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The rate of electron transfer between a molecular species and a metal, each at a different local
temperature, is examined theoretically through the implementation of a bithermal (characterized by
two temperatures) Marcus formalism. Expressions for the rate constant and the electronic contribution
to a heat transfer mechanism which is induced by the temperature gradient between a molecule and
metal are constructed. The system of coupled dynamical equations describing the electronic and
thermal currents are derived and examined over diverse ranges of reaction geometries and temperature
gradients. It is shown that electron transfer across the molecule-metal interface is associated with heat
transfer and that the electron exchange between metal and molecule makes a distinct contribution
to the interfacial heat conduction even when the net electronic current vanishes. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4971293]

I. INTRODUCTION

Molecular electronics1–4 provide a general platform to
realize atomic-scale electronic and energy conversion devices
through the control of electric currents and thermal currents
at molecule-metal interfaces. Electronic transport through
molecular junctions3,5,6 is a process in which electrons move
through the molecular network while interacting with the
underlying nuclear environment.7–14 The latter process give
rise to inelastic effects in molecular electronic transport that
may lead to heating and structural instabilities. The two
extreme limits of this motion are, on one hand, elastic (tunnel-
ing and resonance) transport through the molecular electronic
manifold in the absence of appreciable interaction with the
nuclear environment, and on the other, a sequence of hopping
processes through one or more intermediate redox sites on
which the electron can be transiently localized by distorting
its local nuclear environment.

The interplay between electronic and nuclear motions
in controlling charge and energy transport through molecu-
lar junctions has been an active area of research for some
time.5,15–17 Junction heating (and its impact on junction sta-
bility) and heat transport18–27 is one focus of these stud-
ies.6,7,17,28–30 Thermoelectric energy conversion has been
another.6,31 Nonlinear effects such as heat current rectifica-
tion32–36 and negative thermal resistance have been demon-
strated,37–39 and possible ways to control heat transport in
molecular junctions have been discussed.40,41 In addition to
these advancements in charge transfer reactions across molec-
ular junctions, emergent experimental and theoretical methods
examining the possibility to control electron transfer (ET) in
specific vibrational modes42–44 have also been developed.

Most studies of electron-vibration interaction in molecu-
lar junctions use the elastic transport as a starting point and treat
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inelastic effects as perturbations.45–49 In the opposite limit,
which describes electronic transport in redox molecular junc-
tions,50 electron transport can be described by a sequence of
Marcus-type51–55 ET processes between the metal and molecu-
lar sites, and among molecular sites. While nuclear motion and
reorganization are at the core of this ET mechanism, the effect
of thermal gradients, more generally thermal inhomogeneity,
is not usually addressed for such processes. Similarly, while
the implication of electron transport across interfaces on heat
conduction in such systems has been often discussed,5,6 such
considerations are not usually made in the hopping transport
limit.

Recently, we have evaluated the effect of temperature dif-
ference between donor and acceptor sites on the rates of ET
between them, as well as the contribution of the interfacial
electron exchange to the interfacial heat transport.56 Electron
transfer was found to induce heat transfer between the donor
and acceptor sites, and the ET rate was found to depend on
both temperatures. This analysis can be generalized to consider
the effect of thermal inhomogeneity in complex multithermal
molecular reaction networks.57

In this article, we analyze a similar situation for ET
between molecule and metal, and between two metal elec-
trodes through a molecular bridge, in an electrochemical junc-
tion, generalizing the Marcus theory of ET between a metal
electrode and a redox species in the adjacent solution to the
case where the temperatures in the metal and molecule envi-
ronments are different. It is relevant to thermoelectric transport
in the hopping limit of molecular conduction, where the elec-
tron hops between different locations assumed to be in their
own thermal equilibrium at their local temperatures. While
hopping conduction is often invoked to describe electronic
transport, its implications for thermoelectric junctions have not
yet been addressed. The theory presented here provides a first
step in this direction by providing a framework for describing
electron transport across thermal gradients. At the same time,
it advances our previous work on bithermal ET56,57 to include
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reactions at thermally heterogeneous electrode interfaces,
allowing implementation of the results in the design of general
molecular-scale electronic components such as molecular
wires and junctions.

In Sec. II the bithermal ET rate between a molecule and
metal is derived, and we show how alteration of the temperature
gradient between redox molecule/metal combinations affects
the interfacial thermoelectric properties. Section III contains a
derivation of the interfacial heat current between molecule and
metal. In Sec. IV we combine the thermoelectric properties
derived in Secs. II and III in order to describe the electric
current and Seebeck coefficient in a prototypical model of a
single molecule junction between two metal electrodes which
are held at different temperatures.

II. BITHERMAL ELECTRON TRANSFER
AT A MOLECULE-ELECTRODE INTERFACE
A. Electron transfer rates

We consider a two-state (a and b) ET process between a
molecular species and a metal electrode. For specificity, state
a corresponds to the molecular species being in a reduced
state S, and state b corresponds to the molecular species being
in an oxidized state S+. The metal is assumed to be in its
own electrochemical and thermal equilibrium characterized
by the electrochemical potential µ and temperature TM. The
electronic population on the molecule interacts with its own
equilibrium thermal environment, taken to be at a different
temperature TS which is the temperature of the nuclei in
the molecular environment. The corresponding inverse ther-
mal energies are βS = 1/kBTS and βM = 1/kBTM, where kB is
Boltzmann’s constant. Upon insertion of the electron into the
metal, the free energy of the metal increases by an amount µ.

If nuclear relaxation effects are ignored, the ET rates can
be written as58

ka→b =

∫
R

(
1 − f (βM, ε)

)
Γ(ε)δ(ε − ∆Eab) dε

=
(
1 − f (βM,∆Eab)

)
Γ(∆Eab), (1)

for the molecule to metal electron insertion process, and

kb→a =

∫
R

f (βM, ε)Γ(ε)δ(∆Eab − ε) dε

= f (βM,∆Eab)Γ(∆Eab), (2)

for metal to molecule electron extraction, where f (βM, ε)
= (exp

[
βM(ε − µ)

]
+ 1)−1 is the Fermi-Dirac distribution

characterizing the (assumed free-electron) metal and ∆Eab

=E ′a −E ′b, with E ′m ∈ {a, b} being an electronic occupation
energy. The integration interval R denotes integration over
the region (−∞,∞). The single electron density of states in
the metal ρM and the tunneling coupling for electron transfer
between molecule and metal Va,b are both functions of ε , and

Γ(ε) =
(

2π
~ |Va,b |

2ρM

)
ε
. (3)

With the inclusion of nuclear relaxation effects, the
description of heterogeneous ET is fundamentally different.
This process is described below by adopting the Marcus
formalism in which the energy surface representing each

state is parabolic in a collective reaction coordinate x that
characterizes the nuclear degrees of freedom of the molecular
species and its solvent environment. In state a, the underlying
potential surface is

Ea(x) =
1
2

k(x − λa)2 + E ′a, (4)

and in state b,

Eb(x) =
1
2

k(x − λb)2 + E ′b, (5)

where λm : m ∈ {a, b} are shifts in the configuration associated
with the two redox molecular states. This general formalism
allows the accommodation of a multitude of reaction geome-
tries through variation of the occupation energies and force
constants.59–62 The reorganization energy of the ET reaction,
which is independent of reaction direction, is

ER =
1
2

k(λa − λb)2. (6)

It has been observed that in molecule-metal ET reactions, e.g.,
in transition metal complexes, the energy surfaces of the oxi-
dized and reduced species can have different curvatures.61,63–65

We ignore these asymmetric effects but note that the general
formalism developed here can be modified to satisfy these
physical situations through alteration of the underlying energy
surfaces.

The Marcus formalism describes the inelastic limit of
electron transport in which relaxation of the nuclear environ-
ment to a transient distorted state induced by electron localiza-
tion occurs on a faster time scale than the electronic transition
rate between molecule and metal sites, which is characterized
by Γ. The strength of interaction between an electron and the
nuclear environment of the solvent is characterized by the reor-
ganization energy. When ER = 0, the transport is elastic and
the electrons do not interact with the nuclear environment. In
the opposite inelastic limit, the energetic contribution of the
reorganization energy to the transfer rate depends on its rela-
tive weight which is dependent on the thermal energy of the
molecular environment kBTS.

The transition under consideration is between the a and
b states of the molecule/metal. Transfer can occur at all posi-
tions of the collective nuclear coordinate x weighted by their
thermal probability and subjected to the energy conservation
constraint

gc(x, ε) = Eb(x) − Ea(x) + ε = 0, (7)

where ε is the energy of the electron inserted to the metal. The
corresponding ET rates are: from molecule to metal (a to b
transition),

ka→b =

∫ ∫
R2

[
1 − f (βM, ε)

]
Γ(ε)

exp
[
− βSE‡a (x)

]
Z‡a

× |∇gc | δ
(
gc(x, ε)

)
dx dε

=

√
βS

4πER

∫
R

[
1 − f (βM, ε)

]
Γ(ε)

× exp

[
−βS

(−∆Eab + ε + ER)2

4ER

]
dε , (8)
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and from metal to molecule (b to a transition),

kb→a =

∫ ∫
R2

f (βM, ε)Γ(ε)
exp

[
− βSE‡b (x)

]
Z‡b

× |∇gc | δ
(
gc(x, ε)

)
dx dε

=

√
βS

4πER

∫
R

f (βM, ε)Γ(ε)

× exp

[
−βS

(∆Eab − ε + ER)2

4ER

]
dε , (9)

where the factor |∇gc | = |k(λa − λb)| is the derivative magni-
tude of gc that removes ambiguity in the δ-function constraint.
The function

E‡m(x) = Em(x) − E ′m : m ∈ {a, b} (10)

is the energy above the corresponding minimum and

Z‡m =
∫
R

exp
[
− βSE‡m(x)

]
dx =

√
2π
βSk

: m ∈ {a, b} (11)

is the configuration integral associated with the molecule/
solvent motion which depends on the temperature of the
molecular environment. In the standard single temperature
case (TM = TS = T ), the results in Eqs. (8) and (9) reduce
to the traditional Marcus-Hush-Chidsey rate expressions for
heterogeneous ET58,59,64,66–68 (cf. Eqs. (17.11) and (17.12) in
Ref. 58).

Shown in Fig. 1 are the rates ka→b computed for an
example system over variation of the temperature of the metal
TM and temperature of the molecular environment TS, with all
other parameters held constant. As illustrated in Fig. 1(a), vary-
ing TS with TM held constant results in exponential dependence
(linear on the semi-log scale) in the low-temperature (relative
to the temperature of the metal) regime of the molecular envi-
ronment followed by crossover to nonlinear behavior in the
logarithmic scale in the high-temperature regime. The results
of varying TM with TS held constant are shown in Fig. 1(b).

Comparing Figs. 1(a) and 1(b), it can be observed that
changing the temperature of the metal results in a different
functional form than variation of the temperature of the molec-
ular environment (solvent). In this case, the rate constant can
be altered over orders of magnitude through a relatively small
variation of the metal temperature. This effect is particularly
prominent for larger reaction free energies. Examining the
functional form in Eq. (8) and the corresponding results in
Figs. 1(a) and 1(b), it can be seen that the reaction rate does
not depend only on the magnitude of the temperature differ-
ence between molecule and metal, but instead is a function of
the specific temperature values.

In Fig. 1(c), the reaction rate is plotted over vari-
ation of ∆Eab for TM < TS, TM =TS, and TM > TS. For
∆Eab < ER + µ, increasing the temperature of the metal
results in an increase in the reaction rate, which is the expected
result. This dependence changes at the point ∆Eab = ER + µ,
where ka→b becomes independent of TM. A reaction-rate
turnover occurs for ∆Eab > ER + µ in which the rate slightly
increases with decreasing metal temperature. Thus, in this
limit, although this effect is small, the rate constants for
systems of lower metal temperatures are larger than that of

FIG. 1. Reaction rate ka→b as a function of (a) TS with TM = 300 K held
constant and (b) TM with TS = 300 K held constant. Each curve is calculated
for a different value of ∆Eab shown in the legend of (a) in units of eV. The
dashed vertical lines denote the unithermal (TS = TM) points. (c) Reaction
rate as a function of ∆Eab for different values of TM shown in the legend with
TS = 300 K held constant. Parameters in all panels are µ = 0, ER = 0.1 eV,
and Γ = 100 ps−1.

systems with higher metal temperatures. Note that this is not
the standard Marcus inverted regime (which is in fact absent in
molecule-metal electron transfer),69 and it is unique to bither-
mal ET reactions because the turnover occurs with respect to
variation of the temperature of the metal, not variation of the
free energy of the reaction. In the limit ∆Eab → ∞, the reac-
tion rate approaches an asymptotic value that does not depend
on the temperature of the metal.

To explain the turnover behavior in the reaction rate with
respect to variation in the metal temperature, consider the two
oxidation states of the molecule: S (electronic state a) and
S+ (electronic state b) and the energy difference between the
Marcus parabolas describing them,

Eab(x) = Ea(x) − Eb(x)

= k(λb − λa)x +
1
2

kλ2
a −

1
2

kλ2
b + ∆Eab, (12)

which is linear in x and ∆Eab.69 The energy differences at the
two stable nuclear configurations of the system are Eab(λa) and
Eab(λb). In the regime ∆Eab < ER + µ, the transfer of an elec-
tron from Eab(λa) into the metal is energetically unfavorable
and increasing the metal temperature results in an increase in
vacancy probabilities of the metal at energy levels below the
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Fermi level and about Eab(λa). This increases the probabil-
ity for transfer into the metal, and hence in this regime we
observe the expected behavior that the reaction rate increases
with increasing metal temperature. After the turnover point,
∆Eab > ER + µ, and electron transfer from level Eab(λa) into
the metal is an energetically favorable transition. Increasing
the metal temperature decreases the number of vacant elec-
tronic states in the metal above energy µ and about Eab(λa),
which results in a decrease in the reaction rate.

The occupation probabilities for each state (Pa and Pb)
obey the kinetic equations

Ṗa = −ka→bPa + kb→aPb,

Ṗb = −kb→aPb + ka→bPa.
(13)

At steady-state (ss), Ṗa = 0 and Ṗb = 0, and in this limit

K =
P (ss)

b

P (ss)
a

=
ka→b

kb→a
. (14)

In the absence of nuclear motion, K = exp[−βM(µ − ∆Eab)]
is simply a ratio of Fermi distributions. With the inclusion
of nuclear effects from the solvent environment, K will depend
on system parameters associated with the nuclear motion
(TS and ER). The probability for the electron to occupy the
molecule species is

P (ss)
a = 1 − P (ss)

b =
kb→a

ka→b + kb→a
. (15)

The steady-state occupation probabilities for a bithermal
heterogeneous ET reaction are shown in Fig. 2 over varia-
tion of TS with TM held constant at different values. For high
metal or molecule temperature (kBTS or kBTM � ER,∆Eab),
the molecular electronic population depends weakly on the
temperature, however, at low temperatures, this population is
strongly affected by either TS or TM. This stands in contrast to
the corresponding effect in the case of molecule-to-molecule
ET electron transfer examined in Ref. 56 where we have
observed that when the two donor-acceptor sites are identi-
cal in energy and local vibrations, but differ in temperatures,
interchanging temperatures of the sites does not affect the
probability of occupation. We next expand on the nature of
this thermoelectric effect.

FIG. 2. Molecular occupation probability P (ss)
a at steady-state as functions

of TS for various values of TM shown in the legend. Parameters are
∆Eab = 0.01 eV, µ = 0, ER = 0.1 eV, and Γ = 100 ps−1.

B. Thermoelectric driving

In analyzing electron transfer between two molecular sites
of different temperatures, we have found that, while the elec-
tron transfer rates are affected by temperatures of both sites,
there is no thermoelectric effect in the sense that tempera-
ture difference by itself does not drive electron transfer in
a preferential direction. The reason for this behavior is that
temperatures in this system are attributes of the nuclear envi-
ronments, and in an otherwise symmetric system electron
transfer in either direction is equally affected by temperatures
of both sites. The present situation is different, because one
of the temperatures considered (the metal’s) reflects directly
the occupation of electronic states. Thermoelectric driving is
therefore expected. To see its manifestation at the electrode-
metal interface, we consider the electrode potential Φ needed
to maintain zero-current (I = 0) as a function of the temperature
difference between metal and molecule.

To calculate the zero-current bias between molecule and
metal in the bithermal systems considered here, the system is
relaxed to the zero current state for particular values of ∆Eab,
µ − eΦ, TS, TM, and the needed voltage Φ is calculated. This
is performed for different molecule and metal temperatures,
yielding Φ as a function of these temperatures. This gives a
dependence of the resulting Φ as a function of the tempera-
ture difference between molecule and metal, a thermoelectric
relation.

The resulting electrode potential Φ needed to maintain
zero current between molecule and metal is shown in Fig. 3. In
Fig. 3(a) the molecular temperature is varied while the metal
temperature is held constant. In this case, the resulting Φ is
linear in the temperature difference ∆TS = TS − TM over all
temperature variations. Figure 3(b) illustrates the thermoelec-
tric properties of the bithermal ET reaction over variation of
the metal temperature, with the temperature of the molecular

FIG. 3. Electrostatic potentialΦ to maintain zero current as a function of ∆T
for (a) variation of TS with TM held constant and (b) variation of TM with
TS held constant. Parameters are ∆Eab = − 0.25 eV, µ = 0, ER = 0.1 eV, and
Γ= 100 ps−1.
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environment held constant. Observe that over variation of
∆TM =TM − TS, the resulting Φ is nonlinear, a contrast to the
case of variation of TS with constant TM shown in Fig. 3(a).
Thus, and of significance, is the observation that theΦ needed
to maintain I = 0 does not depend on the absolute tempera-
ture difference, but is instead a quantity that varies indepen-
dently with each temperature. Note that the slopes of these
curves are directly related to the Seebeck coefficient for the
system.6,31,47,70–79

III. HEAT CURRENT

In bithermal heterogeneous ET reactions, the temperature
gradient of the system can induce an interfacial heat current Q̇
between molecular environment and metal. To derive this heat
current, consider the occupancy probabilityPm that the system
is in electronic state m ∈ {a, b} and the conditional probability
that the nuclear environment is in a specific configuration x
given that the system is in state m,

P(x |m) =
exp

[
− βSE‡m(x)

]
Z‡m

: m ∈ {a, b} , (16)

where E‡m(x) and Z‡m are given by Eqs. (10) and (11), respec-
tively. We denote the joint probability distribution of these two
independent events as

P(x, m) = P(x |m)Pm : m ∈ {a, b} . (17)

The energy difference between surfaces describing the two
electronic states is Eab(x) which by conservation of energy is
the energy at which the electron enters/exits the metal dur-
ing the ET process at a particular configuration x. After the
electron is transferred from molecule to metal (a→ b) it equi-
librates in the electronic manifold of the metal depositing the
amount Eab(x)− µ of heat in the metal. Similarly, for the metal
to molecule (b→ a) transition the heat transfer is µ − Eab(x).
The contribution to the heat current from a particular nuclear
configuration will depend on the distribution P(x, m), the occu-
pancy/vacancy probability of the metal at energy Eab(x), which
is given by the Fermi distribution, and the ET rate at energy
Eab(x). The total heat current can be expressed as a product of
these factors, taken as a sum over all configurations and over
all possible state transitions.

For the a→ b transition the heat current of the metal is

Q̇(a→b)
M =

∫
R

[
1 − f

(
βM, Eab(x)

)]
Γ
(
Eab(x)

)
×
(
Eab(x) − µ

)
P(x, a) dx, (18)

and for the b→ a transition

Q̇(b→a)
M =

∫
R

f
(
βM, Eab(x)

)
Γ
(
Eab(x)

)
×
(
µ − Eab(x)

)
P(x, b) dx. (19)

At steady state, Pm = P (ss)
m , and the number of a → b and

b→ a events per unit time are the same. The net heat transfer
for a pair of such transitions, a→ b→ a, is

Q̇M = Q̇(a→b)
M + Q̇(b→a)

M = −Q̇S, (20)

FIG. 4. Heat current of the molecular environment Q̇S (solid) and the metal
Q̇M (dashed) at steady-state as functions of TS with TM = 300 K held constant.
Curves are shown for various values of ∆Eab with colors corresponding to
values shown in the legend in units of eV. The circular marker denotes the
unithermal point where TM = TS. Parameters are µ = 0, ER = 0.1 eV, and
Γ = 100 ps−1.

where

Q̇M =

∫
R

P (ss)
a

[
1 − f

(
βM, Eab(x)

)]
Γ
(
Eab(x)

)
×
(
Eab(x) − µ

) exp
[
− βSE‡a (x)

]
Z‡a

dx

+

∫
R

P (ss)
b f

(
βM, Eab(x)

)
Γ
(
Eab(x)

)
×
(
µ − Eab(x)

) exp
[
− βSE‡b (x)

]
Z‡b

dx. (21)

The relation Q̇M + Q̇S = 0 (which is conservation of energy)
is shown explicitly in the Appendix.

The steady-state heat currents induced by the temper-
ature difference between molecule and metal are shown in
Fig. 4 over variation of TS with TM held constant. When the
temperature of the molecular environment is less than the
temperature of the metal, TS < TM, the heat current into the
molecular environment is positive, Q̇S > 0, and the heat cur-
rent of the metal is negative, Q̇M < 0. This is the expected
result in which heat moves from the hot environment into
the cold environment. At the unithermal point (TM =TS) the
heat current vanishes. When TS > TM, the directionality of the
heat current is reversed. The same results for the heat currents
can also be obtained using expectation values for the amount
of heat transferred by a single electron moving between
molecule and metal. See the Appendix for details of this
calculation.

IV. ELECTRIC CURRENT AND THERMOELECTRICITY
A. Electric current

To see the implications of the above considerations on
the transport properties of a redox molecular junction, we
consider a junction in which a molecular species with two elec-
tronic states (a and b) is in contact with two metal leads. The
left (L) electrode has temperature TL

M, the right (R) electrode
has temperature TR

M, and ∆T = TL
M − TR

M. The temperature of
the molecular species is taken to be TS = (TL

M + TR
M)/2, which

is an assumption that arises from the postulate that the tem-
perature gradient between the two metals is linear and that the
redox molecular site is seated a uniform distance from each
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electrode. The chemical potentials of the metal electrodes are
µL = µ − eΦ/2 and µR = µ + eΦ/2.

In this single-molecule two-electrode system, an electron
whose charge is localized on the molecule can be transferred to
either electrode, and the forward and backward rate constants
for these processes are given by evaluating Eqs. (8) and (9) at
the corresponding temperatures and chemical potentials. For
the left electrode kL

a→b and kL
b→a are evaluated at TM = TL

M, and
for the right electrode kR

a→b and kR
b→a are evaluated at TM = TR

M.
The kinetic equations describing the occupation probabilities
of states a and b are

Ṗa = −
(
kL

a→b + kR
a→b

)
Pa +

(
kL

b→a + kR
b→a

)
Pb,

Ṗb = −
(
kL

b→a + kR
b→a

)
Pb +

(
kL

a→b + kR
a→b

)
Pa.

(22)

At steady state, the populations of each state can be expressed
as

P (ss)
a = 1 − P (ss)

b =
kL

b→a + kR
b→a

kR
a→b + kR

b→a + kL
a→b + kL

b→a

, (23)

and the steady-state electronic current I is68

I
e
=

kL
a→bkR

b→a − kR
a→bkL

b→a

kR
a→b + kR

b→a + kL
a→b + kL

b→a

. (24)

This current is shown in Fig. 5 as a function of different
system parameters. In Fig. 5(a) it is shown as a function of
Φ for various values of TR

M with TL
M = 300 K held constant.

For ∆Eab = 0, the current is symmetric in the applied volt-
age I(Φ) = I(−Φ), which is an obvious consequence from
the symmetry of the structure. However, when ∆Eab , 0 and
TL

M , TR
M, this symmetry is destroyed. The reason for this is

that the contribution to the current induced by the temperature
difference depends on the sign of ∆Eab as explained below.

FIG. 5. Electric current I as a function of (a) electrostatic potential Φ for
varying TR

M with ∆Eab = −0.5 eV (solid) and ∆Eab = 0 (dashed), and (b) right
electrode temperature TR

M withΦ = 0 and various values of ∆Eab shown in the
legend. The circular marker denotes the unithermal point where TL

M = TR
M.

Parameters are TL
M = 300 K, µ = 0, ER = 0.1 eV, and Γ = 100 ps−1.

For ∆Eab , 0, I(Φ) , I(−Φ)), illustrating that asymmetrical
effects generated in the junction due to the temperature gra-
dient are dependent on the free energy difference between
electronic states in the molecule.

Shown in Fig. 5(b) is the electronic current as a function
of TR

M, keeping TL
M constant, at zero bias (Φ = 0) for differ-

ent values of ∆Eab. To understand the observed behavior it
should be noted that Eab(x), given by Eq. (12), corresponds
in our model to the single electron energy (the occupation
energy) associated with the molecule at nuclear configura-
tion x, and its effect on electron transmission depends on the
difference Eab(x) − µ. In the present model, where nuclear
reorganization is represented by shifted harmonic surfaces,
∆Eab = 0 corresponds (for the present choice of µ = 0) to
the case where Eab(λa) = −Eab(λb), namely to the situation
where the single electron “molecular level” at the equilibrium
nuclear positions of the occupied state λa and the unoccu-
pied state λb are symmetrically seated above and below the
Fermi level. This implies that the electron and hole currents
are equal in this situation which explains the vanishing of
the net current seen in this case. For ∆Eab , 0, the direc-
tion of the thermoelectric current (hot to cold or vice versa)
depends on the sign of ∆Eab—an extension of the behavior
known for electron or hole dominated currents in molecular
thermoelectrics.

Nonmonotonic behavior in the electric current can also be
observed in Fig. 5(b) with respect to variation of the energy
difference between electronic states in the molecular species.
In the low-temperature limit (TR

M → 0), the magnitude of the
current |I | decreases with increasing |∆Eab |. In temperature
regimes both above and below the unithermal point, the electric
current exhibits nonmonotonic trends in which the ordering of
|I | with respect to |∆Eab | is dependent on the specific value
of TR

M. In the high-temperature limit (TR
M → ∞), increasing

|∆Eab | results in an increased current magnitude.

B. Seebeck coefficient

The standard Seebeck coefficient S measures the depen-
dence of the voltage across the junction on the temperature
difference between the left and right electrodes,70,71,75 cal-
culated about equilibrium under the condition of constant,
namely zero, current,

S = −

(
dΦ

d∆T

)
eq,I=0

. (25)

This is most easily evaluated using Eq. (24) and the identity

−

(
dΦ

d∆T

)
I
=

(
∂I
∂∆T

)
Φ

/ (
∂I
∂Φ

)
∆T

, (26)

with all derivatives evaluated at I = ∆T = Φ = 0.
The calculated standard “equilibrium” Seebeck coeffi-

cient is shown in Fig. 6(a) as a function of ∆Eab. In the limit
ER = 0, it is (∆Eab − µ)/(eTL

M), which is easily obtained from
Eqs. (1) and (2). When ER , 0, S becomes smaller and is a
slightly nonlinear function of ∆Eab (note, however, that lin-
earity is restored for large ∆Eab). As expected, S changes sign
with ∆Eab which measures the position of the molecular “sin-
gle electron level” relative to the metal chemical potential. As
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FIG. 6. Seebeck coefficient S as a function of (a) ∆Eab and (b) Φ with
∆Eab = 0.25 eV, for various reorganization energies. Parameters are
TL

M = 300 K, TR
M = TL

M − ∆T , µ = 0, and Γ = 100 ps−1.80

∆Eab → 0, the thermopower in the junction vanishes, imply-
ing that without an energy gradient in the electronic states of
the molecule, the electric current will vanish, regardless of the
imposed temperature difference, which agrees with the results
shown in Fig. 5(b). Increasing the reorganization energy ER,
which is a measure of the nuclear-electronic coupling, results
in smaller values of S, illustrating that stronger coupling leads
to lower thermopower in the junction.

The Seebeck coefficient can be calculated outside of the
linear I → 0 limit using the relation71

S(I) = −
Φ(I)
∆T (I)

, (27)

where ∆T is the temperature difference that generates the
same current at Φ = 0, as the Φ generates for ∆T = 0.
Equation (27) is a generalization of the standard definition
of the Seebeck coefficient as an attribute of the equilibrium
junction to linear response about an arbitrary equilibrium
point. The protocol we apply to measure S is to change TR

M
while keeping TL

M constant for Φ = 0, and to apply the
bias symmetrically across the junction (µL = µ − eΦ/2 and
µR = µ + eΦ/2) for ∆T = 0.80 Shown in Fig. 6(b) is S as
a function of Φ(∆T = 0, I), which is the inverse function of
I(∆T = 0,Φ), for different reorganization energies and con-
stant ∆Eab. At Φ = 0, the value of S is the same as that shown
in Fig. 6(a) for the corresponding value of ∆Eab and ER. As
Φ is increased, the Seebeck coefficient increases nonlinearly,
which agrees with the behavior observed in Ref. 71 in molecu-
lar junctions at the inelastic limit of transport. AsΦ is increased
further, a turnover is observed for small values of ER (weak
electron-environment interaction), and S begins to decrease.
This is the same trend that has been observed previously in
studies of transport in junctions in the weak electron-phonon
coupling limit.71

V. CONCLUSIONS

A theory has been developed to describe the rate of
electron transfer between a molecular species and a metal
electrode, with each being at a different local temperature.
The rate constant for this process was found to be nonlinear
in the temperature of each environment. We find that due to
the temperature gradient, electron transfer between redox sites
carries heat between the metal and the thermal environment of
the molecule, and this contribution to the interfacial heat con-
duction has been characterized. Analogous to previous results
observed in bithermal molecule-to-molecule electron transfer
reactions,56,57 the electrothermal heat transfer does not vanish
when the electric current between molecule and metal reaches
a stationary state.

Thermoelectric effects induced by a temperature differ-
ence between heterogeneous redox sites have also been inves-
tigated. The findings presented here illustrate how electronic
and thermal transport are related at the strong-coupling limit,
and how electrothermal transport and traditional thermoelec-
tric effects can be induced. Control of transport and ampli-
fication in thermal currents has potential applications in the
development of novel energy conversion devices and molecu-
lar electronics. Operational deficiencies in thermal logic gates
and circuits with respect to their electronic analogs occur due
to time scale mismatches in phononic transport, which takes
place on the time scale of nuclear motion, and electronic trans-
port. The theory of electrothermal transport presented here
can possibly provide rectification of this time scale prob-
lem in thermal circuits due to the described heat transfer
mechanism occurring on the time scale of electron motion.
Further study and validation of this conjecture is required,
and in future work we will provide a rigorous comparison
of the rates and time scales of phononic and electronic heat
transport.

The presented results provide a step toward the ability
to completely model electron hopping in molecular junctions
in which complex molecular motifs are seated between two
electrodes. In future work, we will also present a theory for
bithermal electron transfer at the weak-coupling limit in which
electron transmission between redox sites occurs on a faster
time scale than vibrational relaxation, resulting in energetic
distributions that are intrinsically nonequilibrium.
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APPENDIX: HEAT CURRENT DERIVATION FROM
SINGLE-ELECTRON EXPECTATION VALUES

To derive the expectation value for the heat transferred
by an electron when it moves between environments, we
consider a single electron whose charge is localized on the
molecular donor, and the probability P(ε0) for it to enter
the metal at energy ε0. This probability depends on multiple
independent factors: (a) the probability p0 that the solvent
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environment is in a configuration in which the electron can
be transferred into the metal at energy ε0, (b) the proba-
bility

[
1 − f (βM, ε0)

]
that there is a vacancy in the metal

at energy ε0, (c) the density of states in the metal ρM(ε0)
at energy ε0, and (d) the probability that the transition
between states occurs, which can be calculated using the
Landau-Zener expression58 and thus we denote this probabil-
ity PLZ(ε0). In the nonadiabatic limit, the general relationship
PLZ(ε)ρM(ε)= T Γ (ε) holds, where T is a constant that does
not play a role in the calculations that follow, but we include it
for completeness.

Because of the occupancy characteristics of each energy
level in the metal, the specific electron we consider can make
many attempts to enter the metal, at many different energies,
before the transfer event occurs. We denote the probability of
a successful attempt (meaning ET occurs) for transfer into the
metal with energy ε0 as PS(ε0) = T Γ(ε0)

[
1 − f (βM, ε0)

]
p0,

where p0 is the Boltzmann weight of energy level that leads
to the electron entering the metal at energy ε0, which depends
on the temperature of the solvent environment of the molec-
ular species. However, due to the quasicontinuum of energy
levels in the electronic manifold of the metal and the occu-
pancy/vacancy probabilities for each of these levels, there are
many other possible outcomes for each attempt, and each out-
come must be accounted for to derive the amount of heat
transferred.

The complexity of this network of events can be sim-
plified by grouping them into three possible outcomes
for each attempt: either the electron enters the metal at
energy ε0 with probability PS(ε0), the electron enters the
metal at an energy that is not ε0, which we denote
PS(ε0)=

∑
k T Γ(εk)

[
1 − f (βM, εk)

]
pk − PS(ε0), or the elec-

tron attempts to transfer into the metal at any energy, but
there is no vacancy at the respective energy. We term the
latter as an unsuccessful attempt and denote the probability
for this outcome as PU . From the conservation of probabil-
ity for each attempt, PS(ε0) + PS(ε0) + PU = 1, we find that
PU = 1 −

∑
k T Γ(εk)

[
1 − f (βM, εk)

]
pk . If the first electron

transfer attempt is unsuccessful, the electron will eventually
make another transfer attempt due to thermal fluctuations.
If the second attempt to transfer is also unsuccessful, the elec-
tron will make a third attempt, and this process is repeated ad
infinitum. If the first attempt is unsuccessful with probability
PU , the probability for success on the second attempt given that
the first was unsuccessful is PUPS(ε0), and the probability for
success on a third attempt given that it is preceded by two
previous unsuccessful attempts is P2

UPS(ε0). Taking the
sum of all possible event sequences that lead to the electron
entering the metal at energy ε0 gives P(ε0) = PS(ε0)(1 + PU

+ P2
U + · · · ), a geometric series. The sum of this series

can be expressed as P(ε0)=PS(ε0)/(1−PU ), which gives
P(ε0)= Γ(ε0)

[
1 − f (βM, ε0)

]
p0/

∑
k Γ(εk)

[
1 − f (βM, εk)

]
pk

after substitution for PU .
This analysis can be performed for each energy

level ε j leading to the general expression P(ε j)= Γ(ε j)[
1 − f (βM, ε j)

]
pj/

∑
k Γ(εk)

[
1 − f (βM, εk)

]
pk . Note that this

derivation is also valid for the b → a transition in which
the electron moves from metal to molecule, provided that the
probability of vacancy given by

[
1 − f (βM, ε)

]
is replaced

by the corresponding occupancy probability f (βM, ε) in each
expression.

Using this event analysis to evaluate the probability of all
possible transitions from the molecule into the metal, and writ-
ing the sums in the P(ε j) expression as integrals, we find that
the Fermi-weighted configuration integral for the a→ b tran-
sition (which corresponds to the denominator in the expression
for P(ε j) given above) is

Za→b = T
∫
R

Γ(ε)
[
1 − f (βM, ε)

]
× exp

[
−βS

(−∆Eab + ε + ER)2

4ER

]
dε . (A1)

The expectation value of the heat supplied by the environment
of the molecular species during the ascent (denoted by ↑) to
the transition state on the Ea surface is

〈
Q(a→b)

S

〉
↑
= −

T
Za→b

∫
R

(∆Eba + ε + ER)2

4ER
Γ(ε)

[
1 − f (βM, ε)

]
exp

[
−βS

(−∆Eab + ε + ER)2

4ER

]
dε , (A2)

and for the descent (denoted by ↓) on the Eb surface,〈
Q(a→b)

S

〉
↓
=

T
Za→b

∫
R

(−∆Eba − ε + ER)2

4ER
Γ(ε)

[
1 − f (βM, ε)

]
exp

[
−βS

(−∆Eab + ε + ER)2

4ER

]
dε . (A3)

The heat that flows into the metal during the a → b ET
process is〈
Q(a→b)

M

〉
=

T
Za→b

∫
R

(ε − µ)Γ(ε)
[
1 − f (βM, ε)

]
× exp

[
−βS

(−∆Eab + ε + ER)2

4ER

]
dε . (A4)

Note that if the Fermi factor was not included in Za→b,
Eqs. (A2)–(A4) would give the respective expectation value

per transition attempt; with its inclusion these equations give
the probability per transition event. The heat transferred to the
solvent environment over the a→ b transition is〈

Q(a→b)
S

〉
=

〈
Q(a→b)

S

〉
↑
+

〈
Q(a→b)

S

〉
↓
. (A5)

The total free energy change by the molecular system and the
metal is∆Eba+ µ. Correspondingly, by conservation of energy
we expect that the environments must change by−∆Eba−µ. We
have verified, numerically, over a variety of parameter values
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that the sum of the energy change during each leg of the a→ b
transition gives〈

Q(a→b)
S

〉
+

〈
Q(a→b)

M

〉
= −∆Eba − µ, (A6)

and thus that the expectation value expressions conserve
energy.

For the b→ a transition, constructing the Fermi-weighted
configuration integral yields

Zb→a = T
∫
R

Γ(ε) f (βM, ε)

× exp

[
−βS

(∆Eab − ε + ER)2

4ER

]
dε . (A7)

The expectation value of the heat supplied by the environment
of the molecular species during the ascent to the transition state
on the Eb surface is〈
Q(b→a)

S

〉
↑
= −

T
Zb→a

∫
R

(−∆Eba − ε + ER)2

4ER
Γ(ε)

× f (βM, ε) exp

[
−βS

(∆Eab − ε + ER)2

4ER

]
dε ,

(A8)

and for the descent to equilibrium on the Ea surface,〈
Q(b→a)

S

〉
↓
=

T
Zb→a

∫
R

(∆Eba + ε + ER)2

4ER
Γ(ε)

× f (βM, ε) exp

[
−βS

(∆Eab − ε + ER)2

4ER

]
dε .

(A9)

The heat supplied by the metal is〈
Q(b→a)

M

〉
=

T
Zb→a

∫
R

(µ − ε)Γ(ε) f (βM, ε)

× exp

[
−βS

(∆Eab − ε + ER)2

4ER

]
dε . (A10)

The heat transferred to the solvent environment over the b→ a
transition is 〈

Q(b→a)
S

〉
=

〈
Q(b→a)

S

〉
↑
+

〈
Q(b→a)

S

〉
↓
. (A11)

The sum of the free energy change by the molecular system
and the metal is −∆Eba − µ, and thus during this transition
the environments must change by ∆Eba + µ. To confirm that
our expectation value expressions conserve energy, we take the
sum of each process in the b→ a transition (using numerically
evaluation of the integrals). In all the studied cases we have
found that 〈

Q(b→a)
S

〉
+

〈
Q(b→a)

M

〉
= ∆Eba + µ, (A12)

as expected.
The heat currents into the molecular environment and the

metal are

Q̇S = ka→bPa

〈
Q(a→b)

S

〉
+ kb→aPb

〈
Q(b→a)

S

〉
,

Q̇M = ka→bPa

〈
Q(a→b)

M

〉
+ kb→aPb

〈
Q(b→a)

M

〉
,

(A13)

respectively. As in the case of homogeneous bithermal ET
between molecules described in Ref. 56, at steady-state,

ka→bP(ss)
a = kb→aP (ss)

b = Jss, and in this limit the heat currents
are

Q̇S = Jss

(〈
Q(a→b)

S

〉
+

〈
Q(b→a)

S

〉)
,

Q̇M = Jss

(〈
Q(a→b)

M

〉
+

〈
Q(b→a)

M

〉)
,

(A14)

which agree with those derived in Eq. (21).
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43A. Vlc̆ek, Jr., H. Kvapilová, M. Towrie, and S. Zális̆, Acc. Chem. Res. 48,
868 (2015).

44A. A. Bakulin, R. Lovrincic, X. Yu, O. Selig, H. J. Bakker, Y. L. Rezus,
P. K. Nayak, A. Fonari, V. Coropceanu, J.-L. Brédas et al., Nat. Commun.
6, 7880 (2015).

http://dx.doi.org/10.1016/0009-2614(74)85031-1
http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4378::AID-ANIE4378>3.0.CO;2-A
http://dx.doi.org/10.1126/science.1081572
http://dx.doi.org/10.1021/cr050140x
http://dx.doi.org/10.1088/0953-8984/19/10/103201
http://dx.doi.org/10.1103/RevModPhys.83.131
http://dx.doi.org/10.1103/PhysRevB.75.155312
http://dx.doi.org/10.1103/PhysRevB.80.115427
http://dx.doi.org/10.1021/jz2008853
http://dx.doi.org/10.1103/PhysRevB.84.195325
http://dx.doi.org/10.1088/0034-4885/69/4/R05
http://dx.doi.org/10.1088/0953-8984/20/37/374102
http://dx.doi.org/10.1103/PhysRevB.84.085436
http://dx.doi.org/10.1103/PhysRevB.91.161402
http://dx.doi.org/10.1103/PhysRevB.46.4757
http://dx.doi.org/10.1103/PhysRevB.83.115414
http://dx.doi.org/10.1063/1.4917017
http://dx.doi.org/10.1115/1.1454111
http://dx.doi.org/10.1063/1.1524305
http://dx.doi.org/10.1146/annurev.physchem.59.032607.093606
http://dx.doi.org/10.1021/jp402012z
http://dx.doi.org/10.1080/00018732.2015.1109817
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1080/00018730802538522
http://dx.doi.org/10.1039/C2CP43771F
http://dx.doi.org/10.1021/acs.accounts.5b00299
http://dx.doi.org/10.1063/1.4916326
http://dx.doi.org/10.1021/nl0348544
http://dx.doi.org/10.1103/PhysRevB.75.035401
http://dx.doi.org/10.1063/1.4773462
http://dx.doi.org/10.1088/0953-8984/28/18/183002
http://dx.doi.org/10.1103/PhysRevLett.93.184301
http://dx.doi.org/10.1063/1.1900063
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1103/PhysRevLett.100.105901
http://dx.doi.org/10.1103/PhysRevLett.102.095503
http://dx.doi.org/10.1103/PhysRevE.79.050103
http://dx.doi.org/10.1103/PhysRevB.87.241412
http://dx.doi.org/10.1103/PhysRevE.93.032127
http://dx.doi.org/10.1103/PhysRevB.90.125450
http://dx.doi.org/10.1021/acs.jpcc.5b07429
http://dx.doi.org/10.1021/acs.jpcc.5b07429
http://dx.doi.org/10.1126/science.1259995
http://dx.doi.org/10.1021/ar5004048
http://dx.doi.org/10.1038/ncomms8880


092305-10 G. T. Craven and A. Nitzan J. Chem. Phys. 146, 092305 (2017)

45J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, Phys. Rev. B 85,
155443 (2012).

46K. Walczak, Physica B 392, 173 (2007).
47T. Koch, J. Loos, and H. Fehske, Phys. Rev. B 89, 155133 (2014).
48C. A. Perroni, D. Ninno, and V. Cataudella, Phys. Rev. B 90, 125421

(2014).
49N. A. Zimbovskaya, J. Phys.: Condens. Matter 26, 275303 (2014).
50A. Migliore and A. Nitzan, J. Am. Chem. Soc. 135, 9420 (2013).
51R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
52R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
53R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, Rev. Bioenerg. 811,

265 (1985).
54R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
55B. Peters,J. Phys. Chem. B 119, 6349 (2015).
56G. T. Craven and A. Nitzan, Proc. Natl. Acad. Sci. U. S. A. 113, 9421 (2016).
57G. T. Craven and A. Nitzan, “Electrothermal transistor effect and cyclic

electronic currents in multithermal charge transfer networks” (unpublished).
58A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer

and Reactions in Condensed Molecular Systems (Oxford University Press,
2006).

59R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
60J. Stähler, M. Meyer, X. Y. Zhu, U. Bovensiepen, and M. Wolf, New J. Phys.

9, 394 (2007).
61Y. Zeng, R. B. Smith, P. Bai, and M. Z. Bazant, J. Electroanal. Chem. 735,

77 (2014).
62L. Zanetti-Polzi and S. Corni, Phys. Chem. Chem. Phys. 18, 10538 (2016).
63J. T. Hupp and M. J. Weaver, J. Phys. Chem. 88, 6128 (1984).

64E. Laborda, M. C. Henstridge, and R. G. Compton, J. Electroanal. Chem.
667, 48 (2012).

65E. Laborda, M. C. Henstridge, C. Batchelor-McAuley, and R. G. Compton,
Chem. Soc. Rev. 42, 4894 (2013).

66N. Hush, Electrochim. Acta 13, 1005 (1968).
67C. E. D. Chidsey, Science 251, 919 (1991).
68A. Migliore and A. Nitzan, ACS Nano 5, 6669 (2011).
69A. Migliore, P. Schiff, and A. Nitzan, Phys. Chem. Chem. Phys. 14, 13746

(2012).
70P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar, Science 315, 1568

(2007).
71M. Galperin, A. Nitzan, and M. A. Ratner, Mol. Phys. 106, 397 (2008).
72S.-H. Ke, W. Yang, S. Curtarolo, and H. U. Baranger, Nano Lett. 9, 1011

(2009).
73Y.-S. Liu and Y.-C. Chen, Phys. Rev. B 79, 193101 (2009).
74S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, Nano Lett. 10, 2613 (2010).
75A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S.-Y. Jang, and

P. Reddy, J. Am. Chem. Soc. 133, 8838 (2011).
76Y. Kim, W. Jeong, K. Kim, W. Lee, and P. Reddy, Nat. Nanotech. 9, 881

(2014).
77E.-S. Lee, S. Cho, H.-K. Lyeo, and Y.-H. Kim, Phys. Rev. Lett. 112, 136601

(2014).
78J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B 70, 195107

(2004).
79L. Simine, W. J. Chen, and D. Segal, J. Phys. Chem. C 119, 12097 (2015).
80It is important to note that these results depend on the protocol used to

define ∆T and Φ. We will expand on this issue in a future paper.

http://dx.doi.org/10.1103/PhysRevB.85.155443
http://dx.doi.org/10.1016/j.physb.2006.11.013
http://dx.doi.org/10.1103/PhysRevB.89.155133
http://dx.doi.org/10.1103/PhysRevB.90.125421
http://dx.doi.org/10.1088/0953-8984/26/27/275303
http://dx.doi.org/10.1021/ja401336u
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
http://dx.doi.org/10.1016/0304-4173(85)90014-X
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/10.1021/acs.jpcb.5b02547
http://dx.doi.org/10.1073/pnas.1609141113
http://dx.doi.org/10.1063/1.1696792
http://dx.doi.org/10.1088/1367-2630/9/10/394
http://dx.doi.org/10.1016/j.jelechem.2014.09.038
http://dx.doi.org/10.1039/C6CP00044D
http://dx.doi.org/10.1021/j150669a015
http://dx.doi.org/10.1016/j.jelechem.2011.12.011
http://dx.doi.org/10.1039/C3CS35487C
http://dx.doi.org/10.1016/0013-4686(68)80032-5
http://dx.doi.org/10.1126/science.251.4996.919
http://dx.doi.org/10.1021/nn202206e
http://dx.doi.org/10.1039/C2CP41442B
http://dx.doi.org/10.1126/science.1137149
http://dx.doi.org/10.1080/00268970701837784
http://dx.doi.org/10.1021/nl8031229
http://dx.doi.org/10.1103/PhysRevB.79.193101
http://dx.doi.org/10.1021/nl101354e
http://dx.doi.org/10.1021/ja202178k
http://dx.doi.org/10.1038/nnano.2014.209
http://dx.doi.org/10.1103/PhysRevLett.112.136601
http://dx.doi.org/10.1103/PhysRevB.70.195107
http://dx.doi.org/10.1021/jp512648f

