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Quantum thermodynamics for driven dissipative bosonic systems
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We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath
coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that
thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped
two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator
frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy
gap between the two levels. Importantly, we are able to find the entropy production rates for each case without
explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition
of phenomenological friction coefficients in terms of structural properties of the system-bath composite.
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I. INTRODUCTION

The formulation of thermodynamic concepts applicable
to molecular and nanoscale devices has recently motivated
intense research, as such systems provide a unique setting
to study thermodynamic functions, heat transfer, power work,
and dissipation at the nanoscale far from the thermodynamic
limit. The characteristics of these systems forbid the direct
application of traditional concepts from macroscopic statistical
thermodynamics, because fluctuations, thermal and quantum,
as well as the system’s coupling to its environment can
be relevant for their complete description. In the quantum
regime, dynamics [1], the broadening of energy levels, and
interference between different pathways can play important
roles and have been studied within the emerging field of quan-
tum thermodynamics [2–9]. Models of quantum heat engines
that mimic macroscopic setups, for example, two-level Otto
engines that operate in two/four-stroke and continuous cycles
[10–12], have been discussed, highlighting the role played
by quantum dissipation and friction [13–20] and providing
frameworks for analyzing efficiency and power in quantum
heat engines [21–29]. Recently, a setting for the realization
of a four-stroke Otto engine with single trapped ions was
theoretically suggested [30,31] and experimentally achieved
[32]. Implications of quantum thermodynamics have also
been discussed in the framework of driven open quantum
systems as may be encountered in quantum pumps, where the
driving appears via a suitable time dependence of the system’s
Hamiltonian.

Such models are often discussed in the weak system-bath
coupling limit, where the thermodynamic functions associated
with the system of interest can be clearly identified. In contrast,
in the strong-coupling limit, one encounters difficulties partly
stemming from the uncertainty about assigning the system-
bath coupling to any part of the overall system, and also
because quantum mechanical broadening makes it difficult to
exactly characterize the system energy. A simple example is
the driven resonant level [33–39], where a single electronic

level is coupled to a Fermi bath (or several such baths) while
its energy and/or coupling to the bath are modulated by an
external force. In the weak system-bath coupling regime,
stochastic thermodynamics [40,41] and (for periodic driving)
Floquet theory [42] have been successfully used for describing
transport and thermodynamic implications of such driving
in a consistent form [36,43]. Strong system-bath coupling
[39,44–50] has proven more challenging (strong coupling
in nanothermoelectric devices is discussed in Ref. [51]). In
another context, the appearance of paradoxical behavior and
anomalies in thermodynamic quantities [52,53] such as the
specific heat [54,55] has raised questions about the possibility
to achieve a consistent thermodynamic description of strongly
coupled quantum systems.

The driven resonant level model has been useful for un-
derstanding the implications of strong system-bath coupling
on the quantum thermodynamics of small systems. In this
paper we investigate the quantum thermodynamics of two
other prototypical systems operating in the strong-coupling
regime and under slow driving—a driven harmonic oscillator
and a driven two-level system strongly coupled to their thermal
bosonic environments. The dynamics under the modulation
of system parameters in these models has been extensively
investigated before (see, e.g., Refs. [56,57]). Here, we aim
for a unified formulation that describes dynamic and thermo-
dynamic properties of these systems in the strongly coupled
regime, where the system-bath interaction can be of the same
order as the system energy itself. The first model, Eqs. (1)–(6)
below, a harmonic oscillator strongly coupled to a bosonic
bath, and driven by modulating in time its characteristic
energy (i.e., the oscillator’s frequency) or coupling to the bath,
may be applied to describe some physical systems such as
optomechanical heat engines [58,59], or molecules adsorbed
on insulator surfaces and subjected to mechanical stress. In
previous theoretical studies, such models have been used to for-
mulate harmonic quantum Otto engines with time-dependent
frequency [30] as well as other quantum heat engines [60,61],
and have served to study the interplay between Markovian
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quantum master equations and Floquet theory [62] under
parametrically periodic driving. Indeed, the forced quantum
harmonic oscillator weakly coupled to a thermal bath (the
latter modeled as a set of two-level systems) was analyzed
using stochastic thermodynamics [63]. Recently, experimental
studies of the quantum thermodynamics of a two-dimensional
quantum harmonic oscillator having angular momentum were
reported [64].

The second model, Eqs. (50)–(53), a driven dissipative two-
level system in the strong-coupling regime, is similar to models
used in quantum optics and quantum electrodynamics but
different from the familiar spin-boson model (the dynamics for
the latter was thoroughly described in, for example, Ref. [65]).
Previous studies using this model have concentrated on iden-
tifying quantum signatures in the thermodynamic behavior of
such models in the weak-coupling regime [66]. A parametric
one-dimensional oscillator in a time-dependent potential has
been studied as a dissipative two-level system [67]. Stud-
ies under strong driving and non-Markovian dynamics [68]
stressing the nature of work and heat transfer, quantum jump
approximations to the work statistics [69], and the dynamics
and thermodynamics near equilibrium [70] have been reported.
Notably, some experimental aspects associated with measuring
work and heat in a dissipative two-level quantum system, where
only parts of the system and its environment are accessible to
the measurement, were analyzed [71].

In contrast to these studies, the present work does not
consider sudden adiabatic steps that uncouple the original
system from the surrounding baths, as such ideal steps may
not reproduce important aspects of their practical realization.
Indeed, the operation of nanoengines often involves contin-
uous variations such as the migration of chemically bonded
molecules on surfaces, plasmon-exciton couplings, optically
trapped nanobeads, and optical tweezers. Our strategy closely
follows the methodology adopted in Ref. [38] in the study of
the driven resonant level model, focusing on the dependence
of thermodynamic properties of the overall (system+bath)
system on the system parameters. This strategy permits us to
go beyond descriptions based on perturbative treatments of the
coupling strength, such as used in most treatments of quantum
Brownian motion (see, e.g., Refs. [56,57]). As a consequence
of the bosonic nature of the system under investigation, we
are able to go beyond driving in the oscillator’s frequency
and consider in addition the time-dependent perturbations on
the coupling strength for the damped harmonic oscillator.
Moreover, we identify quantum friction terms under finite-rate
driving for each case and we achieve a consistent dynamics as
well as thermodynamic characterization in each case.

In Sec. II, we study the damped harmonic oscillator exposed
to external perturbations that drive the oscillator frequency and
the coupling. Next, in Sec. III, we describe the thermodynamics
of the damped harmonic oscillator when the driving changes
the energy gap between levels. These results lead to the
subsequent discussion of quantum friction in Sec. IV. We
summarize and conclude in Sec. V.

II. THE DRIVEN DAMPED HARMONIC OSCILLATOR

In this section we study a driven harmonic oscillator
coupled to a harmonic bath. The starting point is the standard

Hamiltonian (here and below we set h̄ = 1)

Ĥ = ĤS + ĤB + V̂ , (1)

with

ĤS = �â†â, (2)

ĤB =
∑
m

ωmb̂†mb̂m, (3)

V̂ =
∑
m

umX̂Ŷm, (4)

X̂ = â + â†, (5)

Ŷm = b̂†m + b̂m, (6)

where â (â†) is the annihilation (creation) operator for the
primary boson of frequency �, coupled to a bath of bosonic
modes of frequencies ωm, coupling to the primary boson um,
and the corresponding annihilation (creation) operators b̂m

(b̂†m). This bath is at thermal equilibrium with temperature
T = (kBβ)−1, where kB is the Boltzmann constant.

In describing the dynamics of this system, considerable
simplification is achieved by resorting to the rotating wave
approximation, keeping in Eq. (1) only coupling terms that
can conserve energy in low order. In this case, the dynamics is
fully described by Green’s functions of the form 〈â(t)â†(t ′)〉.
We define the nonequilibrium Green’s function in the Keldysh
contour,

G(τ1,τ2) = − i〈â(τ1)â†(τ2)〉c, (7)

and notice that the lesser projection G< at equal times provides
the reduced nonequilibrium density matrix for the primary
boson, i.e.,

ρ(t) = iG<(t,t). (8)

In thermal equilibrium these functions are conveniently
described in frequency space. As in the driven resonance
level model [35,38,39], the dynamics of the process under
study reflects the fact that upon driving, the system explores
different regimes of bath population, the Fermi distribution in
Refs. [38,39], and the Bose-Einstein distribution here. For sim-
plicity, we follow Refs. [38,39] in disregarding other effects,
in particular, those associated with the bath band structure by
invoking the wideband approximation. For static problems this
is justified under the assumption that � is small enough so
that its frequency dependence is not explored within the width
of the spectral function A(ω). A necessary condition is that
the bath spectral region explored by the system is well above
ω = 0 and well below any cutoff such as the environmental
Debye frequency ωD , i.e., 0 � � � ωD and � � ωD . If � is
constant within this regime, the retarded projection Gr and the
corresponding spectral density (density of modes projected on
the primary boson) A(ω) = −2 Im[Gr (ω)] take the form (see
Appendix A)

Gr (ω) = 1

ω − � + i(�/2)
, (9)

A(ω) = �

(ω − �)2 + (�/2)2
, (10)
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where [with g(ω) being the density of modes of the free bath]

�(ω) = 2π
∑

k

|uk|2δ(ωk − ω) (11)

=
∫

dωkg(ω)|uk|2δ(ωk − ω) (12)

is assumed to be independent of ω. Under these assumptions,
the part of the free energy (the canonical potential) that depends
on system parameters (� and �) is given by

F (�,�) = 1

β

∫ ∞

ωo

dω

2π
A(ω) ln(1 − e−βω). (13)

In Eq. (13), ωo > 0 is the cutoff frequency introduced to
guarantee that the integral is finite and well defined. The
effect of this lower cutoff on the rates that we evaluate in this
section is assessed in Appendix B and found to be irrelevant
for the present analysis as long as ωo is smaller than other
characteristic energies of the system (i.e., 0 < ωo � �,�). In
the following, we omit the limits of integration when writing
integrals but we always keep in mind that a lower cutoff ωo

has been set. The canonical potential F (�,�) can be used
to determine the dependence on system parameters of all
other thermodynamic functions relevant to our calculation (see
Sec. II A).

The analysis in Secs. II A and II B below is done under
this assumption. It is also possible that � is small enough to
justify the wideband forms (9) and (10) of the Green’s and
spectral functions but is changing as �(t) explores different
regimes of the bath spectrum. This case can be treated by
assuming that � is independent of ω but depends on �(t) (see
Sec. II C).

In what follows, we investigate the effect of driving either
on the frequency � or the couplings um (and consequently
�), limiting our discussion to the case in which local driving
is slow compared with the relaxation rate that drives the
system into equilibrium. Specifically, we consider that driving
in � is slow if the relation �−1dt� � � holds, and also if
�−1dt� � �min is valid when the driving is in the coupling
terms uk , with �min corresponding to the minimum value
on � achieved during modulation. Physically, we envision
that the strongly coupled composite system is embedded in
a larger bath that determines the equilibrium temperature,
and that we can follow the irreversible process of interest
through measuring these rates. Under slow driving, work
results from the action of an external force that changes
the system parameter under consideration. The heat rate
developed as a result of this slow perturbation reflects en-
tropy changes of the composite whose experimental measure-
ment will entail the design of calorimeters encompassing the
composite.

A. Driving the oscillator frequency

The extreme limit where � varies infinitely slowly with time
is referred to as the quasistatic limit, where there is a complete
time-scale separation between the internal system dynamics
and the external driving. In this limit all equilibrium relation-
ships remain valid, except that �(t) replaces the constant �.
In the wideband approximation, the retarded Green’s function

and corresponding spectral density, Eqs. (9) and (10), become

Gr (t,ω) = 1

ω − �(t) + i(�/2)
, (14)

A(t,ω) = �

[ω − �(t)]2 + (�/2)2
, (15)

the latter satisfying the following differential property,

∂

∂ω
A(t,ω) = − ∂

∂�
A(t,ω). (16)

The canonical potential, Eq. (13) is given by

F (�,�) = 1

β

∫ ∞

ωo

dω

2π
A(t,ω) ln(1 − e−βω), (17)

and can be used to find the quasistatic entropy (as before,
we focus on the �-dependent part of this and all other
thermodynamic functions).

The equilibrium (quasistatic) energy E(0) for the composite
system (primary boson+bath) can be obtained from the canon-
ical potential F utilizing the expression E(0) = F + T S(0),
where S(0) represents the absolute entropy of the composite.
Using the canonical potential F given by Eq. (13), we compute
the corresponding �-dependent contributions to all relevant
thermodynamic functions. Thus the entropy S(0) accepts the
form

S(0)(t) = kBβ2 ∂

∂β
F = −kB

∫
dω

2π
A(t,ω){n(ω) ln n(ω)

− [1 + n(ω)] ln[1 + n(ω)]}, (18)

where n(ω) is the Bose-Einstein distribution n(ω) = (eβω −
1)−1, and the quasistatic energy E(0) and heat capacity C(0) =
(∂/∂T )E(0),

E(0)(t) = F + T S(0) =
∫

dω

2π
A(t,ω)ωn(ω), (19)

C(0)(t) = kBβ2
∫

dω

2π
ω2A(t,ω)n(ω)[1 + n(ω)]. (20)

In Eqs. (18)–(20) the superscript (0) indicates that the cor-
responding quantity does not depend on the rate �̇. It is
interesting to notice that these expressions for the equilibrium
energy E(0) as well as the heat capacity C(0) suggest that an
extended subsystem that includes the primary boson and a
fraction of the coupling region will effectively describe the
thermodynamics of the full system. To illustrate this point we
again focus on that part of the total (system+bath) energy that
depends on system parameters, and following the methodology
in Ref. [39], we extend the definition of the canonical potential
in Eq. (13) by introducing rescaling parameters which allow
for the computation of the independent contributions to the
total system-bath energy from the primary boson part ĤS , the
harmonic bath ĤB , and the coupling term V̂ (see Appendix C).
The resulting expressions read

〈ĤS〉 = �

∫
dω

2π
A(ω)n(ω), (21)

〈V̂ 〉 = 2
∫

dω

2π
A(ω)(ω − �)n(ω), (22)

〈ĤB〉 = − 1
2 〈V̂ 〉. (23)
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Consequently, E(0) = 〈ĤS〉 + (1/2)〈V̂ 〉, which suggests that
an effective system with Hamiltonian Ĥeff = ĤS + (1/2)V̂
defines the extended system. While this result may be appeal-
ing, we stress that the occurrence of an effective Hamiltonian
is neither needed in the present discussion of the equilib-
rium thermodynamics nor in the subsequent extension to the
nonequilibrium regime.

Equivalent expressions can be written in terms of rates. For
example, the rate of change of the internal energy E is obtained
from Eq. (19) to be

Ė(1) = �̇
∂

∂�
E(0), (24)

where the superscript indicates that this rate is linear in �̇.
The reversible work associated with infinitesimal variations

in � must abide to the maximum work principle, therefore,
dW = d�∂�F . Consequently, the reversible power for qua-
sistatic driving is

Ẇ (1) = �̇
∂

∂�
F = �̇

∫
dω

2π
A(t,ω)n(ω). (25)

This result indicates that a reversible work rate is proportional
to the equilibrium population 〈n〉 = (2π )−1

∫
dωA(ω)n(ω) in

the primary boson according to Ẇ = �̇〈n〉.
The quasistatic heat generated from an infinitesimal trans-

formation is proportional to the infinitesimal change in the
entropy of the system as given by the differential dQ =
d�T ∂�S. Hence,

Q̇(1) = �̇T
∂

∂�
S(0) = �̇

∫
dω

2π
A(t,ω)ω

∂n(ω)

∂ω
. (26)

It is an immediate consequence from the definition of energy
for the composite system that the first law is satisfied. Indeed,
Ė(1) = Ḟ + T Ṡ(1) = Ẇ (1) + Q̇(1) can be easily verified. Obvi-
ously, all reversible changes in the composite system are first
order in the driving rate �̇.

Next, we extend our discussion to the variations that occur
at a small but finite speed, focusing on the nonequilibrium
thermodynamics of the system. Following Ref. [38], we adopt
a dynamical approach based on the nonequilibrium Green’s
functions formalism together with the gradient expansion ap-
proximation. As outlined in Appendix D, this approach yields a
nonequilibrium correction to the boson distribution function as
experienced by the primary boson, n(ω) → φ1(t,ω), that can
be obtained from the reduced density matrix of the primary
boson. The result reads

φ1(t,ω) = n(ω) + �̇

2
A(t,ω)

∂

∂ω
n(ω). (27)

Following Ref. [38], we define nonequilibrium rates in such
a way that in the limit of infinitely slow driving we recover
the reversible quantities derived above. Nonequilibrium rates
will contain higher-order corrections in the driving rate �̇ and
we will introduce definitions that respect energy balance at
each order. In brief, our strategy consists of extending the rates
derived for the reversible case by substituting the Boltzmann
distribution n(ω) by the nonequilibrium distribution given
by Eq. (27). Thus, starting from Eq. (19), we postulate the

following form for the nonequilibrium energy,

E(1) =
∫

dω

2π
A(t,ω)ωφ1(t,ω), (28)

such that E(1) = E(0) + (�̇/2)
∫

(dω/2π )ωA2∂ωn(ω). The
definition in Eq. (28) is consistent with the rate in Eq. (24)
up to first order in the modulation rate �̇.1 Likewise, the
nonequilibrium heat and work rates are obtained by extending
Eqs. (25) and (26), that is,

Ẇ (2) = �̇

∫
dω

2π
A(t,ω)φ1(t,ω)

= Ẇ (1) + (�̇)2

2

∫
dω

2π
A2 ∂

∂ω
n(ω), (29)

Q̇(2) = �̇

∫
dω

2π
A(t,ω)ω

∂φ1(t,ω)

∂ω

= Q̇(1) + (�̇)2

2

∫
dω

2π
Aω

∂

∂ω

(
A

∂n(ω)

∂ω

)
. (30)

The superscript (2) in Eqs. (29) and (30) indicates that these
rates are exact up to second order in the driving rate �. These
definitions are consistent with the energy definition in Eq. (28)
for the system, and the identity Ė(2) = Ẇ (2) + Q̇(2) holds.

Consider now the entropy production. In studying the
driven resonant electron level model, it was suggested that the
nonequilibrium form for the entropy function can be obtained
from its equilibrium form by replacing the Fermi function
by the corresponding nonequilibrium distribution [38]. An
equivalent assumption would lead to an expression for the
entropy given by Eq. (18) with n(ω) replaced by φ1(ω) of
Eq. (27). Such a strategy appears to fail in the systems
investigated here. Still, since our main concerns are variations
in the entropy, we can circumvent the actual definition of
a nonequilibrium entropy functional and consider the latter
directly. Starting from Eq. (18) and the quasistatic evolution
derived from the differential dS(0) = ∂�Sd�, we postulate that
a local variation in the nonequilibrium entropy functional may
be presented in a similar form, provided that n(ω) is replaced
by φ1(t,ω) in ∂�S. This leads to

dS

dt
= �̇

∂S[φ1(ω)]

∂�
, (31)

assumed correct to second order in �̇, and consequently to
the following identity for the rate of entropy change to second
order in �̇,

T
dS(2)

dt
= Q̇(1) − �̇2

2

∫
dω

2π

[
A2 ∂

∂ω
n(ω)

+Aω
∂

∂ω

(
A

∂

∂ω
n(ω)

)]
. (32)

We identify the first term in the integral in Eq. (32) with the
extra power needed to vary � at a finite rate [as is indeed given
by Eq. (29)]. This term corresponds to the entropy production

1Define Ė(1) = �̇∂�E(0), then use Eq. (16) and integration by parts to
evaluate ∂�E(0). Upon substitution of n(ω) by φ1(t,ω) in the resulting
expression one obtains Ė(2).
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FIG. 1. Heat, work, system energy, and entropy change rates upon
modulation of � as a function of the instant primary boson energy �.
Top (reversible rates): Ẇ (1) (blue, solid), Q̇(1) (yellow, dashed), and
Ė(1) (green, dotted). Not included Ṡ(1) = T Q̇(1) as it is proportional to
Q(1). Bottom (nonequilibrium rates): Ẇ (2) (blue, solid), Q̇(2) (yellow,
dashed), and Ė(2) − Ė(1) = T Ṡ(2) − Q̇(1) (green, dotted). Parameters
for this model are �̇ = 2.5 × 10−2 meV/fs, T = 300 K, � = 5 meV.

caused by driving the system at such a finite rate. The second
integral in Eq. (32) is the second-order contribution to the heat
transferred to the external bath as follows from Eq. (30).

We close this section by considering a specific system in
Fig. 1 where we modulate the primary boson energy at a
linear rate of 0.025 meV/fs from 15 meV to twice this value.
In the top panel in Fig. 1, reversible rates Q̇(1) and Ẇ (1) as
well as Ė(1) are presented. The reversible entropy change rate
Ṡ(1) has not been included as this is a rescaled plot of Q̇(1)

given by the temperature T [i.e., Ṡ(1) = T Q̇(1)]. From this, we
notice that under quasistatic dynamics the work provided to
the system is quickly dissipated in the form of heat, leading
to a nearly vanishing energy change rate of the composite
[Q̇(1) ∼ −Ẇ (1)]. The bottom panel in Fig. 1 displays the
second-order contributions to the heat and work rates, as well as
the second-order contributions to the entropy change T (Ṡ(2) −
Ṡ(1)) as given by Eq. (32). This illustrates that the terms in
the entropy change rate proportional to �̇2 are positive and
carry the entropy production contribution due to finite rate
driving. In addition, from Eqs. (29), (30), and (32) we no-
tice that Ė(2) − Ė(1) = T Ṡ(2) − Q̇(1), which suggests that the
increased energy change rate in the system is associated with
the dissipation of energy under finite driving.

We conclude that the present approach to the dynamics
and quantum thermodynamics of the slowly driven damped
harmonic oscillator brings consistent results in the strong-
coupling regime.

B. Driving the coupling strength

A different form for time-dependent perturbation appears
when we modulate the system-bath coupling strength which

is now characterized by the time-dependent parameter �(t).
Again, if the driving rate is slow, we can assume that the system
changes quasistatically and find the retarded Green’s function
by substitution of � by �(t) in Eq. (9). As a result, we get

Gr (t,ω) = 1

ω − � + i(�(t)/2)
. (33)

Then, the spectral density of states is a time-dependent function
given by

A(t,ω) = �(t)

(ω − �)2 + [�(t)/2]2
, (34)

and the following relation between partial derivatives is satis-
fied,

∂

∂�
A(t,ω) = − ∂

∂ω
Re Gr (t,ω). (35)

The equilibrium thermodynamics of the system is again
derived from the canonical potential introduced by Eq. (13),
as well as from the equilibrium entropy given by Eq. (18).
While the driving is different from that considered above, the
maximum work principle and the relation between reversible
heat and entropy still hold, thus the differential relations dW =
∂�Fd� and dQ = T dS = T ∂�Sd� remain valid. Therefore,
the adiabatic rates of changes in work and heat generated by
the reversible driving in the coupling strength can be presented
as follows,

Ẇ (1) = �̇
∂

∂�
F = �̇

�

∫
dω

2π
A(t,ω)(ω − �)n(ω), (36)

Q̇(1) = T �̇
∂

∂�
S = �̇

�

∫
dω

2π
A(t,ω)(ω − �)ω

∂n(ω)

∂ω
. (37)

As before, the equilibrium relationship E(0) = F + T S(0) im-
plies that the first law Ė(1) = Ẇ (1) + Q̇(1) is satisfied to this
order.

Beyond reversible driving, the nonequilibrium thermody-
namics is obtained after identifying the nonequilibrium form
for the distribution function, experienced by the primary
boson. As detailed in Appendix D, the nonequilibrium Green’s
functions technique and the gradient expansion approximation
provide the functional form for such a distribution,

φ2(t,ω) =n(ω) − �̇

2
Re Gr ∂

∂ω
n(ω). (38)

The resemblance in the structure of the distributions of
Eqs. (27) and (38) is evident, but they behave differently
when the frequency ω is close to � (see Fig. 2), since A and
Re Gr have different symmetries around the primary boson
frequency: When ω = �, A(ω) takes its maximum value while
Re Gr vanishes. Consequently, near � the absolute difference
|φ1 − n| must reach its maximum while φ2 − n = 0, and
the dynamical behaviors associated with driving � and � will
be different.

Repeating the considerations that lead to Eqs. (29) and (30),
we again obtain an expression for the rates in which the system
exchange work and heat due to � variations up to order �̇2 by
replacing n(ω) by φ2(ω) in the expressions for the reversible
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FIG. 2. Difference between the nonequilibrium distributions for
the driven dissipative harmonic oscillator and the Bose-Einstein distri-
bution near the oscillator frequency �. The model under consideration
has as parameters � = 0.5 eV, � = 0.03 eV, T = 300 K. In the
figure, we plot the difference φ1(ω) − n(ω) for a linear rate in � of
�̇ = 1 meV/fs (solid black) as well as the difference φ2(ω) − n(ω)
for a linear rate in � of �̇ = 1 meV/fs (dashed purple).

rates Eqs. (36) and (37),

Ẇ (2) = �̇

�

∫
dω

2π
A(t,ω)(ω − �)φ2(t,ω)

= Ẇ (1) − (�̇)2

2

∫
dω

2π
(Re Gr )2 ∂

∂ω
n(ω), (39)

Q̇(2) = �̇

�

∫
dω

2π
A(t,ω)(ω − �)ω

∂φ2(t,ω)

∂ω

= Q̇(1) − (�̇)2

2

∫
dω

2π
Re Grω

∂

∂ω

(
Re Gr ∂n(ω)

∂ω

)
.

(40)

The time-dependent energy for the composite system is again
given by Eq. (28), this time with the nonequilibrium distribu-
tion given by Eq. (38). Consequently, energy conservation (the
first law) is established also at the second order in the driving
rate �̇.

Finally, we verify that these rates are consistent with the
time derivative of the nonequilibrium entropy. While we do
not introduce an explicit expression for this function, we can
find a suggestive form for its time derivative to second order
in �̇ by repeating the procedure that lead to Eq. (32), replacing
the function n(ω) in the � derivative of the entropy functional,
∂�S[n(ω)], by φ2(t,ω), leading to Ṡ = �̇∂�S(φ2) correct to
second order, and hence

T
dS(2)

dt
= Q̇(1) − �̇2

2

∫
dω

2π

[
(Re Gr )2 ∂n(ω)

∂ω

+ω Re Gr ∂

∂ω

(
Re Gr ∂

∂ω
n(ω)

)]
. (41)

Here, the first term in the integral corresponds to the entropy
production [see Eq. (39)] while the second one is the entropy
change due to heat transfer [see Eq. (40)]. Once more, we

have found a consistent dynamics as well as thermodynamic
description for the damped harmonic oscillator under slow
driving.

C. Including effects due to the bath band structure

In Secs. II A and II B we have neglected the effect of
variations in the density of relevant bath modes (modes with
ω ∼ �) upon variation of �. Here, we go one step beyond this
approximation and consider the situation in which the coupling
parameter � [Eq. (12)] varies due to bath band structure. We
still assume that � depends on ω weakly enough (∂�/∂ω � 1)
over the interval of modulation. In this case, we expect that the
spectral function A can be well described by the Lorentzian

A(t,ω) = �(�(t))

(ω − �(t))2 + (�(�(t))/2)2
, (42)

where we have included the functional dependence of � on
the oscillator’s frequency �. The spectral function in Eq. (42)
satisfies the following identity,

∂

∂�
A(t,ω) = − ∂

∂ω
A(t,ω) − ∂�

∂�

∂

∂ω
Re Gr (t,ω), (43)

which as in previous sections can be used to obtain the rates of
change in heat and work due to modulation in �. In Eq. (43)
and below, we disregard derivatives of � with respect to ω

since our considerations allow us to assume that this term is
only a function of �. The steps involved in the derivation of
energy fluxes have been illustrated above: Starting from the
canonical potential in Eq. (13), this time defined in terms of the
spectral function A in Eq. (42), we obtain equilibrium entropy
and energy functionals in the corresponding forms given by
Eqs. (18) and (19) [with A given by Eq. (42)]. The reversible
work Ẇ (1) and heat rates Q̇(1) are derived from the maximum
work principle and the fact that quasistatic heat due to an
infinitesimal transformation is proportional to the infinitesimal
change in the entropy of the system. As a consequence of
relation (43), we find that the heat and work rates can each be
written in terms of two contributions: direct modulation in � as
well as a correction term, proportional to ∂�/∂�, originating
from the indirect modulation in �. The explicit forms of the
reversible rates are proportional to �̇ and given by

Ẇ (1) = �̇

∫
dω

2π
A(t,ω)n(ω)

+ �̇

�

∂�

∂�

∫
dω

2π
A(t,ω)(ω − �)n(ω), (44)

Q̇(1) = �̇

∫
dω

2π
A(t,ω)ω

∂n(ω)

∂ω

+ �̇

�

∂�

∂�

∫
dω

2π
A(t,ω)(ω − �)ω

∂n(ω)

∂ω
. (45)

Beyond quasistatic dynamics and utilizing the results in
Appendix D, we find the nonequilibrium distribution function
φ̃(t,ω) valid to first order in �̇,

φ̃(t,ω) = n(ω) + �̇(t)

2

(
A(t,ω) − ∂�

∂�
Re Gr

)
∂

∂ω
n(ω). (46)
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Repeating the considerations that lead to Eqs. (29) and (30),
we once more obtain expressions for Ẇ (2) and Q̇(2). We notice
that the nonequilibrium rates up to second order in the driving
rate �̇ include corrections due to the bath structure that are
proportional to (∂�/∂�)2,

Ẇ (2) = Ẇ (1) + (�̇)2

2

∫
dω

2π
A2 ∂

∂ω
n(ω)

− (�̇)2

2

(
∂�

∂�

)2 ∫
dω

2π
(Re Gr )2 ∂

∂ω
n(ω), (47)

Q̇(2) = Q̇(1) + (�̇)2

2

∫
dω

2π
Aω

∂

∂ω

(
A

∂n(ω)

∂ω

)

− (�̇)2

2

(
∂�

∂�

)2 ∫
dω

2π
Re Grω

∂

∂ω

(
Re Gr ∂n(ω)

∂ω

)
.

(48)

Finally, we remark that the entropy rate

T
dS(2)

dt
= Q̇(1) − �̇2

2

∫
dω

2π

[
A2 ∂

∂ω
n(ω)

+Aω
∂

∂ω

(
A

∂

∂ω
n(ω)

)]

− �̇2

2

(
∂�

∂�

)2 ∫
dω

2π

[
(Re Gr )2 ∂n(ω)

∂ω

+ωRe Gr ∂

∂ω

(
Re Gr ∂

∂ω
n(ω)

)]
(49)

also includes correction terms proportional to (∂�/∂�)2 and
is consistent with the rates obtained in Eqs. (47) and (48).

III. THE DAMPED TWO-LEVEL SYSTEM

In this section, we consider a two-level molecule strongly
coupled with a thermal bath represented, as before, by a con-
tinuum of harmonic modes. We will again disregard changes
in the local bath band structure by adopting a wideband
approximation. The methods introduced in Sec. II C can be
implemented here if one needs to account for the effect of
such a structural change. In the Hilbert space of the molecule,
each level is represented by a ket |i〉, with i ∈ {1,2}. The
Hamiltonian for the composite system is the sum of the
free Hamiltonian for the molecule ĤTLS, the harmonic bath
Hamiltonian ĤB , and the coupling V ,

Ĥ = ĤTLS + ĤB + V̂ , (50)

ĤTLS = ωLσ̂ z, (51)

ĤB =
∑

k

ωkb̂
†
kb̂k, (52)

V̂ = i
1

2

∑
k

(ukσ̂
+b̂k − u∗

k σ̂
−b̂

†
k), (53)

where σ̂ z = (1/2)(|2〉〈2| − |1〉〈1|), σ̂+ = |2〉〈1|, and σ̂− =
|1〉〈2|. Here, ωL is the spacing between level energies, ωk are

the frequencies of the bath modes, and uk are the molecule-bath
coupling elements. A complete thermodynamic description
at equilibrium can be obtained from the free energy—the
canonical potential for the two-level system-bath composite
system. The partition function and the free energy for this
model are calculated in Appendix E from an approximate
description of the energy spectrum of the two-level system
interacting with a finite but large bath. In the derivation we
assume that the energy spacing between consecutive modes in
the bath is small and we take the limit of infinitesimal spacing.
The result reads

F = 1

β

∫
dω

2π
A(ω) ln(1 − e−βω) − 1

2

√
ω2

L + 4η, (54)

where

η = lim
N→∞

(1/4N )
N∑

k=1

|uk|2, (55)

and A(ω) represents the spectral density. In standard models
for thermal baths,

∑
k |uk|2 is constant and η → 0 as N →

∞. Again, the equilibrium entropy functional is obtained by
differentiation of the canonical potential in Eq. (54) with
respect to the absolute temperature T . As a result, we arrive at
the following expression,

S(0) = −kB

∫
dω

2π
A(ω){n(ω) ln[n(ω)]

− [1 + n(ω)] ln[1 + n(ω)]}. (56)

An approximate expression for the spectral density A(ω) is
found using the nonequilibrium Green’s function (NEGF)
technique in Appendix F. We get

A(ω) = �S2

(ω − ωL)2 + (�S/2)2
. (57)

In this expression, S = −2〈σ̂ z〉 is the difference in population
between the levels. The approximation employed to obtain
Eq. (57) assumes a factorization of a higher-order correlation
function in terms of lower-order ones, providing a simple
solution to the associated Dyson equation [see Eq. (F4)]. We
notice that in the absence of population inversion,S is positive.
If the change in ωL due to driving is small relative to ωL itself,
we may disregard the dependence of S on ωL. In this case, the
spectral function A defined by Eq. (57) satisfies the equation

∂

∂ω
A(ω) = − ∂

∂ωL

A(ω). (58)

This property of A is used in the following computations of
work and heat rates.

The equilibrium energy functional E(0) = F + T S(0) can
be determined from Eqs. (54) and (56) and is given explicitly
by the expression

E(0) =
∫

dω

2π
A(ω)ωn(ω) − 1

2

√
ω2

L + 4η. (59)

Next, we introduce the quasistatic work and heat rates, utilizing
as in the previous section the maximum work principle and
the relation between entropy change and reversible heat. This
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leads to

Ẇ (1) = ω̇L

∂

∂ωL

F

= ω̇L

∫
dω

2π
A(ω)n(ω) − ω̇L

2

ωL√
ω2

L + 4η

, (60)

Q̇(1) = kB

β
ω̇L

∂

∂ωL

S = ω̇L

∫
dω

2π
A(ω)ω

∂n(ω)

∂ωL

. (61)

The definition of the equilibrium energy E(0) and the fact
that the quasistatic energy variation is given by Ė(1) =
ω̇L∂E(0)/∂ωL imply that energy balance (the first law) holds
for the rates derived in Eqs. (60) and (61), that is, Ė(1) =
Ẇ (1) + Q̇(1).

It is interesting to compare the quasistatic evolutions of
this system and the damped harmonic oscillator considered
in Sec. II A. In the limit of large separation between levels,
S → 1. Then Eqs. (26) and (61) yield identical expressions
for reversible heat rates provided that � is identified with ωL.

The expressions for the reversible work flux in Eqs. (25) and
(60) appear different, however, this difference [which is also
reflected by the second term in Eq. (60)] just reflects the fact
the the ground state of the two-level system was chosen to
be −ωL/2 [note that η in Eq. (55) vanishes if uk is constant,
independent of the number of modes taken to model the bath].

As before, nonequilibrium effects appear in the next order
(2) in ω̇L and explicit expressions can be derived following the
procedure used previously. First, we find the nonequilibrium
distribution function (see Appendix G),

φ3(t,ω) = n(ω) + ω̇L

2
S−1A(t,ω)

∂

∂ω
n(ω). (62)

Then we employ this function to compute the work and heat
nonequilibrium rates. For this purpose, we replace the Bose-
Einstein distribution functions in expressions (60) and (61), by
φ3(t,ω). The resulting nonequilibrium rates equal

Ẇ (2) = ω̇L

∫
dω

2π
A(ω)φ3(t,ω) − ω̇L

ωL

2
√

ω2
L + 4η

= Ẇ (1) + (ω̇L)2

2
S−1

∫
dω

2π
A2 ∂n(ω)

∂ω
, (63)

Q̇(2) = ω̇L

∫
dω

2π
A(ω)ω

∂φ3(ω)

∂ωL

= Q̇(1) + (ω̇L)2

2
S−1

∫
dω

2π
Aω

∂

∂ω

[
A ∂

∂ω
n(ω)

]
. (64)

Also, making the same replacement [n(ω) → φ3(ω)] in expres-
sion (59) for the energy functional, we can verify that energy
balance holds at second order in ω̇L for the rates given by
Eqs. (63) and (64).

Similarly, the second-order contributions to the total
entropy rate Ṡ(2), calculated from the differential dS =
(∂ωL

S)dωL, permit a full identification of the entropy produc-
tion term. Indeed,

T
dS(2)

dt
= Q̇(1) − ω̇L

2
S−1

∫
dω

2π

[
A2 ∂n(ω)

∂ω

+ωA ∂

∂ω

(
A ∂

∂ω
n(ω)

)]
. (65)

Here, the first integral on the right-hand side of Eq. (65)
corresponds to the rate of heat dissipated as entropy production
which is already identified by Eq. (63) as the nonequilibrium
work rate Ẇ (2), while the second integral is the heat flux
determined by Eq. (64). Thus we have achieved a complete and
consistent dynamic as well as thermodynamic representation of
the damped two-level system under reversible and slow driving
of the energy gap ωL.

Finally, note that (as expected) also the second-order terms
are the same as the damped harmonic oscillator in the limit
S → 1.

IV. FRICTION

Dissipation in a nanoscale engine due to its interactions with
the environment could be introduced in the equations of motion
for the system describing the time evolution of a physical
coordinate by adding a phenomenological friction term. The
analytic form for dissipative terms which may be ascribed
to friction can be singled out from the detailed quantum
mechanical description of the dynamics of a particular open
system. As known, friction is closely related to the power
dissipated in the system. It strongly depends on the system’s
speed. When the motion is infinity, slow friction approaches
zero, and it increases as the system is speeding up [61]. In
Eqs. (29), (39), and (63) we have identified the power dissipated
under finite speed in the damped harmonic oscillator and in the
dissipative two-level molecule subject to various drivings. In
order to define a friction coefficient for each case, we have to
associate time perturbations with changes in certain external
coordinates. Below, we use an example to show how these
relationships may be established.

In a recent experimental work [32], an Otto engine was
realized with a single trapped ion in a linear Paul trap with a
funnel-shaped electrode geometry. The radial trap frequency
ωx,y was observed to be decreasing in the axial z direction as

ωx,y = ωo

/(
1 + z

ro

tan θ

)2

. (66)

This result suggests that the approximation, ωx,y = ωo(1 −
2z tan θ/ro) may be employed for small θ. Thus, a displace-
ment along the z axis in the trap induces a change of frequency
ω̇x,y = −2 tan θ ż. This demonstrates that a linear relation
between the characteristic frequency of an atomic oscillator
and physical displacement is feasible. Thus, for the damped
harmonic oscillator, with the driven � (Sec. II A), we can
assume that �̇ = M1ż.

We may generalize this relationship and apply it to our
model. The dissipated power Ẇ (2) is caused by a friction
force F1 acting on the external coordinate z according to
Ẇ (2) = −F1ż, with F1 = −γ1ż. Then, Eq. (29) leads to the
following form for the friction coefficient γ1,

γ1 = − M2
1

2

∫
dω

2π
A2 ∂

∂ω
n(ω). (67)

Similarly, if the rate of changes �̇ in Eq. (39) and ω̇L in Eq. (63)
could be related to some coordinate z via �̇ = M2z and ω̇L =
M3z, then the corresponding friction coefficients for motions
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along these coordinates would be

γ2 = −M2
2

2

∫
dω

2π
(Re Gr )2 ∂

∂ω
n(ω), (68)

γ3 = −M2
3

2
S−1

∫
dω

2π
A2 ∂n(ω)

∂ω
. (69)

V. CONCLUSIONS

We have presented a systematic description of the dynamics
as well as the thermodynamics for a harmonic oscillator and a
two-level system coupled to a harmonic bath, both subject to
slow driving rates. Our approach is an extension of the one
introduced in Ref. [38]. The effects of driving are studied
within the nonequilibrium Green’s functions formalism and
the gradient expansion method. Our results are consistent with
the first and second laws of thermodynamics, yielding explicit
expressions for the work, heat, and entropy productions associ-
ated with the driving process, valid for system-bath interactions
of arbitrary strengths. Similar to Ref. [38] (see also Ref. [39])
we could identify, within the models studied, an effective
system Hamiltonian that accounts for system properties by
including half the system-bath interaction. Unlike Ref. [38],
a suggestive expression for the entropy production rate is
obtained without the need to define the total entropy.

The formalism introduced in the present work can provide
a guideline for future thermodynamic treatments of strongly
coupled quantum nanoscale systems, and can be directly
applied to currently explored experimental setups such as the
realized optomechanical heat engine [58,59] or an approach of
a molecule to a metal surface.
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APPENDIX A: RETARDED GREEN’S FUNCTION
FOR THE DAMPED HARMONIC OSCILLATOR Gr

Here, we derive Eq. (9). From the Hamiltonian given by
Eq. (1), we find that the Heisenberg equations of motion for â

and b̂m are

i
d

dt
â(t) = �â +

∑
m

umb̂m, (A1)

i
d

dt
b̂m(t) = ωmb̂m + umâ. (A2)

Next, we derive the equation of motion (EOM) for the Green’s
function defined in Eq. (7), in the Keldysh contour to later find
its retarded expression in frequency space. Indeed, utilizing
Eq. (A1), we get

i
d

dτ1
G(τ1,τ2) = δ(τ1,τ2) + �G(τ1,τ2) +

∑
umGm a(τ1,τ2),

(A3)

with Gma(τ1,τ2) = −i〈b̂m(τ1)â†(τ2)〉. Now, we find the EOM
for Gma(τ1,τ2) utilizing Eq. (A2), that is,(

i
d

dτ1
− ωm

)
Gm a(τ1,τ2) = umG(τ1,τ2). (A4)

For gm(τ1,τ2) = −i〈b̂m(τ1)b̂†m(τ2)〉, the Green’s function that
solves the Dyson equation for a free boson (null self-energy),
we verify that the identity(

i
d

dτ1
− ωm

)
gm(τ1,τ2) = δ(τ1,τ2) (A5)

holds. The result described by Eq. (A5) permits us to solve
Eq. (A4),

Gma(τ1,τ2) =um

∫
dτ3gm(τ1,τ3)G(τ3,τ2). (A6)

Substituting Eq. (A6) into (A3), we obtain

i
d

dτ1
G(τ1,τ2) = δ(τ1,τ2) + �G(τ1,τ2)

+
∑

|um|2
∫

dτ3 gm(τ1,τ3)G(τ3,τ2).

(A7)

We now project onto the real line to derive the retarded form
Gr (t1,t2) of the Green’s function using Langreth rules. Then,
we define new variables s = t1 − t2 and t = (t1 + t2)/2, such
that

i

(
d

ds
+ 1

2

d

dt

)
Gr (t,s) = δ(s) +

(
� − i

�

2

)
Gr (t,s), (A8)

where we have adopted the wideband limit for the last term in
Eq. (A8). We calculate the Fourier transform with respect to s
in Eq. (A8) to get

Gr (t,ω) =
(

1 − i

2

d

dt
Gr (t,ω)

)(
1

ω − � + i(�/2)

)
. (A9)

Thus the zeroth-order approximation for Gr (t,ω), correspond-
ing to the adiabatic limit, is obtained by disregarding the term
involving the derivative with respect to t in the right-hand side
of Eq. (A9). The result is given in Eq. (9).

APPENDIX B: LOWER CUTOFF
FOR THE CANONICAL POTENTIAL

We introduce a cutoff frequency ωo = 1/n such that

F (�,�) =
∫ ∞

0

dω

2π
A(ω) ln(1 − e−βω),

=
∫ ∞

ωo

dω

2π
A(ω) ln(1 − e−βω)

+
∫ ωo

0

dω

2π
A(ω) ln(1 − e−βω), (B1)

We estimate ∂
∂�

F (�,�) to show that the terms below the lower
cutoff do not contribute to the rates �̇. In the region (0,ωo) we
approximate ln[1 − e−βω] ≈ ln(βω). Then,∣∣∣∣ ∂

∂�

∫ ωo

0

dω

2π
A(ω) ln(1 − e−βω)

∣∣∣∣
�

∫ ωo

0

dω

2π

�2

�
A(ω)| ln(βω)|
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= lim
n→∞

∫ ωo

1/(n+1)

dω

2π

�2

�
A(ω)| ln(βω)|

� −�2

�
lim

n→∞ ln

(
β

n + 1

) ∫ ωo

1/(n+1)

dω

2π

1

(ω − �)2

� − 1

�
lim

n→∞ ln

(
β

n + 1

)(
1

n
− 1

n + 1

)
→ 0. (B2)

APPENDIX C: EFFECTIVE HAMILTONIAN
FOR THE EXTENDED HARMONIC OSCILLATOR

In this Appendix we calculate the partial contributions to the
total energy of the dissipative harmonic oscillator utilizing the
method in Ref. [39]. In brief, we introduce rescaling parameters
(λS,λB,λV ) in the Hamiltonian in Eq. (1) such that

Ĥ (λS,λB,λV ) = λSĤS + λBĤB + λV V̂ . (C1)

This rescaling transfers to the spectral function A as well as to
the canonical potential according to

A(λS,λB,λV ) = λ−1
B λ2

V �

(ω − λS�)2 + (
λ−1

B λ2
V �

)2 , (C2)

�(λS,λB,λV ) = 1

β

∫
A(λS,λB,λV ) ln(1 − e−βω). (C3)

With these definitions we can show that
∂

∂λS

A(λS,1,1) = −�
∂

∂ω
A(λS,1,1), (C4)

∂

∂λB

A(1,λB1) = λ−2
B �

∂

∂ω
Re Gr (1,λB,1), (C5)

∂

∂λV

A(1,1,λV ) = −2λV �
∂

∂ω
Re Gr (1,1,λV ), (C6)

as well as

〈ĤS〉 = �

∫
dω

2π
A(ω)n(ω), (C7)

〈ĤB〉 = −
∫

dω

2π
(ω − �)A(ω)n(ω), (C8)

〈V̂ 〉 = 2
∫

dω

2π
(ω − �)A(ω)n(ω). (C9)

Equations (C7)–(C9) follow from the identity

〈Ĥi〉 = −β
∂

∂λi

�(λi). (C10)

APPENDIX D: NONEQUILIBRIUM
DISTRIBUTION FUNCTIONS

Starting from the definition in Eq. (7), we can implement
the gradient expansion and keep only the terms up to first order
in energy and time derivatives. We then obtain

G<(t,ω) = Gr (t,ω)�<(t,ω)Ga(t,ω)

+ i

2

[
Gr (t,ω)

∂Ga(t,ω)

∂t

− ∂Gr (t,ω)

∂t
Ga(t,ω)

]
∂�<(ω)

∂ω
. (D1)

Since

∂Gr

∂t
= �̇(Gr )2,

∂Ga

∂t
= �̇(Ga)2, (D2)

GrGa = A(t,ω)

�
, (D3)

we get

iG<(t,ω) = An(ω) + �̇

2
A2 ∂

∂ω
n(ω), (D4)

where n(ω) is the Bose-Einstein distribution function. We
define the nonequilibrium distribution function φ1(t,ω) by the
expression

iGr (t,ω) = A(t,ω)φ1(t,ω). (D5)

Consequently, φ1(t,ω) should be given by Eq. (27).
In Sec. II B we have studied the quantum thermodynamics

when driving affects the coupling strength. In this case and
starting from Eq. (33), we have

∂Gr

∂t
= − i

2
�̇(Gr )2,

∂Ga

∂t
= i

2
�̇(Ga)2, (D6)

which after substitution in Eq. (D1) lead to

iG<(t,ω) = An(ω) − �̇

2
A Re Gr ∂

∂ω
n(ω). (D7)

From this expression, we obtain the result for φ2(t,ω) given by
Eq. (38).

APPENDIX E: POTENTIAL FOR THE DAMPED
TWO-LEVEL SYSTEM

Here, we derive the expression for the canonical potential
for the dissipative two-level system discussed in Sec. III. We
start by studying the Hamiltonian and the energy spectrum of a
two-level system coupled to a finite bath with N noninteracting
bosons. We assume that the frequency of boson mode k in
the bath is given by ωk = k�ω (�ω is the inverse density
of modes, assumed constant), with k ∈ {0, . . . ,N}, �ω =
ωmax/N , and ωmax is an upper frequency cutoff defining the
bandwidth of the bath. Moreover, for each mode k, we consider
a finite number of phonons nk . Thus the bath is characterized
by the set of pararameters {N,�ω,{nk}}. System-bath coupling
is defined by the Hamiltonian in Eq. (53), which assumes the
rotating phase approximation. A basis for the composite system
(TLS+finite bath) is obtained from the tensor product between
the energy eigenbasis for the two-level system and the diagonal
basis for the noninteracting bath: Denoting the two-level sys-
tem eigenvectors by |l〉,l ∈ {1,2}, the basis for the composite
state is |l,{nk|1 � k � N}〉 = |l〉 ⊗ |n1〉 ⊗ · · · ⊗ |nN 〉. In this
basis and as a consequence of the interaction Hamiltonian in
Eq. (53), we find that

〈1,n1, . . . ,nk + 1, . . . ,nN |V̂ |2,n1, . . . ,nk, . . . ,nN 〉 = − i

2
uk,

(E1)

for all 1 � k � N , and also

〈l,{nk}|ĤTLS + ĤB |l,{nk}〉 = (−1)l

2
ωL +

N∑
k=1

ωknk. (E2)
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Let εB = ∑N
k=1 ωknk and s = 2 + ∑

k nk . Equations (E1) and
(E2) indicate that the Hamiltonian acts on the state vec-
tor |l,{nk}〉 by preserving the total number s. In particular,
for a system in the initial state |2,{nk}〉 allowed transitions

couple relaxations at the two-level system (2 → 1) with
excitations in a single mode in the bath (nk → nk + 1 for
some k). Thus, in the subspace generated by the family of
kets,

{|2,{nk}〉,
|1,n1 + 1,{nk,k = 1}〉,
. . . ,|1,{nk,k < j}, nj + 1,{nk,k > j}〉,
. . . ,|1,{nk,k < N},nN + 1〉}, (E3)

we find a matrix representation for the Hamiltonian Eq. (50), in terms of matrices A and B,

A =

⎛
⎜⎜⎜⎜⎝

−ωL

2 + εB 0 0 0
0 −ωL

2 + ω1 + εB 0 . . . 0
0 0 −ωL

2 + ω2 + εB . . . 0
...

...
...

. . .
...

0 0 0 . . . −ωL

2 + ωN + εB

⎞
⎟⎟⎟⎟⎠, (E4)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ωL − i
2u1 − i

2u2 . . . − i
2uN

i
2u1 0 0 . . . 0
i
2u2 0 0 . . . 0

...
... 0

. . .
...

i
2uN 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (E5)

such that

H ({nk}) = ĤTLS + ĤB + V̂ = A + B. (E6)

We emphasize that this is the representation of the Hamil-
tonian in the subspace defined by Eq. (E3), which depends on
the initial set {nk}. We now investigate the partition function
�{nk} = Tr{exp[−βH ({nk})]} by approximating the energy
eigenvalues in H ({nk}) using Weyl’s matrix inequalities [72],
which we state next in our context. In brief, the eigenvalues
of A and B provide lower and upper bounds for the energy
eigenvalues in H ({nk}) that depend on the inverse density of
bath modes �ω.

Since A and B are (N + 1)-dimensional Hermitian matri-
ces, their eigenvalues, which we will denote by {αk} and {γk},
respectively, can be listed in decreasing order. Thus we write

αk = − ωL

2
+ ωN−k + εB, (E7)

with 0 � k � N and ω0 = 0, as well as

γ0 =1

2

(
ωL +

√
ω2

L + 4η
)
, (E8)

γN =1

2

(
ωL −

√
ω2

L + 4η
)
, (E9)

γk =0 otherwise, (E10)

where we have introduced the parameter η =
(1/4N )

∑
k |uk|2. In order to obtain γi , we have noticed

that the characteristic polynomial p(γ ) = det(B − γ I ) can be
evaluated by using the Laplace expansion theorem [73], and

it is equal to

p(γ ) =
N∑

l=1

[
(ωL − γ )(−γ ) − |ul|2

4

]
(−γ )N−1 (E11)

= N [(ωL − γ )γ + η](−γ )N−1. (E12)

If we denote by λk the eigenvalues for the H ({nk}) in
Eq. (E6) and they are listed in decreasing order, the eigenvalues
{αk}, {γk}, and {λk} satisfy the following inequalities [72],

λk � αj + γk−j (j � k), (E13)

λk � αj + γk−j+N (j � k), (E14)

in particular, if k = j , then

λk � αk + γ0, (E15)

λk � αk + γN . (E16)

Moreover, if j = k − 1 from Eq. (E13) we obtain

λk � αk−1 + γ1, (E17)

and if j = k + 1 from Eq. (E14) we have

λk � αk+1 + γN−1. (E18)

From the inequalities in Eqs. (E17) and (E18), together with
the eigenvalues in Eqs. (E7) and (E10), we obtain upper and
lower bounds for λk with 1 � k � N − 1,

−ωL

2
+ ωN−k−1 + εB � λk � −ωL

2
+ ωN−k+1 + εB,

(E19)
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and since ωk = k�ω, Eq. (E19) is equivalent to |λk − αk| �
�ω. Consequently, for small �ω, we can approximate

λk = αk, (E20)

for 1 � k � N − 1. It remains to determine appropriate ap-
proximations for λ0 and λN . For the former, considering
Eq. (E15),

λ1 �λ0 � α0 + γ0, (E21)

−ωL

2
+ ωN−1 + εB �λ0 � −ωL

2
+ ωN + εB + γ0, (E22)

as the ordering in {λk} dictates that λ1 � λ0. Since γ0 can take
large values in the strong-coupling regime, in this case our
estimate will be

λ0 = −ωL

2
+ ωN−1 + εB + C(�ω + γ0) (E23)

= α1 + C(�ω + γ0), (E24)

where 0 � C � 1 is a constant determined below. For the latter,
in view of Eq. (E16), we find

αN + γN � λN � λN−1, (E25)

−ωL

N
+ εB + γN � λN � −ωL

2
+ ω1 + εB, (E26)

which suggests that

λN = αN−1 + C ′(γN − �ω), (E27)

with 0 � C ′ � 1. Finally, we determine the constants C and
C ′ by computing the trace for H ({nk}) in Eq. (E6). Indeed,

Tr{H ({nk})} = Tr{A} + Tr{B} (E28)

= (1 − N )
ωL

2
+ (N + 1)εB + �ω

N (N + 1)

2
.

(E29)

On the other hand,

N∑
k=0

λk = α1 + αN−1 +
N−1∑
k=1

αk

+C ′(γN − �ω) + C(�ω + γ0) (E30)

= −(1 + N )
ωL

2
+ (N + 1)εB

+�ω
N (N + 1)

2
(E31)

+C ′(γN − �ω) + C(�ω + γ0), (E32)

and if C ′ = C = 1,
∑N

k=0 λk = Tr{H (nk)}.
Next, we calculate the partition function for Ĥ{nk}, �{nk} =

Tr{exp(−βĤ{nk})}, as

�{nk} = e−βλ0 + e−βλN +
N−1∑
k=1

e−βλk (E33)

= e−βλ0 − e−βα0 + e−βλN − e−βαN +
N∑

k=0

e−βαk

(E34)

= e−β(εB−ωL/2)R(ωmax,N ), (E35)

where we have introduced the function

R(ωmax,N ) = e−βωmax (e−βγ0 − 1)

+ e−βγN − 1 +
N∑

k=0

e−βk�ω. (E36)

In order to recover the canonical partition function, we now
sum over all families {nk}. Letting S be such a collection, we
write (μ = 0)

� =
∑

{nk}∈S
�{nk} (E37)

=
⎛
⎝ ∑

{nk}∈S
e−β(εB−ωL/2)

⎞
⎠R(ωmax,N ). (E38)

We notice that

∑
{nk}∈S

e−β(εB−ωL/2) = eβωL/2
∑

{nk}∈S

N∏
k=1

e−βnkωk (E39)

= eβωL/2
N∏

k=1

∞∑
n=0

e−βnωk (E40)

= eβωL/2
N∏

k=1

1

1 − e−βωk
, (E41)

and therefore

ln � =
N∑

k=1

ln

[
eβωL/2

1 − e−βωk
R(ωmax,N )

]
, (E42)

which in the thermodynamic limit leads to the integral form

ln � =
∫ ωmax dω

2π
A(ω) ln

[
eβωL/2e−βγN

1 − e−βω

]
. (E43)

Consequently, the final form for the canonical potential is

F = 1

β

∫
dω

2π
A(ω) ln[(1 − e−βω)e−β�/2], (E44)

with � = √
ωL + 4η, and that can be further simplified to the

form in Eq. (54).

APPENDIX F: SPECTRAL DENSITY FOR THE DAMPED
TWO-LEVEL SYSTEM

Consider the Green’s function

G(τ2,τ1) = − i〈Tcσ̂
−(τ2)σ̂+(τ1)〉. (F1)

The equation of motion for σ̂− is

i
d

dτ2
σ̂−(τ2) = ωL − 2

∑
k

VkŜzâk, (F2)

where Vk = iuk/2. Then, the equation of motion for the
Green’s function in Eq. (F1) is

i
d

dτ2
G(τ2,τ1) = −2δ(τ2,τ1)〈Ŝz(τ1)〉 + ωLG(τ2τ1)

− 2
∑

k

Vk[−i〈Ŝz(τ2)âk(τ2)σ̂+(τ1)〉]. (F3)
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In order to solve the EOM in Eq. (F3) we approximate the
higher-order correlation function by the product

−i〈Ŝz(τ2)âk(τ2)σ̂+(τ1)〉 = 〈Ŝz(τ2)〉[−i〈âk(τ2)σ̂+(τ1)〉].
(F4)

Such decoupling schemes were used in other contexts in
Refs. [74,75]. Following the same rationale as in Appendix A,
we find

−i〈âk(τ2)σ̂+(τ1)〉 = V ∗
k

∫
dτ ′uk(τ2,τ

′)G(τ ′,τ1), (F5)

which upon substitution in Eq. (F3) leads to the expression

i
d

dτ2
G(τ2,τ1) = δ(τ2,τ1)S(τ1) + ωLG(τ2τ1)

+S(τ2)
∑

k

|Vk|2
∫

dτ ′uk(τ2,τ
′)G(τ ′,τ1).

(F6)

This equation may be converted to the standard form of the
Dyson equation, by introducing the transformation G̃(τ2,τ1) =
S−1/2(τ2)G(τ2,τ1)S−1/2(τ1) as shown in Ref. [76]. As a result,
we find that in a stationary state,

Gr (ω) = S
(ω − ωL) + i�S/2

. (F7)

From this result, we obtain Eq. (57).

APPENDIX G: NONEQUILIBRIUM DISTRIBUTION
GIVEN BY EQ. (62)

Starting from the gradient expansion employed in Eq. (D1),
which is valid for G̃< introduced in Appendix F, and noticing
that

∂G̃r

∂t
= ω̇L(G̃r )2,

∂G̃a

∂t
= ω̇L(G̃a)2, (G1)

we get

G̃<(t,ω) = G̃r (t,ω)�̃<(ω)G̃a(t,ω)

+ i
ω̇L

2
G̃r (t,ω)G̃a(t,ω)

×{G̃a(t,ω) − G̃r (t,ω)} ∂

∂ω
�̃<(ω), (G2)

with A given by Eq. (57). From this result, we recover
G<(t,ω) = S1/2G̃<(t,ω)S1/2, and after some algebraic manip-
ulations we arrive at the expression

iG<(t,ω) = A(t,ω)

[
n(ω) + ω̇L

2
S−1A(t,ω)

∂n(ω)

∂ω

]
, (G3)

which brings the result for φ3(t,ω) given by Eq. (62).
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