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We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled
to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon
degree of freedom is treated classically with motion along–and hops between–diabatic potential
energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are
treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH
recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population
(as compared with numerical renormalization group). For the case of out of equilibrium dynamics,
SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range
of parameters, spanning the quantum region to the classical region. In the limit of large temperature,
SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees
with real-time path integral calculations. As such, the simple procedure described here should be
useful in many other contexts. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908034]

I. INTRODUCTION

Surface hopping (SH) has proven to be a very successful
approach for treating nuclear-electronic coupling.1,2 When it
began in 1971, the most basic idea of Tully-Preston surface
hopping was to propagate classical nuclei, while switching
the active force field whenever nuclei move through avoided
crossings.2 Later, Tully extended the notion of hopping at
crossings to a continuous probability of hopping that was calcu-
lated at every time step (e.g., the so-called “Fewest Switches
Surface Hopping” (FSSH)1). More recently, there has been a
great deal of theoretical work trying to fix up the decoher-
ence failures of the FSSH algorithm3–22 and to extract spectro-
scopic information from SH trajectories.23–27 There has also
been a great amount of work exploring the foundations of
the SH approach28 vis-a-vis the quantum classical Liouville
equation.29–32

As applied in the literature, SH has been used to model
a host of experimental systems, including energy transfer,33

proton-coupled electron transfer,34 and electronic relaxation.35

Of particular interest to this article are the recent studies by
Tretiak36 and Prezhdo,37 who have studied energy transfer
in extended organic chromophores and electron transfer to
semiconductors, respectively. For both cases, one must deal
with a manifold of electronic states. In general, however, the
FSSH algorithm has usually been restricted to studying iso-
lated molecules in solvents with only a handful of electronic
states.38,68 Thus far, the most important exception to this gen-
eral rule was the pioneering “Independent Electron Surface
Hopping (IESH)” model of Shenvi, Roy, and Tully,39–41 who
studied NO scattering off of a gold surface. Shenvi et al. sug-
gested discretizing a continuum of adiabatic electronic levels
to simulate electronic friction in a metal; by running FSSH on
a large number of electronic states, Shenvi et al. were able to

correctly describe vibrational relaxation of the NO molecule. In
a slightly different context, Preston and Cohen also proposed a
“surface leaking” approach for treating the decay of an elec-
tronic state into a continuum of electronic levels but, to our
knowledge, surface leaking has thus far only been applied to
study loosely bound anions.42,43

In a companion paper,72 we have discussed a straight-
forward extension of FSSH to treat model one-electron sys-
tems. In the present paper, we focus on a many-body problem
and offer a simple (but generalizable) SH approach describ-
ing a molecule absorbed on a metal surface. We will study
the simplest case: a single impurity level coupled to a single
phonon as well as one or two electronic (fermionic) baths
(which is known as the Anderson-Holstein model44,45). For the
case of one electronic bath, we study relaxation to equilib-
rium. For the case of two electronic baths, with different Fermi
levels, we will study the steady state transport, where some
features of inelastic scattering are visible.46,47 The approach in
this paper will not rely on the assumption of small electron-
phonon couplings and, as such, should go beyond standard
models of electronic friction acting on molecules at metal
surfaces.48–50 Furthermore, in the future, it will be important
to include a bath of external vibrations as well, which can be
achieved easily through a random force in our surface (or, more
formally, through a Fokker-Planck equation51). For the pres-
ent article, we will restrict ourselves to the simple Anderson-
Holstein model (without any explicit nuclear friction) and we
will demonstrate the power of a SH approach to recover many
dynamical phenomena for this simple system.

An outline of this paper is as follows. In Sec. II, we
will present the necessary theory. First, we will motivate and
justify our SH approach based on a classical master equation
(CME) for the nuclear-electronic subsystem. We will do this
both for the cases of equilibrium (one electronic bath) and

0021-9606/2015/142(8)/084110/11/$30.00 142, 084110-1 © 2015 AIP Publishing LLC
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out-of-equilibrium (two electronic baths) dynamics. Second,
for concreteness, we will then give a step-by-step flowchart
for our SH algorithm. Third, we will discuss briefly quantum
master equations (QME) and numerical renormalization group
(NRG) theory, which represent alternative formalisms against
which we can benchmark our dynamics. In Sec. III, we will
present results showing the power of this simple model. We
conclude in Sec. IV.

II. THEORY

A. Model Hamiltonian

The Anderson-Holstein Hamiltonian involves an elec-
tronic impurity level coupled to (i) a phonon degree of freedom,
and (ii) a continuum of electronic levels. One can think of
the impurity level as an atomic or molecular orbital that can
either give an electron to or take an electron from a metal
surface. A common example would be an anion near a charged
metal surface, e.g., an electrochemical interface. We group
the impurity and phonon together as the system (Hs), and
the continuous levels of electrons to be the bath (Hb). The
interaction between them (Hc) is bilinear:

H = Hs + Hb + Hc, (1)

Hs = Edd+d + g(a+ + a)d+d + ~ω(a+a + 1
2 ), (2)

Hb =


k
(ϵk − µ)c+kck, (3)

Hc =


k
Vk(c+kd + d+ck). (4)

Here, d+ (d), a+ (a), c+
k

(ck) are creation (annihilation) oper-
ators on the impurity electron, phonon, and metal electrons,
respectively. Ed is the impurity energy level,ω is the frequency
of the phonon, g is the coupling between the impurity and the
phonon. ϵk is an energy level of the bath, which has Fermi level
µ, and Vk is the coupling between the impurity and the bath.
The interaction between the impurity and bath determines the
hybridization function Γ,

Γ(ϵ) = 2π

k

|Vk |2δ(ϵ − ϵk). (5)

In the following, we will assume that Γ is a constant (the
wide band approximation). In developing a SH model of the
Anderson-Holstein model, it will be convenient to replace a+

and a with the (dimensionless) position x and momentum p
coordinates, so that the system Hamiltonian is written as

Hs = Edd+d +
√

2gxd+d +
1
2
~ω(x2 + p2). (6)

B. Classical master equation

In a surface-hopping based description of semiclassical
dynamics, the critical input is the choice of classical poten-
tial surfaces and the implementation of the surface hopping
algorithm. Here, we work in the diabatic representation of the
electronic state of the system. In this representation, d+d is
either 0 or 1, that is, the impurity can be either unoccupied
(denoted as state 0) or occupied (state 1). The corresponding

diabatic potential surfaces for the nuclei are

V0(x) = 1
2~ωx2, (7)

V1(x) = 1
2~ωx2 +

√
2gx + Ed. (8)

The basic premise of our SH approach is to model the
electronic bath implicitly; all of the information required about
it are the rate Γ and the Fermi distribution. Furthermore, we
treat the phonon degree of freedom classically. The classical
motion is carried on the diabatic surfaces (Eq. (7) or (8)) while,
in the spirit of the Franck-Condon picture (vertical transitions),
the hopping events are assumed to take place at fixed nuclear
position and momentum and are controlled by rates γ0→1(x,p)
and γ1→0(x,p) as described below. The ensuing dynamics is
encoded in a CME for the probability density of the system:51

∂P0(x,p)
∂t

=
∂H0(x,p)

∂x
∂P0(x,p)

∂p

− ∂H0(x,p)
∂p

∂P0(x,p)
∂x

− γ0→1P0(x,p) + γ1→0P1(x,p), (9)
∂P1(x,p)

∂t
=

∂H1(x,p)
∂x

∂P1(x,p)
∂p

− ∂H1(x,p)
∂p

∂P1(x,p)
∂x

+ γ0→1P0(x,p) − γ1→0P1(x,p), (10)

where the potential on each surface (in dimensionless coordi-
nates) is

Hα = Vα(x) + 1
2
~ωp2,α = 0,1. (11)

Here, P0(x,p)
(
P1(x,p)

)
is the probability density for the

impurity level to be unoccupied (occupied) with the position
and momentum of the oscillator to be x and p; P0 and P1
satisfy the obvious normalization condition


dxdp

(
P1(x,p)

+ P0(x,p)
)
= 1.

Next, consider the hopping rates. If the classical system
interacts with a single electronic bath (a free electron metal) for
a long enough time, it is expected to reach a thermal equilib-
rium compatible with the temperature and chemical potential
of this metal. The simplest choice of hopping rates compatible
with this requirement is

γ0→1 =
Γ

~
f (∆V ), (12)

γ1→0 =
Γ

~
(1 − f (∆V )) , (13)

∆V (x) = V1(x) − V0(x), (14)

where f is the Fermi function of the bath

f (z) = 1
1 + eβ(z−µ)

. (15)

Equations (9)–(15) recover the correct equilibrium in the limit
of small Γ (shown below). (The restriction to small Γ reflects
the fact that level broadening is disregarded in the dynamics
postulated above. In Sec. II E, we describe a way to incorporate
level broadening properly.)
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Before solving the CME at equilibrium, we note that
according to Eqs. (9) and (10), the unoccupied (P0(x,p)) and
occupied (P1(x,p)) probability densities evolve under two pro-
cesses: (i) motion of a nucleus along its respective surface
and (ii) hopping between two potential surfaces. Equations
(12)–(14) imply that the latter is determined by both (i) the
potential difference between the two potential surfaces and (ii)
the time scale Γ for electron transfer between the impurity
and the bath. Thus, according to the CME, there is never any
explicit damping of the oscillator’s velocity.

Let us now return the question of an analytical steady state.
For the case of equilibrium, we can set µ = 0, and a solution
to Eqs. (9)–(10) is given by

P0(x,p) = C exp
(
−1

2
β~ω(x2 + p2)

)
, (16)

P1(x,p) = C exp
(
−1

2
β~ω(x2 + p2) − √2βgx − βEd

)
= C exp

(
−1

2
β~ω

((x + √2g/~ω)2 + p2
)

− β(Ed − g2/~ω)
)
. (17)

C is a normalization factor, determined by 
dxdp (P0(x,p) + P1(x,p)) = 1,

C =
β~ω

2π
1

1 + exp(−β(Ed − g2/~ω)) . (18)

These solutions are just the simple Boltzmann distributions
that one would expect in the limit of small Γ. The reduced
distribution functions for the position x and momentum p of
the oscillator, then take the forms

P(p) =


dx
(
P0(x,p) + P1(x,p)

)
=


β~ω

2π
exp(−1

2
β~ωp2), (19)

P(x) =


dp
(
P0(x,p) + P1(x,p)

)
= C


2π
β~ω

(
exp(−1

2
β~ωx2)

+ exp(−1
2
β~ωx2 −

√
2βgx − βEd)

)
. (20)

Thus, assuming there is only one fixed point, we conclude that
the CME with Eqs. (12) and (13) does capture the correct equi-
librium for the case of one oscillator coupled to one bath.52,69,70

Obviously, Eqs. (12)–(15) can be generalized in a straight-
forward way to situations where the system is coupled to many
electronic baths, each in its own equilibrium. For example, for
a conduction junction comprising two metals, L and R, Eqs.
(12)–(13) are replaced by

γ0→1 =
ΓL

~
f L(∆V ) + ΓR

~
f R(∆V ), (21)

γ1→0 =
ΓL

~
(1 − f L(∆V )) + ΓR

~
(1 − f R(∆V )), (22)

where f L ( f R) is the Fermi function for left (right) bath with
chemical potential µL (µR) and ΓL (ΓR) represents the corre-
sponding left (right) hybridization.

Once the probability densities Pα(x,p; t) (α = 0,1) have
been determined, we can calculate just about any quantity of
interest. For example, the population of the impurity level N
and the kinetic energy of the oscillator Ek are

N =


dxdpP1(x,p), (23)

Ek =


dxdp

(
P1(x,p) + P0(x,p)

)
1
2~ωp2. (24)

For a biased conduction junction with f L , f R, the long time
dynamics will converge to a non-equilibrium steady state char-
acterized by the electronic current

I =


dxdp
(
γL

0→1(x)P0(x,p) − γL
1→0(x)P1(x,p)

)
(25)

with

γL
0→1 =

ΓL

~
f L(∆V ), (26)

γL
1→0 =

ΓL

~
(1 − f L(∆V )). (27)

C. Surface hopping algorithm

The dynamics of Eqs. (9) and (10) can be solved directly
using a simple SH approach. The algorithm is as follows:

1. Prepare the initial velocities and positions of the oscillators
according to the relevant initial conditions. Note that these
initial conditions will be irrelevant if one seeks only a
description of equilibrium or steady state (and transient dy-
namics are not important). As discussed above, we believe
the CME yields a unique fixed point at long times. In the
present paper, we initialize all velocities and positions so
that they satisfy a Boltzmann distribution at a given initial
temperature on one potential surface,

P0(x,p) = β~ω

2π
exp(− 1

2 β~ω(x2 + p2)), (28)

P1(x,p) = 0. (29)

2. At the beginning of every time step, if the oscillator is
moving along surface α and has position x, determine the
possibility of hopping γα→α′(x) in Eqs. (12) and (13) (or
Eqs. (21) and (22) for two baths), and generate a random
number ξ ∈ [0,1]. If ξ < γα→α′(x)dt, then we switch sur-
faces (and the active surface becomes α′); otherwise, we
keep the same active surface.

3. Propagate the position x and momentum p along the active
diabatic potential surface for a time step dt .

4. Repeat step 2 and sample over as long a trajectory as is
desired until convergence. For dynamical averages, it will
be necessary to sample over many independent trajectories.

The scheme above is visualized in Fig. 1. We emphasize
again that, at step 2, if the oscillator hops, the momentum is
not rescaled to conserve total nuclear energy. This variability
in the energy of the oscillator is different from standard FSSH1

(and resembles more “surface leaking”42,43); as will be shown,
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FIG. 1. How to run SH: We assume that
the oscillator (blue ball) has been mov-
ing along on the red potential energy
surface. (a) At the start of each time
step, we generate a random number ξ.
If ξ > γred→blue(x)dt , (b), the oscil-
lator will continue to move along the
red potential energy surface for the next
time interval dt . Otherwise, (c), the os-
cillator will jump and move along the
blue surface for the next time interval
dt .

this naive hopping scheme allows the nucleus to relax to the
temperature of the electronic bath.

D. Quantum master equation

The CME (Eqs. (9) and (10)) will not be adequate at low
temperature where kT < ~ω, and a quantum description of the
oscillator is needed. In the limit of small Γ, such a description
is provided by the QME,53,54

dPn
q

dt
=


n′,q′

[Pn′
q′W

n′→ n
q′→q − Pn

qW n→ n′
q→q′]. (30)

Here, Pn
q is the probability density for the impurity to be in

electronic state n (|n⟩ = |0⟩, |1⟩) and for the phonon to be in state
q (|q⟩ = |0⟩, |1⟩, |2⟩ . . .).W n→ n′

q→q′ is the transition possibility from
n to n′ and q to q′. For the case of one bath, W n→ n′

q→q′ is given by

W 0→1
q→q′ =

Γ

~
|Mq→q′|2 f

(
Ed −

g2

~ω
+ ~ω(q′ − q)) , (31)

W 1→0
q→q′ =

Γ

~
|Mq→q′|2

(
1 − f (Ed −

g2

~ω
+ ~ω(q − q′)) , (32)

W n→ n′
q→q′ = 0,n = n′. (33)

Here, Ed − g2

~ω
represents the renormalized energy level of the

impurity (i.e., the energy of the impurity level minus the reor-
ganization energy). Mq→q′ is the Frank-Condon factor, which
is the overlap between eigenstates q and q′ of the harmonic
oscillator with the origin shifted by

√
2λ ≡

√
2g/~ω,

Mq→q′ =


dxφq′(x)φq(x −

√
2λ). (34)

The Franck-Condon factor can be expressed as53,54

Mq→q′ = (p!/Q!)1/2
λ
Q−pe−λ

2/2LQ−p
p (λ2)

× sgn(p −Q)p−Q. (35)

Here, Q(p) is the maximum (minimum) of q and q′, Lm
n is

generalized Laguerre polynomial.
For the case of one bath, there is an analytical solution to

Eqs. (30)–(33)

P0
q = C exp(−β~ω(q + 1

2
)), (36)

P1
q = C exp(−β~ω(q + 1

2
)) exp(−β(Ed − g2/~ω)), (37)

where C is the normalized factor that satisfies


q(P0
q + P1

q) =1.
This solution captures one oscillator in the presence of two

possible electronic states (with small coupling Γ between the
states). Thus, the QME impurity population agrees exactly
with the CME (compare Eqs. (36) and (37) with Eqs. (16) and
(17)).

For the case of two baths, the hopping probability is the
sum of the left and right hopping probabilities

W n→ n′
q′→q = W n→ n′

q′→q

R
+W n→ n′

q′→q

L
, (38)

where W n→ n′
q′→q

R
(W n→ n′

q′→q

L
) depend on the Fermi functions

f R ( f L). At steady state, the impurity and the phonon can be
collectively be described by Pn,ss

q , which is the normalized
nontrivial solution to

dPn
q

dt
= 0���Pn

q=P
n,ss
q

. Pn,ss
q can be used to

calculate any and all steady-state observables. For example,
current is given by

I =

qq′

W 0→1
q′→q

L
P0,ss
q′ −W 1→0

q′→q

L
P1,ss
q′ . (39)

When discussing our SH results below, we will compare with
the QME results. For a QME simulation, we must truncate the
infinite set of phonon states, including only a finite number,
while making sure that the result is converged.

E. Implementing level broadening

In conjunction with the equilibrium distribution Eqs. (16)
and (17), Eq. (23) yields the equilibrium electron population
of the impurity level predicted by the SH scheme in the form

N =


dxdpP1(x,p) = f (Ẽd), (40)

where Ẽd = Ed − g2/~ω is impurity level energy renormalized
by the reorganization energy g2/~ω. Equation (40) is just a
Fermi function at a well defined impurity energy, and thus
Eq. (40) disregards level broadening. Indeed, in the case of
no oscillators, the exact expression for the population of an
impurity level (at energy Ed) interacting with an equilibrium
Fermi distribution is given by55

N =


dE
1

2π
Γ

(E − Ed)2 + (Γ/2)2 f (E). (41)

Consequently, Eq. (40) is a good approximation only in the
limit of small impurity-bath coupling (kT ≫ Γ). To improve
upon this answer, one must fully account for the level broad-
ening of the impurity by the electronic bath. Within the context
of our SH calculations, we can include broadening as follows.
For each trajectory in our simulation, we initialize the relative
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energy level of the impurity Ed according to a Lorentzian
distribution,

ρ(E) = 1
2π

Γ

(E − Ed)2 + (Γ/2)2 . (42)

Thereafter, we run many simulations, evaluating physical
observables by averaging over all trajectories. For the elec-
tronic population of the impurity, we get

N =


dEρ(E) f (E − g2/~ω)

=


dE

1
2π

Γ

(E − Ẽd)2 + (Γ/2)2 f (E). (43)

Except for the shift of the impurity energy level (Ẽd = Ed

− g2/~ω instead of Ed), Eq. (43) is the same as Eq. (41).
In Appendix A, we show how the level broadening changes

the position x and momentum p distribution (Eqs. (19) and
(20)). Furthermore, we define a mean potential and a potential
of mean force, and show that, without taking the broadening
into account (Γ ≪ kT), these two potentials give the same
result.

F. Numerical renormalization group

Finally, it is important to remember that both the CME
and QME methods above treat the electronic bath implicitly
(and are derived only by assuming that Γ is very small). In
the end, the validity of our SH results needs to be justified. At
equilibrium this can be done by comparing with results of a
NRG56,57 calculation, which, at low enough temperatures can
yield very accurate results when converged properly.58,71 This
method is particularly suited for a system with small number
of degrees of freedom interaction with a microscopic bath.
By logarithmically discretizing the continuum representing
the bath, the NRG approach transforms a Hamiltonian with
a continuous number of system-bath couplings into a semi-
infinite chain, where each site of the chain only couples with its
nearest neighbors. Furthermore, because the couplings along
the chain decrease exponentially, one can easily truncate the
infinite Hilbert space representing the bath and recover very
accurate answers. Details about NRG for bosons and fermions
can be found in Refs. 56 and 57.

III. RESULTS AND DISCUSSION

A. One electronic bath–relaxation to equilibrium

For the problem of one electronic bath, we first investi-
gate the relaxation of the oscillator towards equilibrium using
the simplest SH scheme with rates given by Eqs. (12)–(15).
Figure 2(a) shows the time evolution of the average kinetic
energy of the oscillator for a variety of initial temperatures.
For each initial condition, we find that the kinetic energy of the
system inevitably reaches its classical thermal limit EK =

1
2 kT

where kT is the temperature of the electronic bath. The same
long-time limit is obtained (Figure 2(b)) for different choices
of the e-ph couplings g. Increasing the e-ph coupling causes
faster relaxation but the final equilibrium state is unchanged.

FIG. 2. Phonon relaxation: Γ= 0.003, kT = 0.03, ~ω = 0.003, Ed = 0, µ
= 0. 10 000 trajectories are used. (a) Phonon relaxation with different initial
conditions, g= 0.005. Ti represents the temperature at which the oscillator is
initialized. (b) Phonon relaxation with different e-ph couplings, g .

In Figure 3, we plot the numerical distributions of the
oscillator position x and momentum p that are obtained from
the SH trajectories, as well as the analytical x and p distribu-
tions given by Eqs. (19) and (20). We find perfect agreement,
thus reinforcing our intuition that Eqs. (9) and (10) admit only
one long time solution.

The results displayed in Figures 2 and 3 have used the
SH algorithm that disregarded level broadening. Figure 4
shows the effect of including broadening as described in
Sec. II E. With broadening, we find perfect agreement of the
computed impurity equilibrium population between SH/QME
results and NRG results. (Recall that SH and QME yield
identical impurity populations; see Eqs. (36), (37), (16), and
(17).)

Finally, in Figure 5, we plot SH (Eq. (43)) vs. NRG
results for a difficult (nonclassical) quantum regime, where
Γ, ~ω, g2/~ω > kT . Not surprisingly, in this regime, SH cannot
quite recover the correct electron population as a function of
the renormalized impurity energy level (Ẽd). This figure should
be a reminder that there are equilibrium regimes where SH is
not applicable. In general, for many problems of interest, the
agreement between SH and NRG is quite strong.
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FIG. 3. Velocity distribution (a) and position distribution (b): Γ= 0.003,
kT = 0.03, g = 0.01, ~ω = 0.003, Ed = 0, µ = 0. Red dots represent averages
over 10 000 trajectories. The blue line is the analytic result from Eq. (19)
for (a) and from Eq. (20) for (b). (a) Velocity distribution. (b) Position
distribution.

B. Two electronic baths–bias and current

The next system we investigated was the out of equi-
librium case, where the Fermi levels of the two electronic
baths have a bias between them. We calculated the current (I)
as a function of bias (V ). In the absence of e-ph coupling,
the result is well known as single level Landauer formula
from nonequilibrium Green Function approaches59,60 and other
frameworks,61

I =


dE
ΓLΓR

(E − Ed)2 + (Γ/2)2 ( f L(E) − f R(E)), (44)

where Γ = ΓL + ΓR.
In Figure 6, we plot the QME and SH results for cur-

rent vs. voltage in the limit of very small e-ph coupling. For
comparison, we also plot the Landauer current (Eq. (44), for
which g = 0). For the SH results, we show both broadened
and unbroadened results. In fact, it can be shown that, after
broadening, SH gives the correct result compared with Eq. (44)
(see Appendix B).

In Figure 6, we also show results from the QME, which
should extend SH results into the limit of low temperature.

According to Eqs. (31) and (32), just as for SH, the straight-
forward QME transition rates do not include broadening of the
impurity levels. Just as for SH, however, we can include broad-
ening by working with a series of different QME’s (rather than
just one), each with different impurity level energies sampled
from Lorentzian distribution with half-width

Γ = ΓL + ΓR. (45)

Having done so, we compute the current by averaging the
QME results over the Lorentzian distribution of the impurity
energy level Ed (we sample over 5000 initial conditions for the
simulation).

Note that all broadened methods (Landauer, QME, and
SH) agree with each other in Fig. 6. Note also that, without
broadening, neither the SH nor QME can reproduce the correct
I-V curse. Thus, we may now have some confidence that,
when broadening is included, SH can be extended to out of
equilibrium case. We will next investigate the performance
of the SH algorithm in the limits of larger electron-phonon
couplings (which is the most interesting case).

In Figure 7, we calculate I-V curves at low temperature,
comparing both the QME and real path integral results from
Ref. 62. In this region, the quantum nature of the boson is
paramount and SH must break down. We observe that the QME
gets the correct overall form of the current in the quantum
region, whereby the current should increase in steps at intervals
of roughly 2ω.46 From this agreement, we may conclude that
the QME is valid at low or high temperatures.

In Figure 8, we compare our SH results with QME re-
sults as the temperature is raised. We observe that, in tran-
sitioning from the quantum (low T) region to the classical
(high T)region, SH achieves better and better agreement with
the QME. Although SH never captures a step feature at low
temperature limit (kT < ~ω) (where the energy levels of the
nuclei are discretized), the SH approach is quite reliable at
large temperatures.

Finally, Figure 9 compares I-V curves over a range of
parameters going from the quantum limit to classical limit
with and without broadening using different methods. Two
general conclusions are apparent. First, broadening clearly
reduces the step feature in the quantum limit. Second, with
or without broadening, the QME and SH approaches agree in
the classical limit. Overall, for future simulations of charge
injection between classical fluids and metal surfaces, we expect
that the SH approach discussed here should be quite reli-
able. In particular, even for systems with reasonable strong
molecular-metal coupling, we are hopeful that SH can be
applied, provided that we use the broadening protocol dis-
cussed above.

IV. CONCLUSIONS

We have proposed a simple and effective way to treat
coupled nuclear-electronic problems, and we have focused on
the Anderson-Holstein model. The rules of our simulation are
very simple: nuclear degrees of freedom are treated classically
and evolve according to Newton’s equation. Occasional hops
between diabatic potential surfaces are promoted at a rate
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FIG. 4. Electronic population as a function of impurity energy level: kT = 0.01, ~ω = 0.003. For NRG calculation, band width D= 1, and the basis is initialized
with 30 boson states, the maximum number of eigenstates kept is Ns = 512, and the logarithmic discretizing parameter is Λ= 2. (a) Electron population of the
impurity as a function of Ed. Dots represent the NRG results, the line represents the SH results when we include broadening. The agreement confirms the
validity of our SH approach. Γ= 0.003. (b) Electron population as a function of shifted Ed, with g = 0.0075, Γ= 0.003. Note that, by including broadening, we
do improve the SH results. (c) Electron population as a function of shifted Ed, with g= 0.0025, Γ= 0.01.

FIG. 5. Electronic population as a function of renormalized impurity energy
level (Ẽd = Ed−g 2/~ω): kT = 0.2Γ, Γ= 1. The line represents SH results
(Eqs. (43)), and the dots represent NRG results. For the NRG calculation,
we set D = 84Γ, where D is the band width. The basis is initialized with 40
boson states, the maximum number of eigenstates kept is Ns = 1500, and the
logarithmic discretizing parameter is Λ= 2.

proportional to the hybridization coupling between the system
and the electronic bath.

For an impurity and phonon coupled to one electronic
bath, we find that the system (impurity and phonon) recovers
the correct thermal equilibrium regardless of any initial condi-
tion; the phonon learns about the temperature of the electronic
bath indirectly (but effectively) through the hopping rate on
and off. Interestingly, by broadening the energy level of the
impurity (as induced by its interaction with the bath), we are
able to recover the exact population of the impurity for all
hybridizations in the limit of no electron-phonon coupling.
Furthermore, with electron-phonon coupling, our results for
the impurity electron population still yield good agreement
with NRG calculations. As such, our final approach here would
seem to go beyond any second order perturbation treatment of
the impurity, for which there is not even any exact agreement
without electron phonon coupling. That being said, we are
aware, of course, that the standard CME or QME is derived
from such a second-order perturbative treatment, and so the
effect of our broadening will need to be tested more generally
in the future.
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FIG. 6. I-V curves in the limit of small e-ph coupling. For the QME and SH,
we take a small value for the e-ph coupling, g = 0.02. The other parameters
are kT = 0.2, ~ω = 5, Γ= 2ΓL = 2ΓR = 1, µL =V /2, µR =−V /2. The Lan-
dauer results are for g = 0 as in Eq. (44). (a) Ed = 0. (b) Ed = 2.

FIG. 7. I-V curves. The QME (as given by Eqs. (30)–(39) and broadened
by Eqs. (42) and (45)) is represented by lines. Real time path integral re-
sults62,63 are represented by dots. kT = 0.2. Γ= 2ΓL = 2ΓR = 1, µL =V /2,
µR =−V /2, Ed = g

2/~ω. This choice of parameters represents the quantum
regime, as can be seen by the non-linear steps in the I-V curve that arise from
nuclear quantization. Our classical SH simulations will not be accurate in this
regime.

FIG. 8. I-V curves. Observe the agreement between SH (dots) and QME
(lines) in the classical, high temperature limit. At low T, these two approaches
disagree (as the QME predicts I-V steps, which SH ignores). g = 2, Γ= 2ΓL
= 2ΓR = 1, Ed = g

2/~ω, µL =V /2, µR =−V /2.

For the out of equilibrium case, we have investigated
both the CME and QME and explored high and low temper-
ature regimes. As before, we have found improved results by
broadening our master equation results. With broadening, both
the CME and QME recover the Landauer formula (in the limit
of zero e-ph coupling). At low temperature and for strong e-ph
couplings, we have found that the QME recovers the correct
step features in the I-V curves, whereas the CME fails. At high
temperatures (in the classical limit), the SH and QME agree
with each other.

Overall, we may conclude that the master equations pre-
sented here can be applied to physical problems that are
either at equilibrium or out of equilibrium. In the future,
we will aim to study a host of other interesting transport
effects, including instability54,64,65 and hysteresis.46 Of course,
in terms of cost, the SH approach is the least computationally
demanding, followed by the QME, and then followed by NRG.
Moreover, NRG would require a very large cost to propa-
gate dynamics at high temperature.66 Given the simplicity
and efficiency of the SH approach here, one might expect
that these dynamics will be very useful for simulating large
systems of coupled classical nuclear degrees interacting with
a reservoir of electrons, e.g., an electrochemical interface.67

While further benchmarking of this method is undoubtedly
needed, we believe the stochastic dynamics advocated in this
paper will be a strong extension of the standard SH method-
ology.
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FIG. 9. I-V curves demonstrating the results from the different formalisms. The other parameters are Γ= 2ΓL = 2ΓR = 1, µL =V /2, µR =−V /2, g = 2. (a)
~ω = 5, kT = 0.2 (b) ~ω = 3, kT = 0.5. (c) ~ω = 1, kT = 2.

APPENDIX A: DYNAMICS WITH A BROADENED
IMPURITY LEVEL: THE MEAN POTENTIAL
AND THE POTENTIAL OF MEAN FORCE

The probability densities established in Eqs. (19) and (20)
were computed without taking into account the broadening of
the impurity energy level. After taking broadening into account
as suggested above (Sec. II E), we must average over Ed, which
is considered a variable with a Lorentzian distribution. P(x)
becomes

P(x) =


2π
β~ω

(
(1 − N) exp(−1

2
β~ωx2)

+ N exp(−1
2
β~ω(x + √2g/~ω)2)

)
, (A1)

with N defined in Eq. (43). After averaging, P(p) remains
unchanged, as in Eq. (19), which indicates the average kinetic
energy is still 1

2 kT . Using P(x) above, we can define the mean
potential,

P(x) = exp(−βVMP), (A2)

which gives VMP

VMP = V0 −
1
β

log
(
(1 − N) exp(−1

2
β~ωx2)

+ N exp(−1
2
β~ω(x + √2g/~ω)2)

)
, (A3)

with V0 =− 1
β

log


2π
β~ω

is a constant.
Now, according to Ref. 48, the potential of mean force is

defined as

VPMF =
1
2
~ωx2 −

 x

x0

dx ′F(x ′). (A4)

Here, the mean force F(x) on the oscillator (as induced by the
electrons) is defined as

F(x) = −√2g⟨d+d⟩|x
= −
√

2g


dE
π

Γ

(E − √2gx − Ed)2 + Γ2
f (E). (A5)

Let us now show that, if we exclude level broadening, Eqs.
(A2) and (A4) give same result. Without broadening, using Eqs.
(20) and (A2), the mean potential is
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VMP = V1 −
1
β

log
(
exp(−1

2
β~ωx2)

+ exp(−1
2
β~ωx2 −

√
2βgx − βEd)

)
= V1 +

1
2
~ωx2 − 1

β
log(1 + exp(−β√2gx − βEd)), (A6)

where V1 is a constant. Furthermore, the mean force defined in
Eq. (A5) (without broadening) becomes

F(x) = −√2g⟨d+d⟩|x = −
√

2g f (√2gx + Ed). (A7)

The integral over x gives the extra potential felt by the oscillator,

−
 x

x0

dx ′F(x ′) =
 x

x0

√
2g f (√2gx + Ed)

= V2 −
1
β

log(1 + exp(−β√2gx − βEd)).
(A8)

V2 is another constant reference potential. Thus, the potential
of mean force is

VPMF = V2 +
1
2
~ωx2

− 1
β

log(1 + exp(−β√2gx − βEd)). (A9)

Within a constant, VPMF = VMP.

APPENDIX B: CURRENT FROM SH IN ABSENT
OF E-PH COUPLING

In this appendix, we show that (with broadening) our SH
approach (as well as the QME) recovers the correct Landauer
current in the limit of no electron-phonon coupling. In such a
case, P1(x,p) = P1,P0(x,p) = P0. Both the CME (Eqs. (9) and
(10)) and QME become

∂P0

∂t
= −γ0→1P0 + γ1→0P1, (B1)

∂P1

∂t
= γ0→1P0 − γ1→0P1. (B2)

Plugging in Eqs. (21) and (22), where now ∆V = Ed, we find
steady state solutions

P0 =
ΓL(1 − f L(Ed)) + ΓR(1 − f R(Ed))

Γ
, (B3)

P1 =
ΓL f L(Ed) + ΓR f R(Ed)

Γ
. (B4)

The current (Eq. (25)) is given by

I = ΓL f L(Ed)P0 − ΓL(1 − f L(Ed))P1

=
ΓLΓR

Γ
( f L(Ed) − f R(Ed)). (B5)

Finally, when Ed is broadened by a Lorentzian of width Γ
= ΓL + ΓR, the result after averaging is

I =


dE
2π

ΓLΓR

(E − Ed)2 + (Γ/2)2 ( f L(E) − f R(E)). (B6)

This is the correct Landauer current.
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