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Charge transfer is a fundamental process that underlies a multi-
tude of phenomena in chemistry and biology. Recent advances in
observing and manipulating charge and heat transport at the
nanoscale, and recently developed techniques for monitoring
temperature at high temporal and spatial resolution, imply the
need for considering electron transfer across thermal gradients.
Here, a theory is developed for the rate of electron transfer and
the associated heat transport between donor–acceptor pairs lo-
cated at sites of different temperatures. To this end, through
application of a generalized multidimensional transition state the-
ory, the traditional Arrhenius picture of activation energy as a
single point on a free energy surface is replaced with a bithermal
property that is derived from statistical weighting over all config-
urations where the reactant and product states are equienergetic.
The flow of energy associated with the electron transfer process is
also examined, leading to relations between the rate of heat ex-
change among the donor and acceptor sites as functions of the
temperature difference and the electronic driving bias. In particu-
lar, we find that an open electron transfer channel contributes to
enhanced heat transport between sites even when they are in
electronic equilibrium. The presented results provide a unified the-
ory for charge transport and the associated heat conduction be-
tween sites at different temperatures.

electron transfer | heat transfer | transition state theory | Marcus theory |
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The study of electronic transport in molecular nanojunctions
naturally involves consideration of inelastic transport, where

the transporting electron can exchange energy with underlying
nuclear motions (1, 2). Such studies have been motivated by
the use of inelastic tunneling spectroscopy, and more recently
Raman spectroscopy, as diagnostic tools on one hand, and by
considerations of junction stability on the other. In parallel, there
has been an increasing interest in vibrational heat transport in
nanostructures and their interfaces with bulk substrates (3–11)
focusing on structure–transport correlations (12–15), molecule–
substrate coupling (16–18), ballistic and diffusive transport pro-
cesses (11, 19), and rectification (20–22). More recently, noise
(23–26), nonlinear response (e.g., negative differential heat con-
ductance), and control by external stimuli (27, 28) have been ex-
amined. An important driving factor in this growing interest is the
development of experimental capabilities that greatly improve on
the ability to gauge temperatures (and “effective” temperatures in
nonequilibrium systems) with high spatial and thermal resolutions
(29–43) and to infer from such measurement the underlying heat
transport processes. In particular, vibrational energy transport/
heat conduction in molecular layers and junctions has recently
been characterized using different probes (6, 19, 44–52).
The interplay between charge and energy (electronic and nu-

clear) transport (53–60) is of particular interest as it pertains to
the performance of energy-conversion devices, such as thermo-
electric, photovoltaic, and electromechanical devices. In partic-
ular, the thermoelectric response of molecular junctions, mostly
focusing on the junction linear response as reflected by its See-
beck coefficient, has been recently observed (61–65) and theo-
retically analyzed (2, 20, 64, 66–77). Most of the theoretical work
has focused on junctions characterized by coherent electronic

transport in which the electronic and nuclear contribution to
heat transport are assumed largely independent of each other.
The few recent works that analyze electron–phonon interactions
effects on the junction Seebeck coefficient (73, 78–81) do so in
the limit of relatively weak electron–phonon interaction (in the
sense that the electron is not localized in the junction), using the
same level of treatment as applied in the theory of inelastic
tunneling spectroscopy.
The present work considers the opposite limit of strong elec-

tron–phonon interaction, where electron transport is dominated
by successive electron hops subjected to full local thermalization,
that is, successive Marcus electron transfer (ET) processes (82–
88). By their nature, such successive hops are independent of
each other, so a single transfer event may be considered. Even in
this well-understood limit different considerations apply under
different conditions, and different levels of descriptions were ap-
plied to account for the molecular nature of the solvent (89), the
dimensionality of the process (90–99), and the definition of the
reaction coordinate. Extensions to equilibrium situations have
ranged from considerations of deviation from transition state the-
ory (TST) to the description of control by external fields (99–101).
Here, we generalize the standard Marcus (transition state)

theory of ET to account for situations where the donor and ac-
ceptor sites are characterized by different local temperatures.
Such generalization requires the use of multidimensional TST
because nuclear polarization modes associated with the different
sites are assumed to be equilibrated at their respective local
temperatures. Our main results are as follows. (i) We obtain an
analytical formula for the ET rate that depends on the two site
temperatures and reduces to the standard Marcus form when
these temperatures are equal. (ii) The corresponding activation
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energy does not correspond to the geometric activation energy,
that is, the point of lowest (free) energy on the isoenergetic
surface, and is instead a thermal quantity that depends on the
local temperature of each site. (iii) ET between sites of different
temperatures is found to be associated with energy transfer be-
tween the sites and may affect thermal conduction between sites
even when the net electron flux between them vanishes.
We focus on a model that contains the essential ingredients of

our theory: The donor and acceptor sites are taken to be at
different local temperatures and the ET process is assumed to be
dominated by two vibrational modes, one localized near the
donor and the other near the acceptor site at the respective local
equilibria. Coupling between these modes that is not associated
with their mutual coupling to the ET process is disregarded. The
ET rate for this bithermal model is obtained and analyzed, along
with the implications of this ET process for the energy (heat)
transfer between the corresponding sites. Although a general
treatment of this problem for systems consisting of large num-
bers of vibrational modes with associated temperatures is trac-
table, we defer exposition of this formulation to later work.

Theory of ET Between Sites of Different Local Temperatures
Model. The system under consideration is similar to the model
used in Marcus’ theory. It comprises two sites, 1 and 2, on which
the transferred electron can localize, and the corresponding
electronic states are denoted a (electron on site 1) and b (elec-
tron on site 2). The localization is affected by the response of
nuclear modes, assumed harmonic, whose equilibrium positions
depend on the electronic population. In the implementation of
Marcus’ theory, this condition is often expressed in terms of a
single reaction coordinate; however, the nature of our problem
requires the use of at least two groups of modes: one localized
near and in (local) thermal equilibrium with site 1 and another
localized near and equilibrated with site 2. In the present dis-
cussion we consider a minimal model comprising two such
modes, denoted x1 and x2, and assume that mode x1 is sensitive to
the temperature and charge on site 1 whereas mode x2 “feels”
the temperature and charging state of site 2. The diabatic elec-
tronic (free) energies in states a and b take the same form as in
Marcus’ theory (Fig. 1):

Eaðx1, x2Þ=Eð0Þ
a +

1
2
k1ðx1 − λ1Þ2 +

1
2
k2x22, [1]

Ebðx1, x2Þ=Eð0Þ
b +

1
2
k1x21 +

1
2
k2ðx2 − λ2Þ2. [2]

In choosing these forms we have taken the equilibrium position
of mode xj : j∈ f1,2g to be at the origin when the corresponding
site j is unoccupied. A schematic of the geometric and energetic
properties for ET using the considered multidimensional formal-
ism is shown in Fig. 1C. The reorganization energies for each
coordinate are

ER1 =
1
2
k1λ21 and ER2 =

1
2
k2λ22, [3]

and the total reorganization energy is

ER =ER1 +ER2. [4]

As in Marcus’ theory, we assume that these modes are in thermal
equilibrium with their environments; however, here the environ-
ments of sites 1 and 2 are at different local temperatures—T1
and T2—and modes x1 and x2 are in thermal equilibrium with
their corresponding environments. Our aim is to investigate the
effect of this thermal nonequilibrium on the ET process and to
assess the contribution of the latter to the transport of thermal

energy between the donor and acceptor sites. In considering
the latter, we disregard direct coupling between modes local-
ized near the different sites, so that coupling that may lead to
energy transfer between such modes can arise only from their
mutual interaction with the electronic subsystem. In reality,
heat transport between sites occurs also by direct vibrational
coupling.

Multidimensional TST. Because of large disparity between elec-
tronic and nuclear timescales, electronic energy conservation is a
condition for an ET event to occur. This implies that such events
take place only at nuclear configurations that satisfy Eaðx1, x2Þ=
Ebðx1, x2Þ, which, denoting ΔEba =Eð0Þ

b − Eð0Þ
a and using Eqs. 1

and 2 can be expressed by the condition fcðx1, x2Þ= 0 where

fcðx1, x2Þ= k1λ1x1 − k2λ2x2 +ΔEba −ER1 +ER2. [5]

Eq. 5 describes a line in the x1 × x2 space on which the two para-
boloids displayed in Fig. 1 A and B cross. We call this subspace
the crossing line (CL).
The Marcus expression for the activation energy is the lowest

energy point on this line, and the multidimensional nature of the
problem is manifested (in the unithermal case) by an entropic
correction the the preexponential factor in the rate expression.
Although this level of description is usually adequate, multidi-
mensional variants of Marcus’ theory are developed and applied
when a reaction proceeds through complex geometric configu-
rations in which multiple reaction pathways are available (97).
Zwickl et al. (98) have developed a theory for multiple particle
transfer and have also examined to what extent the applicability
of a one-dimensional picture persists as the number of intrinsic
reaction coordinates is increased. When a charge transfer reaction

Mode Mode

A

C

B

Fig. 1. Energy surfaces (Ea and Eb) for ET between (A) symmetric (ΔEba = 0,
ER1 = ER2) and (B) asymmetric (ΔEba ≠ 0,ER1 ≠ ER2) donor–acceptor pair ge-
ometries. The boundary of the Ea surface is shown dashed and the
boundary of the Eb surface is shown as a solid curve. The z axis corresponds
to energy E and is normalized for visual clarity. Corresponding contour
plots are shown below each surface and the CL is shown as a thick black
line. (C ) Schematic illustration of energy surfaces for ET between modes x1
(dashed) and x2 (solid). Each mode is in contact with an independent heat
bath. The circular marker denotes a crossing point where Ea = Eb. In this
and all other figures, values are shown in dimensionless reduced units. For
convenience, energy may be taken in units of 0.25 eV (a characteristic re-
organization energy) and length in units of 1 nm (a characteristic donor–
acceptor distance).
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occurs through a series of events, a univariate parameterization of
the reaction progress must often be replaced by a set of reaction
coordinates to adequately describe the mechanism (95). For con-
certed reaction events, numerical methods developed by Guthrie
(96) have extended the parabolic Marcus formalism to quartic
energy surfaces in hyperdimensional space. The interplay and
competition between sequential and concerted events in ET
mechanisms has also been investigated, with Lambert et al.
(97) characterizing forbidden and allowed pathways in model
systems. As will be seen below, the fact that different modes
affected by the ET represent environments of different tem-
peratures has important implications with regard to the mul-
tidimensional nature of the transition state.

Bithermal TST. Here and below we use the term “bithermal” to
refer to a two-mode model in which the different modes are
coupled to environments of different temperatures. In classical
TST for ET that disregards nuclear tunneling the ET rate from
state m to state n is

km→n =
1
2
hTmv⊥iPm→n, [6]

where v⊥ is the velocity in the direction normal to the transition
surface, Pm→n is the probability density about the transition state
on the m potential surface calculated at the transition state for
the m→ n process, and T m is the tunneling probability in the
surface crossing event when coming from the m side and is a
function of v⊥ (102, 103). In the Arrhenius picture, this expres-
sion can be interpreted as a product of the frequency of reactive
attempts multiplied by the probability that an attempt is success-
ful. Using the Landau–Zener expression for the tunneling prob-
ability, we find that T mv⊥ is a golden-rule type rate that does not
depend on v⊥ in the weak coupling (nonadiabatic) limit, and is
linear in v⊥ in the strong coupling (adiabatic, T m = 1) limit (Sup-
porting Information). For completeness we note that for the two-
mode bithermal system considered here, the average velocity in
the normal direction is (Supporting Information)

hv⊥i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
π

 
m2β2k1ER1 +m1β1k2ER2

j∇fcj2m1β1m2β2

!vuut , [7]

where mj is the mass associated with mode xj and j∇fcj is the
magnitude of the gradient of the CL constraint. In the unither-
mal, equal-mass case (β1 = β2 = β;m1 =m2 =m) this expression
reduces to the well-known form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=πmβ

p
, which is the Boltzmann-

weighted expected speed in one dimension (103, 104). Note,
however, that donor and acceptor sites with significantly differ-
ent temperatures are far enough from each other to make the
nonadiabatic limit the more relevant.
Next, consider the probability density Pm→n to be at the

transition surface when moving in the m electronic state. In
the multidimensional version of Marcus theory this proba-
bility is given by the standard activation factor exp½−EA=kBT�
(kB is Boltzmann’s constant), where the activation energy EA is
the lowest energy on the transition surface multiplied by a pre-
exponential term that can be calculated explicitly (Supporting
Information). This term will generally also contain entropic cor-
rections that are in the present harmonic model. In the multi-
dimensional–bithermal case, the fact that modes of different
temperature are weighted differently on the transition surface
has to be taken into account. This is accomplished by using
Eqs. 1 and 2 to write the required probability density for elec-
tronic state a as

Pa→b =

RR
R2
j∇fcje

−β1
�
1
2 k1½x1−λ1�

2
�
e
−β2
�
1
2 k2x

2
2

�

× δ
�
fcðx1, x2Þ

�
dx1dx2

�RR
R2
e
−β1
�
1
2 k1½x1−λ1�

2
�
e
−β2
�
1
2 k2x

2
2

�
dx1dx2

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1β2ðk1ER1 + k2ER2Þ
2πðβ1ER2 + β2ER1Þ

s

× exp

"
−β1β2

ðΔEba +ERÞ2

4ðβ1ER2 + β2ER1Þ

#
,

[8]

and for electronic state b,

Pb→a =

RR
R2
j∇fcje

−β1
�
1
2 k1x

2
1

�
e
−β2
�
1
2 k2½x2−λ2�

2
�

× δ
�
fcðx1, x2Þ

�
dx1dx2

�RR
R2
e
−β1
�
1
2k1x

2
1

�
e
−β2
�
1
2k2½x2−λ2�

2
�
dx1dx2

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1β2ðk1ER1 + k2ER2Þ
2πðβ1ER2 + β2ER1Þ

s

× exp

"
−β1β2

ðΔEba −ERÞ2

4ðβ1ER2 + β2ER1Þ

#
,

[9]

where βj = 1=kBTj. The factor j∇fcj renders the constraint
δðfcðx1, x2ÞÞ invariant (105, 106). Intervals of integration R and R2

denote integration over the regions ð−∞,∞Þ and ð−∞,∞Þ×
ð−∞,∞Þ, respectively.
In the relevant nonadiabatic limit, Eqs. 8 and 9 illustrate how

the bithermal ET rate is related to the inverse thermal energies
β1 and β2 of the respective heat baths. Note that they can be
written in the standard forms

Pa→b ∝ exp

"
−βeff

ðΔEba +ERÞ2

4ER

#
, [10]

Pb→a ∝ exp

"
−βeff

ðΔEba −ERÞ2

4ER

#
, [11]

with βeff = ðkBTeffÞ−1, where the effective temperature is

Teff =T1
ER1

ER
+T2

ER2

ER
. [12]

An interesting consequence is that in the symmetric case
(ΔEba = 0) the ratio Pa→b=Pb→a = 1, independent of the site tem-
peratures, so the electron is as likely to reside on either the hot
or the cold site. In the unithermal limit (T1 =T2 =T), Teff =T
and we recover the functional form and temperature depen-
dence predicted by classical Marcus theory (82, 107) (Supporting
Information contains details of this calculation).
Note that one could naively try to evaluate the ET rates by

considering the probability to reach the geometrical barrier,
which is the lowest energy point on the transition surface mea-
sured relative to the bottom of the reactant surface. The co-
ordinate of this point can be found by minimizing either Ea or Eb
under the constraint Ea =Eb. This leads to

Craven and Nitzan PNAS | August 23, 2016 | vol. 113 | no. 34 | 9423

CH
EM

IS
TR

Y
IN
A
U
G
U
RA

L
A
RT

IC
LE

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609141113/-/DCSupplemental/pnas.201609141SI.pdf?targetid=nameddest=STXT


xmin
1 =−λ1

ΔEba −ER

2ER
and xmin

2 = λ2
ΔEba +ER

2ER
. [13]

The corresponding geometrical activation energies, EðaÞ
A =

Eaðxmin
1 , xmin

2 Þ−Eð0Þ
a and EðbÞ

A =Ebðxmin
1 , xmin

2 Þ−Eð0Þ
b , can be cast

as additive contributions of energies in mode x1 and in mode
x2. Using Eq. 1 we find that for state a

EðaÞ
A =EðaÞ

A1 +EðaÞ
A2 =

ðΔEba +ERÞ2

4ER
, [14]

where

EðaÞ
Aj =ERj

�
ΔEba +ER

2ER

�2

: j∈ f1,2g. [15]

Similarly, for state b,

EðbÞ
A =EðbÞ

A1 +EðbÞ
A2 =

ðΔEba −ERÞ2

4ER
, [16]

and

EðbÞ
Aj =ERj

�
ΔEba −ER

2ER

�2

: j∈ f1,2g. [17]

It follows that the probabilities to reach the configuration
ðxmin

1 , xmin
2 Þ in the a and b states satisfy

Pa→b ∝ exp

"
−ðβ1ER1 + β2ER2Þ

�
ΔEba +ER

2ER

�2
#

[18]

and

Pb→a ∝ exp

"
−ðβ1ER1 + β2ER2Þ

�
ΔEba −ER

2ER

�2
#
, [19]

which are clearly different from Eqs. 8 and 9, although like the
latter they go to the Marcus forms in the limit β1 = β2. Interest-
ingly, Eqs. 18 and 19 can also be written in the forms 8 and 9 but
with an effective temperature that satisfies

1
Teff

=
1
T1

ER1

ER
+

1
T2

ER2

ER
, [20]

an interesting mismatch with Eq. 12. These differences imply
that in the bithermal case the ET rates are no longer controlled
by the geometrical barrier.
This can be also seen explicitly: The equal electronic energies

condition defines the CL, which can be parametrized in terms of
a coordinate α according to

x1ðαÞ=
k2λ2
k1λ1

α+
1

k1λ1

�
1
2
k1λ21 −

1
2
k2λ22 −ΔEba

�
,

x2ðαÞ= α.

[21]

with a value of the parametric coordinate α specifying a unique
transition point. The energy on the CL,

E‡ðαÞ=Ea½x1ðαÞ, x2ðαÞ�=Eb½x1ðαÞ, x2ðαÞ�, [22]

is parametrized by α. The energies as a function of position α on
the CL coming from states a and b, relative to the corresponding
energy origins are

E‡ðαÞ−Eð0Þ
a =

1
2
k1½x1ðαÞ− λ1�2 +

1
2
k2½x2ðαÞ�2, [23]

E‡ðαÞ−Eð0Þ
b =

1
2
k1½x1ðαÞ�2 +

1
2
k2½x2ðαÞ− λ2�2, [24]

respectively. The probabilities to be at point α on the CL given
that we are in the corresponding state satisfy

P‡

a→bðαÞ=
e
−β1
�
1
2k1 ½x1ðαÞ−λ1�

2
�
e
−β2
�
1
2k2½x2ðαÞ�

2
�

R
R
e
−β1
�
1
2k1½x1ðαÞ−λ1�

2
�
e
−β2
�
1
2k2 ½x2ðαÞ�

2
�
  dα

, [25]

P‡

b→aðαÞ=
e
−β1
�
1
2k1 ½x1ðαÞ�

2
�
e
−β2
�
1
2k2½x2ðαÞ−λ2 �

2
�

R
R
e
−β1
�
1
2k1½x1ðαÞ�

2
�
e
−β2
�
1
2k2 ½x2ðαÞ−λ2�

2
�
  dα

. [26]

For P‡

a→bðαÞ, the point of maximum probability on the CL is
found from Eq. 25 to be

xðaÞ1,max =
λ1½β2ð−ΔEba +ER1Þ− ðβ2 − 2β1ÞER2�

2ðER2β1 +ER1β2Þ
, [27]

xðaÞ2,max = αðaÞmax =
λ2β1ðΔEba +ERÞ
2ðER2β1 +ER1β2Þ

. [28]

A similar procedure using Eq. 26 yields

xðbÞ1,max =
λ1β2ð−ΔEba +ERÞ
2ðER2β1 +ER1β2Þ

, [29]

xðbÞ2,max = αðbÞmax =
λ2½β1ðΔEba +ER2Þ− ðβ1 − 2β2ÞER1�

2ðER2β1 +ER1β2Þ
. [30]

For β1 = β2, the position of maximum probability is also the geo-
metric minimum. When the temperatures differ, the position of
maximum probability on the transition line shifts from this min-
imum. The shifts of these probability distributions from their
unithermal forms is the reason for the difference between the
correct probabilities given by Eqs. 8 and 9, and the forms in Eqs.
18 and 19 obtained under the assumption that the probabilities
are dominated by the geometric minimum energy. A graphical
representation of these results is shown in Figs. 2 and 3 for
several illustrative examples. Fig. 2 shows the position of maxi-
mum probability as a function of the temperature difference.
The probability densities themselves are shown in Fig. 3. These
plots clearly show the essentials of the bithermal transition be-
havior as discussed above.
The following observations are noteworthy:

i) The point of maximum probability on the transition surface
does not depend on the absolute temperatures T1 and T2,
only on their ratios. When T1 =T2 it becomes the geometrical
point of minimum enegy, which is temperature-independent.

ii) Considering the position of the maximum probability points
relative to the minimum energy point on the CL, some gen-
eral trends can observed. For reaction free energies below
the total reorganization energy (jEbaj<ER) the points of
maximum probability in the a→ b and b→ a directions are
on opposite sides of the geometrical energy minimum for
β2 < β1, cross at the unithermal point, and finally continue on
opposite sides for β2 > β1. For reactions with reorganization
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energy above the reaction free energy (jEbaj>ER) the max-
imum probability points for both reaction directions are on
same side of the geometrical energy minimum for all values
of β2 with β1 held constant, except where they cross at the
unithermal point.

iii) As shown in Fig. 3, in addition to the shift in the transition
line probability distribution function, another interesting
feature is observed: both the P‡

a→b and P‡

b→a distributions
become narrower (smaller variance) with increasing devia-
tion from the unithermal point in the direction β1 > β2 for
finite β2 held constant. The inset in each bottom panel of

Fig. 3 illustrates this narrowing as β1 →∞. In the opposite
direction (β1 < β2), the complementary trend is observed
with the distributions becoming increasingly broad. It is of
note that in the limit β1 → 0 ðT1 →∞Þ the total distribution
will be dominated by the respective distribution of the x2
coordinate, that is, P‡

a→bðx1, x2Þ≈P‡

a→bðx2Þ.
iv) At the unithermal limit, the maximum probability path that

connects stable states is linear and goes through αmin as
shown in Fig. 3. This holds in both the symmetric (Eba = 0)
and asymmetric cases. In bithermal systems, this path is ob-
viously nonlinear (because it deviates from the minimum
energy point) and depends on the thermal characteristics.
Fig. 4 demonstrates this observation. Note that unlike in the
symmetric case, in an asymmetric system the path connect-
ing minima is not necessarily normal to the CL. This is also
the case in unithermal charge transfer reactions with asym-
metric donor–acceptor geometry (108). The finding of a
thermal energy minimum point that does not correspond
to a geometrical energy minimum point is nonintuitive but
is congruent with recent advances in TST that have shown
that in nonequilibrium systems the traditional picture of a
transition state as a stationary saddle point on a potential
energy surface is flawed, and that the correct nature is a
structure with different extremal properties (109–113).

Finally, an interesting interpretation of the results 8 and 9 can
be found in terms of the Tolman activation energy (114), which
accounts for statistical properties of the reaction mechanism and
goes beyond the Arrhenius viewpoint of a single activation thresh-
old. In the Tolman interpretation, the activation energy is defined as
the average energy of all reacting systems minus the average energy
of all reactants (114–116). In the present model this is

Fig. 2. Parametric CL coordinate α shown as function of β2, with β1 =15 held
constant, for the geometrical energy minimum (dashed line) and the maxi-
mum probability (solid lines) on the Ea and Eb surfaces. In the top curves
ΔEba = 3=2 and in the bottom curves ΔEba = 1=2. The circular markers denote
the points where β1 = β2. Other parameters are ER1 = ER2 = 1=2.

Ener
gy

Ener
gy

A B

Fig. 3. Crossing point probability densities P‡ðαÞ for (A) ΔEba = 2=10 and (B) ΔEba = 5=4 on the Ea (Top) and Eb (Bottom) energy surfaces as functions of the CL
coordinate α (Eq. 21). Varying values of β1 are shown with β2 = 10 held constant in all cases. In each panel, the corresponding CL energy E‡ is shown as a
parabolic dashed curve. The circular markers on the energy curves denote the corresponding thermal energy minima (probability density maxima). In each
bottom panel, the inset is a corresponding contour plot of P‡

b→aðαÞ that is normalized with colors varying from blue (minimum) to red (maximum). Other
parameters are ER1 = ER2 = 1=2.

Craven and Nitzan PNAS | August 23, 2016 | vol. 113 | no. 34 | 9425

CH
EM

IS
TR

Y
IN
A
U
G
U
RA

L
A
RT

IC
LE

SE
E
CO

M
M
EN

TA
RY



ETolman,ðmÞ
A =

�
E‡ðαÞ

	
m −Eð0Þ

m :m∈ fa, bg, [31]

where E‡ðαÞ is the energy on the CL and the average is over the
corresponding distribution (m∈ fa, bg), namely,

�
E‡ðαÞ

	
m =

Z
R

E‡ðαÞP‡
m→nðαÞdα. [32]

Using Eqs. 25 and 26 these averages can be easily evaluated and
can be cast as additive terms representing the division of the
needed activation energy between modes x1 and x2,

ETolman,ðmÞ
A =

D
EðmÞ
A1

E
+
D
EðmÞ
A2

E
:m∈ fa, bg, [33]

where

D
EðaÞ
A1

E
=
2β1E2

R2 + 2β2ER1ER2 + β22ER1ðΔEba +ERÞ2

4ðER2β1 +ER1β2Þ2
,

D
EðaÞ
A2

E
=
2β2E2

R1 + 2β1ER1ER2 + β21ER2ðΔEba +ERÞ2

4ðER2β1 +ER1β2Þ2
,

D
EðbÞ
A1

E
=
2β1E2

R2 + 2β2ER1ER2 + β22ER1ðΔEba −ERÞ2

4ðER2β1 +ER1β2Þ2
,

D
EðbÞ
A2

E
=
2β2E2

R1 + 2β1ER1ER2 + β21ER2ðΔEba −ERÞ2

4ðER2β1 +ER1β2Þ2
.

[34]

It can be easily checked that defining the probabilities to be on
the CL by

Pa→b ∝ exp
h
−


β1

D
EðaÞ
A1

E
+ β2

D
EðaÞ
A2

E�i
, [35]

and

Pb→a ∝ exp
h
−


β1

D
EðbÞ
A1

E
+ β2

D
EðbÞ
A2

E�i
, [36]

leads to the exact results 8 and 9 for the bithermal Boltzmann
factors. A comparison of rates obtained from the geometrical
minimum energy point and the point of maximum probability
is shown in Fig. S1 in the Supporting Information.

Energy Transfer. As outlined in the introduction, the coupled
transfer of charge and heat, and the interplay between the

electric and heat currents, gives rise to unique electronic and
thermoelectric phenomena (117, 118). When ET takes place across a
thermal gradient, it can carry energy as well, implying heat (Q) transfer
between the donor and acceptor sites. Indeed, our model has dis-
regarded direct coupling between the modes coupled to the electronic
occupation of the different sites, so this coupling is the only potential
source (in this model) of heat transfer. Here we explore this possibility.
During the m→ n state transition, for mode xj, the heat trans-

ferred is the sum of the heat released by the corresponding bath
during the ascent to the transition state crossing point defined by
α on the Em surface, and the heat absorbed by the bath during
the descent to equilibrium on the En surface,

Qðm→nÞ
j ðαÞ=−QðmÞ

rel +QðnÞ
abs. [37]

For the two-mode, two-state system considered here the amounts of
heat transfer into each bath during an ET event are

Qða→bÞ
1 ðαÞ=−Qðb→aÞ

1 ðαÞ

=−
1
2
k1½x1ðαÞ− λ1�2 +

1
2
k1½x1ðαÞ�2,

Qða→bÞ
2 ðαÞ=−Qðb→aÞ

2 ðαÞ

=−
1
2
k2½x2ðαÞ�2 +

1
2
k2½x2ðαÞ− λ2�2.

[38]

The signs in Eq. 38 are chosen such that Q is positive when
energy enters the corresponding bath. The average values for
these components are

D
Qða→bÞ

j

E
=
Z
R

Qða→bÞ
j ðαÞP‡

a→bðαÞdα,D
Qðb→aÞ

j

E
=
Z
R

Qðb→aÞ
j ðαÞP‡

b→aðαÞdα,
[39]

where j∈ f1,2g and P‡
m→nðαÞ is the probability density on the CL for

the corresponding surface. Evaluating each of these integrals yields

D
Qða→bÞ

1

E
=
−ER1T1ΔEba +ER1ER2ðT2 −T1Þ

ER1T1 +ER2T2
,

D
Qða→bÞ

2

E
=
−ER2T2ΔEba −ER1ER2ðT2 −T1Þ

ER1T1 +ER2T2
,

D
Qðb→aÞ

1

E
=
ER1T1ΔEba +ER1ER2ðT2 −T1Þ

ER1T1 +ER2T2
,

D
Qðb→aÞ

2

E
=
ER2T2ΔEba −ER1ER2ðT2 −T1Þ

ER1T1 +ER2T2
,

[40]

which depend on the reaction free energy, the reorganization
energy in each mode, and the temperature of each bath. It should
be emphasized that the modes themselves are assumed to remain in
thermal equilibrium. Expressions 40 give the heat transferred into
the thermal bath with which the corresponding mode equilibrates
for a single ET in the indicated direction. Note that the total heat
transfer for the a→ b transition isD

Qða→bÞ
E
=
D
Qða→bÞ

1

E
+
D
Qða→bÞ

2

E
=−ΔEba, [41]

and correspondingly for the b→ a transition,D
Qðb→aÞ

E
=
D
Qðb→aÞ

1

E
+
D
Qðb→aÞ

2

E
=ΔEba, [42]

which are just statements of energy conservation. The change
in free energy of the baths associated with the a→ b process

Fig. 4. Contour plots of energy surfaces for symmetric (Left) and asym-
metric (Right) donor–acceptor pair geometries. The CL is shown as a thick black
line. The crosses mark the point of maximum probability for the a→b transition
on the CL for β2 ∈ f10,15,20,25g with β1 = 10 held constant. The dashed line
connects the two well minima through the geometrical minimum energy point.
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(−ΔEba) is divided between the two baths with the ratio
ER1T1=ER2T2. Interestingly, this ratio depends on their tem-
peratures, reflecting the fact that the higher-temperature bath
is more effective in promoting ET. Even more significant is
the observation that there is a term in each expression in 40
that does not depend on ΔEba, and the sign of which does not
depend on the direction of the ET process. Thus, there exists a
nonzero heat transfer between baths associated with the ET
process in bithermal systems. Over each ET event it is given by

hQ2→1i≡
D
Qða→bÞ

1

E
+
D
Qðb→aÞ

1

E
=
2ER1ER2ðT2 −T1Þ
ER1T1 +ER2T2

[43]

and

hQ1→2i≡
D
Qða→bÞ

2

E
+
D
Qðb→aÞ

2

E
=−

2ER1ER2ðT2 −T1Þ
ER1T1 +ER2T2

. [44]

To see the significance of this result, consider an ensemble of
site pairs with probabilities pa that a pair is in state a (electron on
site 1) and pb that the pair is in state b (electron on site 2). These
probabilities obey the kinetic equations

dpa
dt

=−
dpb
dt

=−J a→b +J b→a, [45]

where J a→b = ka→bpa and J b→a = kb→apb. Correspondingly, the
rate of heat deposit on the respective site is given by

dQj

dt
=J a→b

D
Qða→bÞ

j

E
+J b→a

D
Qðb→aÞ

j

E
: j∈ f1,2g. [46]

Now, consider the steady state at which the system is at electronic
quasiequilibrium so that J a→b =J b→a =J ss, that is, the net elec-
tron flux between sites vanishes. Using Eqs. 43 and 44 it follows that
at this state�

dQ1

dt

�
ss
=−
�
dQ2

dt

�
ss
=J ss

2ER1ER2ðT2 −T1Þ
ER1T1 +ER2T2

≡JQ
ss . [47]

Thus, for T1 ≠T2, even when the net electron flux vanishes, the
presence of hopping electrons induces a net heat current from
the hot bath to the cold bath. Of interest is the observation that
there is no pure Seebeck effect in the model investigated here.
This is seen in Eqs. 10–12, which imply that when ER1 =ER2,
changing T1 relative to T2 affects the forward and backward rates
in the same way. Note that Eq. 47 is nonlinear in the temperature
difference (although it is approximately so when the difference is
small). In the high- and low-temperature limits of site 2, the
steady-state heat flux becomes

lim
T2→∞

JQ
ss = 2J ssER1 and lim

T2→0
JQ

ss =−2J ssER2, [48]

respectively, each of which depends only on the reorganization
energy of the respective cold mode. These results imply that in a
system where electron hops between local sites there is a
contribution to the heat conduction associated with the elec-
tronic motion. An assessment of this contribution to the heat
conduction in such systems will be made elsewhere.

Conclusions
A unified theory for the rate and extent of ET and heat transport
between bithermal donor–acceptor pairs has been constructed in
an augmented Marcus framework. Through application of a
multidimensional TST where different modes interact with en-
vironments of different temperatures, we have characterized the
kinetics of the charge transfer process over various temperature
gradients and geometries between reactant and product states.
In a bithermal system, the traditional interpretation of the acti-
vation energy as a single point derived through geometric mini-
mization of overall points where the donor and acceptor are
equienergetic has been shown to not adequately describe the
transfer mechanism, and, instead, a statistical interpretation of
the activation energy threshold has been developed to account
for the biasing of states that arises due to the temperature gra-
dient. We find that entropic rate corrections, which are trivial in
the unithermal case, are nontrivial for bithermal systems and are
characteristic of the multithermal density of states. Surprisingly,
for electron transport across a thermal gradient, the transfer of
heat continues to occur even when there is no net transfer of
charge. This effect could be harnessed, particularly through
molecular junctions and wires (1, 53, 119, 120), to control the
transfer of thermal energy in reaction networks with complex
systems of heat reservoirs. In turn, the use of these reservoirs to
control charge current in thermoelectric systems with nonzero
Seebeck coefficients could result in the development of devices
and electronics that can be harnessed for application in ther-
mally controlled molecular machines.
A description of the transfer process across smoothly varying

temperature gradients and the characterization of possible de-
viations from the assumed bithermal Boltzmann distribution on
the transition state CL are possible areas for future research.
The treatment of collective behaviors arising from anharmonic
coupling between reactive modes, such as that observed in multiple
particle transfer mechanisms (98), will require further character-
ization of the nature of thermalization (121) and temperature,
specifically in systems that are in contact with multiple independent
heat baths. The current description gives impetus for experimental
verification of the constructed methodologies in bithermal systems.
The bithermal donor–acceptor model considered here can be

generalized to systems with multiple reaction pathways. For ex-
ample, a theoretical description of the transfer mechanism in a
donor–bridge–acceptor model can be constructed by extending the
dimension of the transition state structure on the crossing “line.”
Developing a general description of thermal transition states in
ET reactions with many reactive modes could be accomplished
through implementation of the geometric transition state for-
malisms developed for classical reactions in high dimensionality
(122). A conjecture supported by the bithermal biasing of the
transition state structure predicted here is that multibody tem-
perature gradients can be used to control which reaction pathway
is taken in a complex network. The possibility of controlling re-
actions through multithermally induced deformation of transitions
states is a significant finding of this study, and one that is primed
for further exploration thorough computation and experiment.
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