Coul
(nl) in eq 3, the physical

meaning of eq 12 is clear: the intermolecular Coulomb
interactions between molecules are effectively the classical
polarization energies as felt by one molecule in the field of
another and as expressed by the classical longitudinal

polarization fields ( n( ) and l( )). If we substitute eq 12 and

= −⊥ ϵ ⊥E D( )1

0
into eq 10, after some straightforward

algebra, we find that a new semiclassical Hamiltonian emerges
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In eq 13, the intermolecular interactions are carried exclusively
through the classical D-field, and thus, causality is strictly
preserved. Henceforward, to distinguish eq 13 from eq 10, we
will refer to eq 13 as Hamiltonian #II. Note that by
substituting eq 12 into eq 11, eq 13 is equivalent to
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Hamiltonians #I′/#II′. Before presenting any results, one
final point is appropriate. As discussed above, eq 1 should
formally include the self-interaction of all charges. Also, for a
single electron at each site n, this self-interaction will be of the

form V̂self = ∫ | ̂ |ϵ rd
n1

2

( ) 2
0

. If we make a semiclassical

approximation (in the spirit of eqs 3 and 12), we can

approximate V̂self = ∫ · ̂
ϵ rd n n1 ( ) ( )

0
, which will obviously

cancel the self-interaction terms in eqs 11 and 14. The
resulting Hamiltonians will be of the form
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In practice, as shown in the Supporting Information, we find
that Ĥsc

I′ and Ĥsc
II′ behave effectively the same as Ĥsc

I and Ĥsc
II . In

the Supporting Information, we list the relevant energy
expression that is conserved for each choice of Ĥsc.
Comparison of the Dif ferent Hamiltonians. When comparing

Hamiltonians #I and #II, it is very important to emphasize that,
although we have derived Ĥsc

II by invoking the approximation in
eq 12, Ĥsc

II can also be derived directly from the PZW
Hamiltonian. Ĥsc

II should not be considered any less valid than
Ĥsc

I ; see the Supporting Information.
Next, let us comment on the issues of electronic correlation

and quantum entanglement. As far as quantum entanglement is
concerned, with semiclassical electrodynamics, there cannot be
any strict quantum entanglement between electrons and
photons because the EM field is treated classically. Never-
theless, even with Ehrenfest dynamics, there is some feedback
from the electronic degrees of freedom to the photon field, and
there is certainly some correlation between the boson field and
the electronic state at any given time.24 A great deal of research
has now shown that Ehrenfest equations of motion can
sometimes yield the proper dynamics for Fermionic sub-
systems coupled to bosonic baths (especially provided that one
works with the correct initial conditions).25,26

Let us now move our attention to electron−electron
correlation. One the one hand, because Hamiltonian #I
contains a quantum two-body operator (i.e., V̂Coul

(nl) in eqs 3
and 4), this method allows for entanglement between
individual molecules. On the other hand, by invoking a
classical intermolecular Coulomb operator in eq 12, Hamil-
tonian #II does not allow for entanglement between molecules.
As a practical matter, in what follows below, we will see that
these differences can lead to different energy transfer rates.
To compare the two semiclassical Hamiltonians above, we

will now apply Ehrenfest electrodynamics and model resonant
energy transfer (RET) between a pair of identical electronic
two-level systems (TLSs)27−30 in three dimensions.
Model. Consider a pair of TLSs with a donor (D) and an

acceptor (A). The Hamiltonian for both the donor and
acceptor are
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where eq 16 is expressed in the basis {|g⟩,|e⟩}; here |g⟩ is the
ground state and |e⟩ is the excited state. ℏω0 is the energy
difference between |g⟩ and |e⟩. The polarization operator for
each molecule reads
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0 1
1 0

,
n n( )

0
( ) i

k
jjj

y
{
zzz

(17)

Here, ξ(r) = ψg*qrψe = (2π)−3/2σ−5μ12rz exp(−r2/2σ2) is the
polarization density of a TLS where |g⟩ is an s-orbital, |e⟩ is a
pz orbital, q denotes the effective charge of the TLS, σ denotes
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the width of wave functions, and μ12 = |∫ dr ψg*qrψe| denotes
the magnitude of the transition dipole moment. We assume
that the TLS has no permanent dipole. Without loss of
generality, we suppose that the donor (acceptor) sits on the
negative (positive) side of the x-axis, i.e., r0

(D) = (−R/2,0,0) and
r0
(A) = (R/2,0,0). We define R as the separation between the
two TLSs.
Overall, the electronic Hamiltonians read as follows in

matrix form (in the basis {|gg⟩, |ge⟩, |eg⟩, |ee⟩})
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where v = ∫ ξ ξ·ϵ rd D A1 ( ) ( )
0

, vD = −∫ dr E⊥ · ξ(D) and vD′ =

∫ ξ ξρ− · −ϵ ⊥r Dd ( 2Re )D D D1 ( )
12
( ) ( )

0
, and vA and vA′ are defined

analogously. All other simulation details and parameters are
provided in the Supporting Information.
Analytical QED Results. When modeling RET with

retardation,31−33 it is well-known that energy transfer rates
show an R−6 dependence when k0R ≪ 1 and an R−2

dependence when k0R ≫ 1. Here k0 ≡ ω0/c. This difference
in scaling arises because the usual instantaneous version of
energy transfer theory34−36 does not account for the dynamical
motion of the EM field to carry energy from the donor to
acceptor. For our purposes, in order to directly compare with
simulation, we will require an accurate calculation of energy
transfer dynamics (beyond any rate expression, e.g., Förster
theory) that is exact within QED perturbation theory. A short-
time analytical formula of the excited state population of the
acceptor, ρ22

(A)(t), can be derived with QED, as shown by
Power, Thirunamachandran, and Salam.37,38 By slightly
modifying the result in ref 38, we can obtain an analytical
solution for ρ22

(A)(t) at short times, starting in an arbitrary
superposition state for the donor (see the Supporting
Information)

Figure 1. Plot of the excited state population of the acceptor (ρ22
(A)(t)) at short times (tend = 20 fs). Results for Hamiltonian #I (II) are plotted on

the left (right). (a,b) ρ22
(A)(t) versus time using a logarithmic scale by varying the separation in the range 0.6 ≤ k0R ≤ 8.0 (rainbow color from red to

purple, respectively), where k0 = ω0/c. (c,d) Normalized ρ22
(A) (ρ22

(A)(t)/ρ22
(A)(tend)) versus ω0t with the same separation range as that in panels (a) and

(b), where now only the x-axis is plotted logarithmically. (e,f) ρ22
(A)(tend) versus k0R on a logarithmic scale; the simulation data (blue circles) of

Hamiltonians #I and #II are compared with the QED result (eq 20, black dashed line). The initial state for the donor is (C1
(D)(0), C2

(D)(0)) = (1/
2 , 1/ 2 ) and the initial state for the acceptor is (C1

(A)(0), C2
(A)(0)) = (1, 0). Other parameters are given in the Supporting Information. Note that

in panels (a) and (b), the straight lines when t > 2 fs indicate that the leading term of ρ22
(A)(t) varies as ∼t2 (the same as eq 20). Note that

Hamiltonian #I (c) violates causality such that ρ22
(A)(t) > 0 before the retarded field from the donor comes (ω0t < k0R), while Hamiltonian #II (d)

exactly preserves causality; see the rainbow arrows indicating the time before which energy transfer is not allowed by causality. In panels (e) and
(f), both Hamiltonians show R−6 dependence when k0R < 1 and R−2 dependence when k0R > 1. However, Hamiltonian #I agrees with QED better
for short separations than Hamiltonian #II, presumably because the former describes Coulomb interactions quantum-mechanically.
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Here, ρ22
(D)(0) is the initial excited state population of the

donor, eD and eA are the unit vectors oriented along the
transition dipoles of the donor and the acceptor, η1 = eA · eD −
(eA · eR)(eD · eR), and η3 = eA · eD − 3(eA · eR)(eD · eR). We
define eR as the unit vector oriented along the separation
between the donor and acceptor. In our model, the pair of
TLSs is located along the x-axis, and the transition dipole
moments are both pz polarized, so that eA · eR = eD · eR = 0 and

η1 = η3 = eA · eD = 1. θ = { }t t( ) Max , 0
t

d
d

is the Heaviside step

function.
Note that the unretarded energy transfer expression for ρ22

(A)

is simply ρ22
(A)(t) = ρ22

(D)(0) × ημ μ

π

| | | |
ϵ ℏ

t
R(4 ) 3

2 2
D A

12
2

12
2

0
2 6 , which is equivalent

to the FGR result with the coupling V̂Coul
(nl) in eq 4. Equation 20

includes two important time-dependent features: (i) all
retardation is totally accounted for (i.e., ρ22

(A)(t) is zero when
t < R/c) and (ii) ρ22

(A)(t) depends quadratically on time at short
times.
Numerical Semiclassical Results. As far as simulating energy

transfer semiclassically, we will assume that there is no EM
field in space initially; the donor starts in a superposition state

=C C( (0), (0)) (1/ 2 , 1/ 2 )D D
1
( )

2
( ) , and the acceptor starts

in the ground state, where C1 (C2) represents the quantum
amplitude of |g⟩ (|e⟩). With these initial conditions, we can
propagate eq 7 and compare dynamics of Hamiltonians #I and
#II. To keep the following context concise, we will refer to the
result of Hamiltonian #I (II) as result #I (II) for short.
In Figure 1, we plot the excited state population of the

acceptor (ρ22
(A)(t)) at relatively short times (t < 20 fs) by

varying the separation R (0.6 ≤ k0R ≤ 8.0). In Figure 1c, we
find that result #I clearly does not preserve causality: ρ22

(A)(t)
begins to increase even before the retarded field from the
donor arrives (ω0t < k0R); see the Supporting Information for
a discussion of causality. Interestingly, however, for very large
distances (when k0R ≫ 1), Hamiltonian #I seems to do a
better job of preserving causality because, in this limit, the
intermolecular interactions are dominated by the retarded field
(which decays as R−1) rather than longitudinal Coulomb

interactions (which decay as R−3). Nevertheless, clearly,
Hamiltonian #I violates the tenets of relativity. That being
said, Hamiltonian #II does preserve causality exactly (see
Figure 1d). Thus, from this perspective, one would presume
that Hamiltonian #II has an obvious advantage over
Hamiltonian #I.
At this point, however, let us turn our attention to Figure

1e,f. Here, we compare rates of energy transfer for the two
methods as compared with the analytic theory in eq 20 as a
function of R. According to Figure 1e,f, even though results #I
and #II (blue circles) recover qualitatively the same distance
dependencies as those for eq 20 (black lines), results #I and #II
differ in the limit of short donor−acceptor separation (k0R <
1). For short distances, result #I agrees exactly with QED (eq
20), while result #II is off by roughly a factor of 2. This
discrepancy is perhaps not surprising because at short
separation the dominant Coulomb interactions are described
quantum-mechanically in Hamiltonian #I but are classical in
Hamiltonian #II, and there is no reason to suppose that these
two methods should agree quantitatively in practice. By
contrast, at long separations (k0R > 1), where the retarded field
is dominant, both Hamiltonians #I and #II propagate the
retarded field classically, and therefore, both methods should
agree; interestingly, in this limit, both semiclassical approaches
differ from the QED results by roughly a factor of 2.39

Can We Model Energy Transfer Accurately without Sponta-
neous Emission? At large separation (k0R ≫ 1), it is clear that
RET is dominated by the dynamics of the radiation field:
retardation effects appear and the RET rate scales as 1/R2

instead of the usual 1/R6 scaling (i.e., the Förster scaling that
arises from the instantaneous dipole−dipole interactions).
Now, for this reason, if semiclassical theory is to model RET
correctly, it is clear that one must treat spontaneous emission
correctly. After all, at long distances, RET can effectively be
considered as the result of spontaneous emission from the
donor, followed subsequently by absorption of the acceptor.
That being said, however, we must emphasize that Ehrenfest
electrodynamics do not recover the full FGR spontaneous
emission rate.21,40,41 Instead, as shown in ref 21, Ehrenfest
dynamics predict a decay rate (kEh) proportional to the
instantaneous ground state population

ρ=k t t k( ) ( )Eh 11 FGR (21)

One can argue that this failure arises from the fact that
Ehrenfest electrodynamics predict only a coherent scattering

Figure 2. Plot of the excited state population of the acceptor at the end time (ρ22
(A)(tend; tend = 20 fs) versus the intermolecular separation (k0R)

using a logarithmic scale. Simulations are performed with different initial excited state populations for the donor: ρ22
(D)(0) = 0.1 (left), 0.5 (middle),

and 0.9 (right). Three methods are compared: Hamiltonian #I (red triangle), Hamiltonian #II (cyan star), and QED (eq 20, black dashed line).
Parameters are given in the Supporting Information. Note that when ρ22

(D)(0) is small, all methods agree with each other. As ρ22
(D)(0) increases, there

is less agreement between Hamiltonians #I/II and the QED result. Just as for Figure 1, due to its quantum-mechanical description of Coulomb
interactions, Hamiltonian #I always agrees with QED better for short separations (unlike Hamiltonian #II).
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field (which is proportional to the ground state population of
the molecule) without any incoherent scattering.42,43 In other
words, according to a single Ehrenfest trajectory, one would
predict ⟨Ê⟩2 = ⟨Ê2⟩, which is not correct quantum-
mechanically. By contrast, according to quantum treatment,
both coherent and incoherent scattering are allowed, and
interference effects can lead to situations where, in the extreme
case, ⟨Ê⟩ = 0 but ⟨Ê⟩2 ≠ 0, as is common for spontaneous
emission. Thus, to sum up, modeling RET robustly requires
more than a single classical ansatz for the electric field at one
time, ⟨Ê(t)⟩: a FGR calculation relies on capturing the correct
time correlation function for the electric field, ⟨Ê(0)Ê(t)⟩; see
the note about averaging Ehrenfest trajectories in the
Supporting Information.
With this background and eq 21 in mind, one might expect

that the Ehrenfest energy transfer rate would depend strongly
on the initial state population, and one can ask, will our results
using Hamiltonians #I and #II change in a similar fashion for
different initial states? To that end, in Figure 2, for a variety of
initial conditions, we compare results for ρ22

(A)(t) as calculated
according to both Hamiltonians #I (red triangle) and #II (cyan
star). We also plot the short-time full QED results (black
dashed line) from eq 20, where the initial excited state
population is reflected in the initial donor (ρ22

(D)(0)).
Our results are plotted in Figure 2. When the donor is

weakly excited initially (ρ22
(D)(0) = 0.1), we find that all three

results agree with each other. However, when ρ22
(D)(0) is

increased, we find less and less agreement between either of
the semiclassical results and QED results at long distances; the
semiclassical results strongly underestimate the energy transfer
rate. These results strongly suggest that if a semiclassical
approach is to capture energy transfer accurately both at short
and long distances, the approach must be able to capture
spontaneous emission as well. After all, at long distances, we
know that energy transfer is modulated by a retarded field, and
if Ehrenfest dynamics cannot capture spontaneous emission,
there is no surprise that one cannot recover the correct energy
transfer rate either.
Lastly, let us now consider results at short distances. Here,

we find very different behavior between Hamiltonians #I and
#II. On the one hand, we find that, no matter the initial donor
population, Hamiltonian #I always produces accurate results;
because Hamiltonian #I includes explicitly quantum-mechan-
ical Coulomb interactions, we believe that this method should
always agree with QED at short-range (where retardation
effects are not important). On the other hand, in Figure 2c, we
also see that Hamiltonian #II fails and drastically under-
estimates the energy transfer rate for ρ22

(D)(0) = 0.9. Here, we
need only recognize that because Hamiltonian #II treats the
EM field exclusively classically, such an approach can never be
accurate (either at short-range or at long-range) if spontaneous
emission is not capture correctly. Thus, in the end, a crucial
question emerges: If we can develop a means to include
spontaneous emission on top of Ehrenfest dynamics (as in ref
43), what will be the most accurate approach: to include a
combination of quantum Coulomb interactions with a classical
(but exclusively transverse) EM field (i.e., Hamiltonian #I) or
to employ an entirely classical (transverse plus longitudinal)
EM field? The answer is not obvious, especially because the full
nature of a quantum radiation field cannot be captured by
simply including spontaneous emission. Hence, a thorough
benchmark will be necessary. As we look forward to future

methodological development of this understudied area, many
questions remain.
In conclusion, by numerically studying coherent energy

transfer between a pair of TLSs with Ehrenfest electro-
dynamics, our conclusions are as follows: (i) The standard
Hamiltonian #I (Ĥsc

I in eq 10) violates causality, especially
when the molecular separation is small (k0R < 1) because of a
mismatch between a quantum description of the matter and a
classical description of the EM field; (ii) causality can be
preserved if one models both the retarded field and the
intermolecular Coulomb interactions in a classical fashion
(Hamiltonian Ĥsc

II in eq 13); (iii) for RET, both Hamiltonians
#I and #II predict qualitatively the same distance behavior as
retarded Förster theory, and when the electronic excitation of
the donor is weak, both semiclassical methods recover QED
results quantitatively; however, (iv) even though Hamiltonian
#I violates causality, this approach better agrees with QED
with regards to RET rates at short distances. The pros and
cons of these different Hamiltonians suggest that the specific
choice of a semiclassical Hamiltonian may depend on the
particular problem that one is investigating; for now, it would
appear that there is no sinecure for the inconsistencies
inevitably faced by a semiclassical ansatz. Nevertheless, if
spontaneous emission can be incorporated into Ehrenfest
dynamics, the accuracy of these methods should be
dramatically enhanced. This work is ongoing in our laboratory.
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