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Abstract
The time evolution and the asymptotic outcomeof a Landau–Zener–Stueckelberg–Majorana (LZ)pro-
cess under continuousweaknon-selectivemeasurement is analyzed.We compare twomeasurement pro-
tocols inwhich thepopulations of either the adiabatic or thenon-adiabatic levels are (continuously and
weakly)monitored. Theweakmeasurement formalism, describedusing aGaussianKraus operator, leads
to a time evolution characterizedby aMarkoviandephasing process,which, in thenon-adiabaticmea-
surement protocol is similar to earlier studies of LZdynamics in adephasing environment.Casting the
problem in the language ofmeasurement theorymakes it possible for us to compare diabatic and adiabatic
measurement scenarios, to consider engineereddephasing as a control device and to examine themanifes-
tationof theZeno effect under the differentmeasurement protocols. Inparticular, undermeasurement of
thenon-adiabatic populations, theZeno effect ismanifestednot as a freezingof themeasured system in its
initial state, but rather as an approach to equal asymptotic populations of the twodiabatic states. This
behavior canbe traced to thewaybywhich theweakmeasurement formalismbehaves in the strongmea-
surement limit,with a built-in relationship betweenmeasurement time and strength.

1. Introduction

The quantumZeno effect—the suppression of time evolution between discrete quantum states under frequent
repeatedmeasurement—is well understood as a consequence of the general theory of the time evolution of a
quantum system that interacts with its environment. In the simplestmanifestation of this effect, interstate
transitions in an interacting two-level system are shown to slow downunder repeated interrogation of the level
populations.When discussed in the framework ofmeasurement theory, this behavior reflects thewavefunction
collapse upon determination of the quantum state. In themore general weakmeasurement theory, the effect on
the systemof a continuousweakmeasurement can be cast as a decoherence process whose rate reflects the
measurement weakness. Indeed, the time evolution of a quantum system interactingwith its environment is
usually discussedwithoutmaking connection to an underlyingmeasurement process. Still, it is sometimes
useful tomake this connection for its conceptual value aswell as its experimental implication.

To elaborate, consider a two level system that represents an electron tunneling between the twominima of a
double-well potential and assume that temperature is low enough so that only the two lowest electronic states in
this potential can be occupied.Wemay choose tomeasure the charge state of one of thewells using a nearby
point contact device, or wemay devise a spectroscopic tool thatmonitors the population of the true system
ground state (a linear combination of the two states localized in eachwells). These differentmeasurement
protocols have different effects on the systemdynamics and their considerationmay provide insight on the
interrelationship betweenmeasurement, decoherence and quantum time evolution.

In this paperwe consider the effect of continuousweakmeasurement on the time evolution of a Landau–
Zener–Stueckelberg–Majorana [1–4] process. In the so-called diabatic representation, theHamiltonian of this
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well-knownmodel describes two coupled levels with time dependent energy spacing

= −( )H t ut V
V ut

ˆ ( ) . (1)
dia

The superscript dia indicates that thisHamiltonian is represented in the so called diabatic basis. Denoting the
general time dependent solution of the Schrödinger equation in this representation by

Ψ = +( ) ( )t c t c t( ) ( ) 1
0

( ) 0
11 2 , the aim is tofind thewavefunction at time → ∞t , given that in the distant past

it was in state 1 (say). Specifically, we are interested in the probabilities c t( )1
2
and = −c t c t( ) 1 ( )2

2
1

2
for

→ ∞t given that =c t( ) 11
2

at → −∞t . The Landau–Zener result is

⎛
⎝⎜

⎞
⎠⎟

π→ ∞ = −c t
V

u
( ) exp . (2)1

2

Alternatively wemay represent the problem in the time dependent adiabatic basis, ψ ψ( )t t( ), ( )a b that

diagonalizes the instantaneousHamiltonian at any point in timewith the corresponding eigenvalues

= ± +E t E t u t V( ), ( )a b
2 2 2 , and describes the time evolution in terms of this basis

Ψ ψ ψ= +t c t t c t t( ) ( ) ( ) ( ) ( )a a b b . Obviously, the asymptotic → ±∞t( ) values of c t( )a b, and c t( )1,2 are identical.
There is a large body of work that address the effect of coupling to an external thermal environment on this
evolution [5–21], including the possibility of externally affected control [22].

As pointedout above, and further demonstrated below, the effect of unmonitored continuousweakquantum
measurement on a systemcanbe cast as a dephasing process.As such, its description is strongly related to the above
studies. Indeed, someof theseworks address detailed properties of the external bath, including its temperature,
that are notusually included in standard descriptions ofmeasurement.On the other hand, discussing this time
evolution as a consequenceof ameasurement process canhighlight issues that are not naturally considered
otherwise. This is obviously true in the case ofmonitoredmeasurementwhere the conditional evolutionof an
observed systemgiven a particularmeasurement outcome is examined.However it is also useful to consider the
associatedunmonitored evolution. For example, the Zeno effect is a property of theunmonitored evolution and its
manifestationdependson themeasured observable.More generally, considering unmonitored evolution froma
measurement perspective implies the selectionof themeasurement operator, namely a choice of the dephasing
mechanism that canpotentially constitute a controlmechanism [23, 24]. Indeed,most of theworks cited above
focus ona particularmodel of systembath coupling,where the diagonalmatrix elements of theHamiltonian in the
diabatic representation are randomlymodulated orotherwise linearly coupled to a harmonic thermal bath. In the
frameworkofmeasurement theory it is natural to definefirst the nature of themeasurement. In particular,wemay
considermonitoring the populations of the adiabatic levels or of thediabatic levels, with possibly different
consequences on the ensuing time evolution. Such selective observation characterizes recently studiedmodels of
adiabatic quantumcomputing [25–28]. This distinctionmay comeup in specific experimental situations. For
example, inmany applications, the twodiabatic states represent electron localizationondifferent sites in the
system (inwhich case the couplingV in equation (1) is the interaction responsible for electron transfer between the
two sites).Measurement of the corresponding populationmaybedone bymonitoring the charge onone of these
sites using a nearbyquantumpoint contactwhose transmission (hence the correspondingmonitored current) is
sensitive to this charge, see e.g., [29].On theother hand, it is possible tomonitor the instantaneous population of
the (adiabatic) electronic eigenstates of a system, aswas done in thepossiblyfirst experimental demonstrationof
thequantumZeno effect [30]3. A recent demonstrationof suchmeasurementwas recently described [33],
although in a setup that cannot observe the effect of coupling to themeasuring apparatus on theobserved system.
Alternative setups that allow suchobservationwere theoretically considered in [24, 34]. Another possibility is to
use amoleculewith a strong optical charge-transfer transition e.g. [35, 36], andmonitor thepermanent dipole on
themolecule as it evolves under a chirped-pulse excitation [37] thatwill induce in this case a Landau–Zener
transition froma low- to a high-dipole state.

In this paperwe discuss the realization of the Zeno effect under these two types ofmeasurement. In the next
sectionwe briefly review the theory of continuousweakmeasurement in theKraus operator formalism [38, 39]
and discuss the time evolution of a system characterized by theHamiltonian (1) under continuousweak
measurements of its adiabatic or diabatic state populations. Numerical results for the corresponding time
evolutions are presented in section 3, showing the differentmanifestations of the Zeno effect in the strong
measurement limit of these two schemes. Section 4 concludes.

3
Interestingly, the origin of this effect as a particularmanifestation of system–environment coupling has come to light in a subsequent

discussion [31, 32].

2
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2. LZdynamics under continuousmeasurement

2.1.Weakmeasurements andKraus operators

Ageneralized quantummeasurement [39, 40] is described by a set ofmeasurement operators{ }K Aˆ ( ˆ)a fulfilling

the completeness relation∫ =aK A K Ad ˆ ( ˆ) ˆ ( ˆ) 1̂a a
†

in the case of a continuous spectrumofmeasurement
outcomes.We are interested in a concrete formof ameasurement operator, which is able to describe a fuzzy
measurement process.We expect that this operator [41, 42] depends on a parameter λ , which defines the
strength ofmeasurement and is hence related to its resolution. This parameter should provide the ability to
interpolate continuously between the hard projectivemeasurement and a fuzzymeasurement with a very small
impact on the system. Intuitively we expect that it ismore probable that an actual eigenvalue of Â lies close to the
measured valuea and that the probability to be the actual value then decreases smoothly by growth of∣ − ∣A a .
Hence, themeasurement operator is approximated by aGaussian formwith a single parameter λ̄

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

λ
π

λ≡ − −( ) ( )K A a Aˆ ˆ 2 ¯
exp ¯ ˆ . (3)a

1/4
2

It is easy to check that the completeness relation is satisfied. Furthermore it is clear that for λ → ∞¯ we obtain an
operatorwhich describes a strong, exactmeasurement as theGaussian becomes very narrow and peaked for the
eigenvalues of Â, while λ →¯ 0 corresponds to a veryweakmeasurement with fuzzy observations and the
Krausoperator become almost1̂.

The probability densityP a( ) to obtain a result a of ameasurement is in general given by

P
⎡⎣ ⎤⎦ρ=a Tr K A K A( ) ˆ ( ˆ ) ˆ ˆ ( ˆ ) . (4)a a

†

The normalized densitymatrix after such ameasurement is

Pρ ρ= K A K A aˆ ˆ ( ˆ ) ˆ ˆ ( ˆ ) ( ). (5)a a aafter,
†

The densitymatrix formalism provides the ability to treat nonselectivemeasurements.We perform a
measurement on a system and the output is registered but not used. Accordingly, we obtain for the nonselective
postmeasurement densitymatrix:

∫ ∫ρ ρ ρ= =a a K A K Aˆ d ˆ d ˆ ( ˆ ) ˆ ˆ ( ˆ ). (6)a a aafter
nonsel

after,
†

Wehave to sumover the unnormalized selective densitymatrix to conserve the normalization of ρ̂after
nonsel.

This is the same as the sumover all normalized selectivematrices weightedwith the probabilityP a( ).

2.2. Continuousweakmeasurement
The previous definition of ameasurement can be easily generalized to a continuousmeasurement. Naivly,
continuous projectivemeasurement would cause a total suppression of the dynamics analogously to the
quantumZeno effect [40] due to the continuous collapse of thewave function into an eigenstate. Alternatively
we can consider continuousweakmeasurements which provide less information but do not disturb the system
to such an extent. The question is whether it is possible to obtain sufficient informationwith continuousweak
measurement while leaving the system as undisturbed as needed.

A general description of the time evolution of a systemunder continuousweakmeasurement can be derived
by approximating this evolution through repeated instantaneousmeasurements at consecutive time instants ti,

equally separated by small time steps Δt [41]. A singlemeasurement of an observable Â that yields the outcome
ai corresponds to the application on the systemof ameasurement operatorK Aˆ ( ˆ)ai , in our case the above defined
GaussianKraus operator. During the time Δt between two successivemeasurements at times ti and +ti 1, the
system evolves freely according to Schrödinger’s equation, which is expressed by the unitary time evolution

operator +( )U t tˆ ,i i1 :

T
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫ Δ= −

ℏ
≈ −

ℏ
Δ

+
≪+

( ) ( )U t t tH t H t tˆ , exp
i

d ˆ ( ) exp
i ˆ . (7)i i

t

t tH
i1

1

i

i 1

The time evolution of the system after time Δ= + +t N t t( 1) 0 after a sequence ofNweakmeasurements
separated by intervals of free time evolution is then given by:

…−( ) ( ) ( ) ( )U t t K U t t U t t K U t tˆ , ˆ ˆ , ˆ , ˆ ˆ , . (8)N a N N a1 2 1 1 0N 1

3
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Furthermore, it is assumed that themeasurement strength is inversely proportional to its frequency [41]

λ λΔ= t¯ (9)

with constant λ. Thenwe have the following formof theKraus operator:

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

λΔ
π

λ Δ≡ − −λ ( ) ( )K A
t

a A tˆ ˆ 2
exp ˆ . (10)a i i i

1/4
2

i

And in the continuum limit Δ →t 0 ( → ∞N ), we obtain up to a normalization factor

T ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥∫ τ τ λ τ τ−

ℏ
− − ≡ λ( )H a A K texp d

i ˆ ( ) ( ) ˆ ( ) ˆ ( ). (11)
t

t

a
2

[ ]
0

The discrete resultsai become a function a(t); the operator
λ

K tˆ ( )a[ ] describes the full time evolution of a system

under continuousweakmeasurementwith this outcomea t( ). Note that the observable A tˆ ( ) can in general
changewith time (and the time-dependence here is not signaling theHeisenberg picture). For a nonselective
measurement this time evolution has to be applied to the densitymatrix and then integrated over all intermediate
measurement outcomes.

In [41] it was shown (see also [40]) that the time evolution of a densitymatrix ρ ρ= λ λ
t K t K tˆ ( ) ˆ ( ) ˆ ( )a a a[ ] [ ] [ ]

undergoing a nonselective weakmeasurement of the observable A tˆ ( ) is given by a Lindbladmaster equation:

⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦ρ ρ λ ρ= −
ℏ

−
t

t H t t A t A t t
d

d
ˆ ( )

i ˆ ( ), ˆ ( )
2

ˆ ( ), ˆ ( ), ˆ ( ) . (12)

In applying this general result to the LZ evolution under continuousmeasurement we can choose tomonitor
populations in the diabatic states or in the adiabatic states. The formermeasurementmode can be accomplished
by choosing

σ= ≡ −( )Â ˆ 1 0
0 1

(13)z

in equation (12). This leads to

ρ ρ ρ

ρ ρ ρ ρ λρ

ρ ρ ρ ρ λρ

ρ ρ ρ

= − −

= − − − −

= − − −

= −

( )

( )

( )

( )

t
V

t
ut V

t
ut V

t
V

d

d
i ,

d

d
i2 i 2 ,

d

d
i2 i 2 ,

d

d
i . (14)

11
dia

21
dia

12
dia

12
dia

12
dia

22
dia

11
dia

12
dia

21
dia

21
dia

11
dia

22
dia

21
dia

22
dia

21
dia

12
dia

For the other possibility, continuousmeasurement of the adiabatic populations, themeasurement observable is
the transformed operator

σ= −
A t U t U tˆ ( ) ˆ ( ) ˆ ˆ ( ), (15)z

adi 1

where U tˆ ( ) is the unitary trasformation that diagonalizes the instantaneousHamiltonian (1)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= = +

− +

−
H U t H U t

u t V

u t V

ˆ ˆ ( ) ˆ ( )
0

0
. (16)

adi dia 1
2 2 2

2 2 2

Alternatively (and equivalently) we can represent the dynamics in the adiabatic basis, whereψ ψ= Uadi dia

evolves according to

⎛
⎝⎜

⎞
⎠⎟

ψ ψ= − −
−

t
H U t

U t

t

d

d
i ˆ i ˆ ( )

d ˆ ( )

d
. (17)

adi
adi

1
adi

The evolution of the density operator is similarlymodified. Equation (12) becomes

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡⎣ ⎡⎣ ⎤⎦⎤⎦ρ ρ λ ρ= − − −
−

t
H U t

U t

t
A t A t

d ˆ

d
i ˆ i ˆ ( )

d ˆ ( )

d
, ˆ

2
ˆ ( ), ˆ ( ), ˆ , (18)

adi
adi

1
adi adi

Where, in this representation, the operator Â thatmeasures populations in the adiabatic basis is again given by
equation (13). This leads to

4
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⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ρ ρ

ρ ρ ρ λρ

ρ ρ ρ λρ

ρ ρ

=

= − + + −

= + + −

=

t
M t

t
u t V M t

t
u t V M t

t
M t

d

d
ˆ ( ), ˆ ,

d

d
2i ˆ ( ), ˆ 2 ,

d

d
2i ˆ ( ), ˆ 2 ,

d

d
ˆ ( ), ˆ , (19)

11
adi adi

11

12
adi 2 2 2

12
adi adi

12 12
adi

21
adi 2 2 2

21
adi adi

21 21
adi

22
adi adi

22

where

= =
−

M t U t
U t

t
ˆ ( ) ˆ ( )

d ˆ ( )

d
. (20)

1

The explicit formof the transformationmatrixU is given by

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

θ θ

θ θ
=

−
( )U t

t t

t t
ˆ ˜

cos
( )

2
sin

( )

2

sin
( )

2
cos

( )

2

. (21)

With θ =t V uttan ( ) equations (13)–(21) are used to obtain the results presented and discussed next.

3. Results and discussion

It is convenient to display the results in terms of dimensionless parameters. Define

λ λ λ= = = =t
u

V
t z

V

u

V

u

z

V
˜ , , ˜ . (22)

2

In terms of these variables equation (14) become

ρ ρ ρ= − −( )
t

z a
d

d˜
i , (23 )11

dia
21
dia

12
dia

ρ ρ ρ ρ λρ= − − − −( )
t

zt z b
d

d˜
2i ˜ i 2˜ , (23 )12

dia
12
dia

22
dia

11
dia

12
dia

ρ ρ ρ ρ λρ= + − −( )
t

zt z c
d

d˜
2i ˜ i 2˜ , (23 )21

dia
21
dia

22
dia

11
dia

21
dia

ρ ρ ρ= −( )
t

z d
d

d˜
i (23 )22

dia
21
dia

12
dia

while equation (19) takes the form

⎡⎣ ⎤⎦ρ ρ=
t

M t a
d

d˜
˜̂ (˜), ˆ , (24 )11

adi adi

11

⎡⎣ ⎤⎦ρ ρ ρ λρ= − + + −
t

z t M t b
d

d˜
2i ˜ 1 ˜̂ (˜), ˆ 2˜ , (24 )12

adi 2
12
adi adi

12
12
adi

⎡⎣ ⎤⎦ρ ρ ρ λρ= + + −
t

z t M t c
d

d˜
2i ˜ 1 ˜̂ (˜), ˆ 2˜ , (24 )21

adi 2
21
adi adi

21
21
adi

⎡⎣ ⎤⎦ρ ρ=
t

M t d
d

d˜
˜̂ (˜), ˆ (24 )22

adi adi

22

with = −
M t U t U t t˜̂ (˜) ˆ (˜)d ˆ (˜) d˜1

.U tˆ (˜) is given by equation (21)withut V replaced by t̃ everywhere. These
equations are solved using the fourth order Runge–Kutta algorithm4 to give the results displayed below. The
timestep sizewas of order Δt̃ = 0.002−0.01, chosen so as to insure convergence in thewhole range of parameters.

Consider firstmeasurement in the adiabatic basis, where taking σ=Â ˆz to be diagonal in in the adiabatic

basis implies that themeasurement is aimed tomonitor the populations ρ ρ= −111
adi

22
adiof the adiabatic state.

Figures 1(a) and (b) show the time evolution of these populations, starting from ρ = 122
adi at the distant past, as

the system goes through the avoided crossing at =t 0, for different values of the Landau–Zener (LZ) parameter
=z 0.05 and =z 0.5, respectively, and different strengths of continuous timemeasurement λ̃ . Comparing the

4
After these studies were donewe have learned of amore efficient way [43, 44] for solving such equations.

5
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no-measurement (λ =˜ 0) results in the two cases we see thewell-known characteristics of these time evolutions:
(a) the increased adiabatic nature of the evolution (where the system stays in the initial adiabatic state with larger
probability for larger z (larger non-adiabatic coupling or smaller speed) and (b) the small oscillations between
the level populations in the neighborhood of the avoided crossing. As λ̃ increases both features change in an
expectedway: the quantumZeno effect ismanifested in the decreasing transition probability between the two
states, that is, the evolution becomesmore adiabatic. Also, the oscillations arewashed out, expressing the phase-
destroying nature of themeasurement process. It is interesting to note that, counterintuitively, for large z (that
is, close to the adiabatic limit) the dependence of the asymptotic population on λ̃ is non-monotonous: as λ̃
increases from zero the adiabaticity of the processes initially decreases before showing the expected increase (see
figure 1(c)). This behavior probably results from the fact that in addition to slowing down the dynamics
associatedwith themeasured population, strongmeasurement also causes an effective level broadening and
consequently an increase in the transition probability. The second effect ismore pronounced in the adiabatic
(large z) limit when the system evolution is essentially adiabatic evenwithoutmeasurement so imposing
measurement can only decrease the adiabatic population.

Next consider the same LZ process accompanied by a continuous timemeasurement of the populations of
the diabatic states. Figures 2(a)–(c) show respectively results obtained for the nearly non-adiabatic limit,
z= 0.05, an intermediate case, z= 0.5 and the practically adiabatic limit, z= 5. In correspondencewith the
measurement, the displayed populations are those of the diabatic states5. Againwe observe the typical inter-level
interference evidenced by the oscillatory populations near the diabatic crossing that are washed awaywith
increasingmeasurement strength6.More interesting is theway inwhich the Zeno effect ismanifested in theweak
and strongmeasurement regimes as best seen in the z= 0.5 results. In the absence ofmeasurement this evolution

a

Figure 1.The effect of continuousmeasurement of the adiabatic populations on the LZ transition. (a) and (b) The time evolution of
the populations of the adiabatic states for different values of the LZ parameter, z , and for different strengths ofmeasurements, λ̃ . (c)
The asymptotic ( → ∞t ) population of the initially populated adiabatic state as function of themeasurement strength λ̃ .

5
In particular, the λ= 0 plots infigures 1 and 2 result from the same calculation, however different quantities, adiabatic populations infigure

1 and diabatic populations infigure 2, are plotted.
6
These oscillations are considerablymore pronounced in the diabatic populations, where they are obviouslymaintained evenwhen the time

dependence of theHamiltonian (1) freezes.

6
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is fairly adiabatic, and the population of the initially populated diabatic level goes from1 to∼0.2 as the system
evolves across the avoided crossing. As λ̃ increases from zero themeasurement affects an increased non-
adiabatic character of the time evolution—an increased probability to remain in the initial non-adiabatic level.
However, as λ̃ increases further (strongermeasurement) this probability assumes the asymptotic value of 0.5.
Further increase in λ̃ does not change this asymptotic limit, however the typical Zeno behavior is seen in the
slowing down of the approach to this limit.

This observation is similar thosemade in studies of LZ dynamics under strong dephasing [5–7, 10, 11]. To
rationalize it in the present context we start by seeking a solution of equation (23b) in the form

b

c

Figure 1. (Continued.)

7
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ρ ρ λ= − −( )t t zt t( ) ¯ ( ) exp i ˜ 2 ˜ . (25)12
dia

12
dia 2

Using this in equation (23b) and assuming that ρ = =t( 0) 012
dia leads to

∫ρ Δρ

Δρ ρ ρ

= − ′ ′ ′

= −

λ− − − −′( ) ( ) ( )t z t t

t t t

(˜) i d˜ ˜ e ,

(˜) (˜) (˜). (26)

t
z t t t t

12
dia

0

˜
dia i ˜ ˜ 2˜ ˜ ˜

22 11

2 2

If λ ≫ zt̃ wemay assume that Δρ does not vary appreciably during the lifetime of the integrand in (26), hence

∫ρ Δρ≅ − ′ ′λ− − − −′( ) ( )t z t t(˜) i (˜) d˜ e . (27)
t

z t t t t
12
dia dia

0

˜
i ˜ ˜ 2˜ ˜ ˜2 2

Also, in this limit we can approximate − ′ ≈ − ′( )t t t t t2 ( )2 2 . This leads to

ρ
Δρ

λ
Δρ

λ
= −

+
− ⟶ −

+
λ− − →∞( )t

z t

zt

z t

zt
(˜)

i (˜)

2i 2˜ 1 e
i (˜)

2i ˜ 2˜ . (28)zt t t

12
dia

dia
2i ˜ 2˜˜ ˜ dia

2

Using (28) and its complex conjugate in (see (23a) and (23d)) Δρ ρ ρ= −( )( )t zd d˜ idia
21
dia

12
dia leads to

Δρ λ

λ
Δρ

λ
Δρ= −

+
= −( )

( ) ( )
t

z

zt

z
d d˜ 4 ˜

2˜ 2 ˜ ˜ . (29)dia
2

2 2
dia

2
dia

Thus, as long as λ ≫ zt˜ ˜ the system evolves so that Δρ λ−( )~ e z tdia ˜ ˜2
, approaching zero (i.e.,

ρ ρ= = 1 211
dia

22
dia ) at a rate λz ˜2 that decreases with increasing λ (Zeno effect). Obviously, for long enough time

the opposite inequality λ ≪ zt˜ ˜will be realized. If λ >z˜ 1 this implies that at such times ≫t̃ 1or ≪V ut 1, and
no further population transfer takes place. If the system reached ρ ρ= = 1 211

dia
22
dia before that time it will stay in

a

Figure 2.The effect of continuousmeasurement of the diabatic populations on the LZ transition. Shown are the time evolutions of the
diabatic states populations for different values of the LZ parameter, z , and for different strengths ofmeasurements, λ̃ . Note that the
horizontal timescale here spans a larger range,− < <t100 ˜ 100, than in figure 1 so as to accommodate the expanded evolution range
seen in the strongmeasurement limit.
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this state. Otherwise evolutionwill freeze at some other value7. Both behaviors are seen infigure 2, and in both
cases the evolution is slower for larger λ̃ , i.e., strongermeasurement.

Finally, figures 3(a) and (b) present an overall view of the behavior of the transition probability as function of
the LZparameter z and themeasurement strength parameter λ. Both figures now show the probability to remain
at → ∞t in the initial adiabatic state, however the evolutions are done under different observation conditions:
figure 3(a) shows the results of evolution inwhich populations in the adiabatic levels are observed, while
figure 3(b) shows the corresponding results when propagation is done under continuous observation of
populations in the diabatic levels.

4.Discussion and conclusions

Wehave found that the time evolution associatedwith the Landau–Zener process under continuousweak
populationmeasurement depends on the character of themeasurement process: when population of the
adiabatic states ismonitored, the time evolution exhibits a quantumZeno effect behavior, becomingmore
adiabatic for strongermeasurement. Interestingly, close to the adiabatic limit >z( 1) the dependence on the
measurement strength is non-monotonic, and adiabaticity initially decreases with increasingmeasurement
strength, reflecting the effect of level broadening in this limit.When the population of the diabatic states is
continuously detected, the Zeno effect ismanifested in a slower time evolution under strongermeasurement
conditions, however, in contrast to the accepted notion concerning this effect, the asymptotic populations do
not freeze in their initial values, but instead approach the value 1/2 (different asymptotic populations are realized
if the energy levels separate before this value is reached).

These results should not be surprising in view of past work on the dynamics of the LZ process in a system
interactingwith a dissipative environment [5–21], including the possibility of externally affected control [22].
However viewed in the framework ofmeasurement theory can yield new insight. First is the strong dependence
of the dynamics on the character of themeasurement.Most of the papers cited above consider the effect on the

b

Figure 2. (Continued.)

7
A rough estimate for this valuemay be obtained for λ >z˜ 1by assuming that the evolution freezes at λ=t z˜ , leading to the asymptotic

value Δρ ∼ −e zdia . This behavior is seen infigure 3(b).
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LZ process of decoherence in the diabatic basis. In the present context,monitoring the population of the
adiabatic states has amarkedly different effect on the systemdynamics than following the corresponding non-
adiabatic states. Obviously, this difference just reflects the fact that environmental effects on systemdynamics
depend on theway the environment is coupled to the system, however in the context of ameasurement process it
highlights the possibility to control the systemdynamics by engineering processes that affect its
decoherence [45, 46].

Secondly, themanifestation of the Zeno effect when themeasurement is done in the non-adiabatic basis calls
into question the standardmeasurement theory argument for this effect. This standard argument, applied to the

dynamics of a two-coupled level systemdescribed by theHamiltonian
⎛
⎝⎜

⎞
⎠⎟= + ( )H

E

E
V

V
ˆ 0

0
0

0
1

2
and starting

is state 1, points out that if, during a time intervalT,N projectivemeasurements are done to determinewhether
the system is still in state 1, the probability to remain in this state at timeT is

P
⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟≈ + −

ℏ
V T

N

1

2
1 exp

2
(30)1

2 2

2

which becomes 1 as → ∞N . This argument, however, disregards the questionwhether projective
measurements can bemade at arbitrarily short time intervals, and arguments against this possibility weremade
[47].Without getting into this discussion, we note that the theory of continuousweakmeasurement implicitly
assumes that the strength of individualmeasurements is inversely proportional to themeasurements frequency,
see equation (9). Indeed, it is easy to show that the argument that leads to equation (29) and consequently to

=P 1 21 in the strongmeasurement limit (λ → ∞) of the dynamics described by equation (30), remains valid
when the functions ut2 on the rhs of these equations are replaced by the constant −E E2 1, that is, when the LZ
problem is reduced to the two-coupled levels problem. Consistent with this is the observation that a similar
result,P = 1 21 , is obtained as the → ∞T limit of equation (30) under the assumption that inverse frequency
Δ =t T N of projectivemeasurementsmust befinite.

It is of interest to consider scenarios for experimental realization of such differentmeasurements. Diabatic
populations can in principle bemonitored in systemswhere the two diabatic states correspond to twomolecular
(or dot) charging states. It is harder to visualize ameasurement of adiabatic populations: The standard tool for

c

Figure 2. (Continued.)
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suchmeasurement is optical spectroscopywhich is inherently a destructivemeasurement. Identifying a property
of the eigenstates of a system’sHamiltonian that can be detectedwithout destroying the state is an interesting
challenge. Some possibilities for suchmeasurements were discussed in the introduction. Recently such a
measuring protocol was realized experimentally and used to control the adiabatic populations in two-level
systems comprising a Bose–Einstein condensate in an optical lattice [48].
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