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Recent observations of considerable spin polarization in photoemission from metal surfaces through
monolayers of chiral molecules were followed by several efforts to rationalize the results as the effect
of spin-orbit interaction that accompanies electronic motion on helical, or more generally strongly
curved, potential surfaces. In this paper we (a) argue, using simple models, that motion in curved
force-fields with the typical energies used and the characteristic geometry of DNA cannot account
for such observations; (b) introduce the concept of induced spin filtering, whereupon selectivity in
the transmission of the electron orbital angular momentum can induce spin selectivity in the trans-
mission process provided there is strong spin-orbit coupling in the substrate; and (c) show that the
spin polarization in the tunneling current as well as the photoemission current from gold covered by
helical adsorbates can be of the observed order of magnitude. Our results can account for most of the
published observations that involved gold and silver substrates; however, recent results obtained with
an aluminum substrate can be rationalized within the present model only if strong spin-orbit coupling
is caused by the built-in electric field at the molecule-metal interface. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4820907]

I. INTRODUCTION

Recent observations1–4 of spin-selective electron trans-
mission through double-strand DNA monolayers adsorbed on
gold substrates have attracted considerable interest stemming
from the surprising appearance of an apparently large spin-
orbit coupling effect in an environment where such large cou-
pling has not been previously observed. Indeed, the following
observations need to be rationalized:

(a) High longitudinal (normal to the surface) spin polar-
ization, up to A ≡ (↑ − ↓)/(↑ + ↓) ∼ −60% (the “−”
sign indicates that the majority spins are antiparallel to
the ejecting electron velocity, that is, pointing towards
the surface) is observed in photoelectrons ejected from
gold covered by self-assembled monolayer of dsDNA
at room temperature, largely independent of the polar-
ization of the incident light. The light (¯ω = 5.84 eV
with pulse duration ∼200 ps) was incident normal to the
sample.1

(b) Using four different lengths of the dsDNA (26, 40, 50,
and 78 base pairs) the spin polarization observed on
polycrystalline gold surface appears to increase linearly
with molecular length. The ∼−60% polarization was
obtained with the 78 base-pair monolayer.1

(c) ssDNA monolayers show essentially no spin filtering
effect (or rather, a small positive polarization which is
barely detectable above the experimental noise).1

(d) The observed spin polarization is independent of the fi-
nal kinetic energy of the ejected electron in the range

a)jgersten@ccny.cuny.edu
b)nitzan@post.tau.ac.il

0–1.2 eV provided by the ejecting light. (Note that
the kinetic energy of the emitted electrons reflects the
shift in the metal work function caused by the adsorbed
monolayer.)1

(e) Spin selectivity appears to play a role also in the current
voltage response of junctions comprising one or a small
number of dsDNA oligomers bridging between a nickel
substrate and a gold nanoparticle, probed by a conduct-
ing AFM (Platinum coated tip) at room temperature. The
voltage threshold for conduction and the conduction it-
self are sensitive to the direction of magnetization in-
duced in the Ni substrate by an underlying magnet, indi-
cating that transmission through the chiral monolayer is
sensitive to the spin of the transmitted electron. The ef-
fect disappears when a non-chiral layer is used or when
the Ni substrate is replaced by gold.2

(f) While the I/V behavior appears in these experiments to
depend on the length (number of base pairs) of the DNA
bridge, the small number of samples used (26, 40, and 50
base pairs) and the statistical noise that characterize sin-
gle molecule junctions make it impossible to reach a firm
conclusion about length dependence of the asymmetry
under reversal of magnetization in the Ni substrate.2

(g) Spin selectivity appears also in junctions involving ds-
DNA adsorbed on silver. Here an open circuit config-
uration was used and the spin-selective electron trans-
fer across the DNA monolayer was inferred from the
magnetic field dependence of the voltage induced be-
tween the silver substrate and an underlying magne-
tized nickel, following electron transfer across the DNA
from the silver to an optically excited dye attached on
the other side of the DNA molecule. The asymmetry
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Downloaded 20 Sep 2013 to 132.66.11.211. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4820907
http://dx.doi.org/10.1063/1.4820907
http://dx.doi.org/10.1063/1.4820907
mailto: jgersten@ccny.cuny.edu
mailto: nitzan@post.tau.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4820907&domain=pdf&date_stamp=2013-09-20


114111-2 Gersten, Kaasbjerg, and Nitzan J. Chem. Phys. 139, 114111 (2013)

is strongly temperature dependent (increasing at lower
temperature) and at room temperature appears to be sub-
stantially smaller than that the effects described above
on gold, although direct comparison cannot be made be-
cause of the different experimental configurations used.4

As in Ref. 1, a linear dependence on the DNA chain
length is found.

The account of these observations should be supple-
mented by the well-known fact that photoemission from sur-
face states of solids such as gold characterized by strong
spin-orbit coupling using circularly polarized light shows a
marked spin polarization that depends on the light polar-
ization, Refs. 5 and 6. Photoemission from Au(111) with
light incident normal to the surface shows1 electron spin
polarization of A = −22% whose sign reverses with the
orientation of the circularly polarized light. Such asymme-
try is observed even with linearly polarized light in an-
gular resolved photoemission.6 Earlier observations of the
overall (not spin resolved) photoemission7 or photo-induced
transmission8 through chiral molecules induced by circu-
larly polarized light show yields that depend on the combi-
nation of molecular helicity and light polarization. This can
be rationalized3 as consistent with the later observations de-
scribed above: the different spin components transmit through
the chiral molecular layer with different efficiencies and, con-
sequently, the overall transmission of the asymmetric spin
distribution photoemitted from the gold under circularly po-
larized illumination depends on the matching between the
molecular helicity and the light polarization.

These experimental observations were followed by sev-
eral attempts to provide theoretical rationalization of these
data. It is natural to suspect the implication of spin orbit
coupling in the helical molecule as the source for spin se-
lectivity. Indeed, while the atomic spin orbit coupling in
carbon is rather small, as evidenced by the very small ef-
fect measured in electronic collisions with chiral molecules
in the gas phase9–11 there are experimental and theoretical
indications12–16 that the curvature and torsion imposed on the
electron path in helical structures such as carbon nanotubes
leads to larger spin-orbit coupling than in their linear or pla-
nar counterparts17 due to the overlap of neighboring carbon
p orbitals of different symmetries. It is also interesting to
note that measured spin-orbit coupling in carbon nanotubes
is found15, 16 to be considerably larger (∼3 meV) than is indi-
cated by tight-binding based theoretical calculations that take
curvature into account. It is therefore tempting to associate
the observations of Refs. 1–4 with spin filtering ideas such as
proposed in Refs. 18–20.

Recent theoretical efforts21–27 have pursued this path in
somewhat different ways. The authors of Refs. 21 and 22
have considered spin dependent electron scattering by the
helical potential in analogy to earlier gas-phase scattering
calculations,9–11 while those of Refs. 23, 25 and 26 have fo-
cused on band motion in a tight-binding helical chain. In both
approaches, rather strong, and in our opinion questionable,
assumptions are needed to account for the magnitude of the
observed effects: Medina et al.22 invoke the density of scat-
tering centers as a source of magnification, but do it by im-

posing unphysical normalization on the electron wavefunc-
tions while still considering only a few (usually two) scatter-
ing events. Gutierrez and co-workers23 suggest that the origin
of the strong observed effect is a strong internal electric field
experienced by the electron moving along the helix axis, but
do not support this assumption by actual calculations. Fur-
thermore, Guo and co-workers25 have argued that the model
used in Ref. 23 (electron transmission through a single sim-
ple helix) should not yield any spin dependent transmission.
Instead Guo and co-workers invoke a more complex model, a
double helix with interchain interactions in the presence of
dephasing, to get asymmetric spin transmission, still with-
out accounting for the magnitude of the effect. Note that
the required dephasing appears to stand in contrast to the
observation4 that the magnitude of spin polarization increases
at low temperature. Also, unlike the experimental observa-
tion, the spin polarization obtained from these calculations
appears to be quite sensitive to the electron energy. Note that
these tight-binding calculations do not readily account for the
observed chain-length dependence (the calculation in Ref. 25
does come close for particular choices of injection energy and
dephasing rate), while in the scattering calculation of Ref. 22
this observation is attributed to incoherent additive accumu-
lation of the scattering probability. Finally, Rai and Galperin
have shown that pure spin current can be obtained in such
tight-binding models from the combined effects of external
AC electromagnetic field and DC magnetic field.27

In the present paper we examine the possible contri-
bution of induced spin filtering to the transmitted spin po-
larization observed in Refs. 1–4. As explained below, such
contribution to spin filtering by the helical molecular layer
reflects the combined effect of orbital angular momentum
filtering that characterizes electron transmission through he-
lical molecules and strong spin-orbit coupling at the metal
surface. The latter may reflect the intrinsic spin-orbit cou-
pling property of the substrate, and/or Rashba-type coupling
associated with built-in electric field at the molecule-metal
interface. For example, in the isolated gold atom the ener-
gies of the lowest-lying excited states of electronic configu-
rations (5d)9(6s)2 2D3/2 and (5d)9(6s)2 2D5/2, with energies of
1.136 eV and 2.658 eV above the ground state, respectively,
reflect a spin-orbit splitting of 1.522 eV that results from the
intense electric field in the inner core of the atom which is
in turn caused by the large atomic number and the short-
range screening of the electric field by the core electrons.28 In
gold metal, band-structure calculations of the partial density
of states for the d electrons29–31 show that the spin-orbit split-
ting in gold and silver are 2.65 eV and 0.79 eV, respectively.
These calculations are in agreement with high-resolution
x-ray photoemission measurements.32

The mechanism considered is similar in spirit to the
mechanism for spin polarized photoemission by circularly po-
larized light.33 It is simplest to make the point for photoion-
ization of single atoms. Circularly polarized light couples spe-
cific eigenstates of the electronic orbital angular momentum,
denoted (l, ml) for a given quantization axis. In the presence
of spin-orbit coupling, the atomic angular momentum eigen-
states (j, mj) correspond to the total angular momentum and
its azimuthal projection. Still, the information encoded in the
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selection rules for coupling between the (l, ml) states affects
the transitions between (j, mj) states (through the correspond-
ing mixing or Clebsch-Gordan coefficients) so as to affect
the spin distribution of the ejected or transmitted electrons.
The same argument holds for photoemission, in particular
when the electrons originate from relatively narrow bands that
maintain to some extent the local atomic symmetry. The or-
bital angular momentum “filtering” in photoemission by cir-
cularly polarized light is thus translated at the metal surface
to spin filtering.

The proposed mechanism also have some conceptual
similarity to a recent suggestion by Vager and Vager,34 who
argue that curvature induced spin orbit coupling leads to cor-
relation between the spin and orbital currents that results in
transmitted spin selectivity in any curved path irrespective
of the curvature. In our opinion, this correlation implies that
the transmission of up-spin with momentum k and that of
down-spin with momentum k − δk are equally probable, with
δk → 0 when the curvature vanishes, so it can account for
spin selectivity only by fine-tuning a narrow emitted energy
window (see also Ref. 35).

The essence of our proposal is that helical molecules can
act similarly to circularly polarized light in affecting angu-
lar momentum filtering. This is based on the observation that
under suitable conditions electron transfer can have the char-
acteristic of current transfer,36–38 that is, the transferred elec-
tron can carry information about its linear and/or angular mo-
mentum. Such a picture was used previously36 to interpret
the observations,7, 8 already mentioned above, that when elec-
tron transfer or transmission induced by circularly polarized
light take place through chiral molecules, their efficiencies are
larger when the light polarization matches the molecular he-
licity than when it does not. Similarly, in the present case,
opposite angular momentum (±ml) states couple differently
to the molecular helix and, provided the substrate surface is
characterized by strong SO coupling, this orbital angular mo-
mentum filtering translates into spin filtering during the in-
jection process. This picture implies that the spin filtering ob-
served in Refs. 1–4 may reflect the spin-orbit coupling at the
metal-molecule interface in addition to any spin filtering in
the molecular layer itself.

An immediate consequence of this model is the predic-
tion that the effect will be smaller for interfaces with weaker
spin-orbit coupling, which seems to be consistent with the
weaker effect found on silver,4 but not with recent results ob-
tained on Aluminum.39 It should be kept in mind, however,
that Rashba spin-orbit coupling can result from strong interfa-
cial fields at metal-molecule interfaces that in turn depend on
the electronic chemical potential difference between the metal
and the adsorbate layer and are made stronger because of the
short electron screening length in the metal. In this paper we
explore other implications of this picture, using several differ-
ent models for the electron propagation through the molecular
environment. We start in Sec. II by considering the effect of
SO coupling in the helical molecular structure. We analyze
two models for electron transport through a helical structure
where the SO coupling is derived from the helical potential
and show that such models cannot account for the observed
spin polarization. In Sec. III we introduce and discuss the con-

cept of induced filtering. Sections IV and V consider angular
momentum selectivity and the consequent spin filtering for
different transmission models: One (Sec. IV) considers elec-
tron transmission through a helical tight-binding chain and the
other (Sec. V) describes on electron scattering by the molec-
ular helical potential. The first model seems to represent the
situation incurred for electron tunneling transmission with en-
ergy well below the vacuum level, while the other is more
suitable for the description of photoemission, where the elec-
tron energy is larger than the vacuum level. We calculate the
spin filtering associated with each of these models and com-
pare its properties as compared with the experimental obser-
vations. Section V concludes.

II. SPIN ORBIT COUPLING INDUCED BY MOTION
THROUGH THE HELIX

In this section we analyze the implication of electron mo-
tion through the helical structure on its spin evolution caused
by the ensuing spin orbit coupling. We find that the predicted
effect is small.

While the actual motion of the electron should be ob-
tained by solving the Schrödinger equation under the effect
of the electron-molecule coupling, we expect that a reason-
able order-of-magnitude estimate can be obtained by consid-
ering two limiting cases. In one, the electron is assumed to
travel in a 1-dimensional path along the helix. In the other the
unperturbed electron is assumed to be a plane wave travel-
ling in the z (axial) direction and to be scattered by the helical
potential.

A. Spin rotation during helical motion

Consider an electron moving along a one-dimensional
helical path embedded in three-dimensional space. The spin
degrees of freedom will be treated quantum mechanically and
the translational motion will be treated classically. Denote the
helix radius by a, the pitch by p and the speed along the axis
of the helix by v (see Fig. 1). For a right-handed helix the

FIG. 1. A generic helical structure referred to in the present section. It is
characterized by its radius a, pitch p, and length L (the latter not indicated).
The transmitting electron is assumed to move with constant speed v along the
axial direction.
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location of the electron as a function of time is

x = a cos

(
2πz

p

)
,

y = a sin

(
2πz

p

)
, (1)

z = vt.

The velocity and acceleration components are, respec-
tively,

ẋ = −2πa

p
v sin

(
2πz

p

)
,

ẏ = 2πa

p
v cos

(
2πz

p

)
, (2)

ż = v,

and

ẍ = −a

(
2πv

p

)2

cos

(
2πz

p

)
,

ÿ = −a

(
2πv

p

)2

sin

(
2πz

p

)
, (3)

z̈ = 0.

By Newton’s second law, the force responsible for the accel-
eration is

�F = m�̈r = −∇V, (4)

where m is the electron’s mass and V is the potential confining
the electron. Note that this model is simplified in that the pres-
ence of discrete molecular groups along the helix is ignored.
The spin orbit interaction (including the Thomas 1/2 factor40)
is given by

HSO = − ¯

4mc2
�σ · �̇r × ∇V = ¯

4mc2
�σ · �̇r × �F . (5)

Here c should be taken to be the speed of light in the adsorbate
medium. Thus,

HSO = ¯

4c2

(
2πv

p

)2 [2πv

p
a2σz + av

(
σx sin

(
2πvt

p

)

− σy cos

(
2πvt

p

))]
. (6)

These equations are the same in form as those used to de-
scribe electron spin resonance or nuclear spin resonance (see,
e.g., Ref. 41). The Heisenberg equations of motion for the dy-
namical Pauli matrices are

d �σ (t)

dt
= i

¯
[HSO, �σ (t)] (7)

(Other terms in the Hamiltonian commute with �σ .) Introduc-
ing the vector,

�A(t) = ¯a
2

4c2

(
2πv

p

)3

k̂ + ¯av

4c2

(
2πv

p

)2

sin

(
2πvt

p

)
î

− ¯av

4c2

(
2πv

p

)2

cos

(
2πvt

p

)
ĵ , (8)

the equations of motion become the familiar Bloch equations
for the precession of spin around a time-dependent vector,

d �σ (t)

dt
= 2

¯
�A(t) × �σ (t). (9)

In terms of the scaled time

θ ≡ 2πvt

p
, (10)

and the dimensionless parameters

b = πav2

pc2
, g = πav

cp
, (11)

the equations of motion become

dσx

dθ
= −bσz cos θ − 2g2σy,

dσy

dθ
= −bσz sin θ + 2g2σx, (12)

dσz

dθ
= b(σy sin θ + σx cos θ ).

In particular, the timescale for changing σ z is seen to be

tsc =
(

2π2av3

p2c2

)−1

. (13)

The corresponding length scale is zsc = vtsc or

zsc

p
= p

2a

( c

πv

)2
. (14)

Using the parameters c = 3 × 108 m/s, a = 1 nm,
p = 3.4 nm, and v = 5.9 × 105 m/s (1 eV) one gets zsc/p

∼ 4 × 104. Thus, only little rotation of the spin can be ex-
pected when an electron traverses a helix consisting of sev-
eral turns. This consideration is also supported by a simple
perturbation calculation (see Appendix A). The same magni-
tude of the effect is expected for a cross-coupled double helix
structure.

B. Electron scattering by a helical potential

In an alternative picture, consider an electron moving in
the outwards z direction while interacting with the helix po-
tential, and the spin polarization that results from the Rashba
interaction. Again, the velocity of the electron in the z di-
rection is taken to be constant, so z = vt . The motion in the
x- and y- directions will be treated quantum mechanically. The
unperturbed Hamiltonian is taken to be

H0 = p2
⊥

2m
+ V (x, y, t), �p⊥ = pxî + pyĵ , (15)

where the time dependent helical potential experienced by the
electron in its rest frame is modeled as

V (x, y, t) = V0δ(x cos ϕ(t) + y sin ϕ(t) − a)δ(−x sin ϕ(t)

+ y cos ϕ(t))

= V0δ(xC + yS − a)δ(−xS + yC), (16)
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where a is the radius of the coil and V0 is the strength of the
interaction and

ϕ(t) = 2πvt

p
, C = cos ϕ(t), S = sin ϕ(t). (17)

It is convenient to use a rotating coordinates frame by defining

x ′ = x cos ϕ(t) + y sin ϕ(t) ≡ xC + yS,
(18)

y ′ = −x cos ϕ(t) + y cos ϕ(t) ≡ −xS + yC,

in terms of which the model potential is given by

V (x ′, y ′, t) = V0δ(x ′ − a)δ(y ′). (19)

The magnetic field is given by

�B ≈ − �v × �E
c2

= − 1

ec2
�v × ∇V (20)

where c is the speed of light in the medium. The spin-orbit
interaction Hamiltonian is

Hso = −�μ · �B, (21)

where �μ is the magnetic moment associated with the spin

�μ = −g
e

2m
�s = −g

e

2m

¯

2
�σ . (22)

Equations (20)–(22) lead to

Hso = − g¯

4mc2
�σ · �v × ∇V. (23)

Let �v = vk̂ (where k̂ is a unit vector in the direction of the
z axis) and take g = 2. Introducing also the Thomas factor
(1/2), the spin-orbit interaction becomes

Hso = − ¯v

4mc2
�σ · k̂ × ∇V. (24)

In Appendix B we use time-dependent perturbation theory
(first order) to calculate the amplitude for making a transition
from an initial state (�k⊥, s) to a final state (�k′

⊥, s ′), where �k⊥
corresponds to motion in the xy-plane and the spatial parts of
the initial and final wavefunctions are ψi = ei�k⊥· �R/

√
A and

ψf = ei�k′
⊥· �R/

√
A, A being the normalization surface in the

xy plane (the resulting probability is multiplied below by the
number of adsorbed helical molecules in the normalization
area, so that the transition cross-section will be proportional
to the density ρh of such molecules). The result for the transi-
tion amplitude is

c�k′
⊥,s ′ = ivV0

4mc2

p

2πv

1

A

2πN∫
0

eiqa cos ϕχ
†
s ′

(
0 −q−
q+ 0

)
χsdϕ,

(25)

where χ s and χ s′ are the initial and final spin vectors,

�q = �k⊥ − −→
k′ ⊥ and q± = qx ± iqy.

In the case that N is an integer one obtains

c�k′
⊥,s ′ = iNpV0

4mc2

1

A
J0(qa)χ †

s ′

(
0 −q−
q+ 0

)
χs. (26)

Spin flip transitions occur when (s, s′) = (1, −1) or (−1, 1).
The transition probability in either case is obtained from the

square of the amplitude calculated from (26) multiplied by the
density of final states, A/(2π )2,

P (q) = 1

A

(
NV0pqJ0(qa)

16πmc2

)2

→ρh

(
NV0pqJ0(qa)

16πmc2

)2

. (27)

The expression on the right is obtained by further multiply-
ing by the number of helical molecules, Nh = ρhA, adsorbed
in the normalization area, where ρh is the surface density of
such molecules. The transition probability (27) depends on
the square of the molecular length. More importantly, there
is no difference between positive and negative helicity states
and hence no spin selectivity occurs for a given q.

The total transition probability is obtained by integrating
over all wave-vector transfers,

Ptotal =
∫

d2qP (q) = 1

2π

(V0Np)2

(4mc2)2

1

A

2k∫
0

dqq3J 2
0 (qa)

= χ
4a2k2

3

[
2(ka)2J 2

0 (2ka) + 2kaJ0(2ka)J1(2ka)

+ (2k2a2 − 1)J 2
1 (2ka)

]
, (28)

where the parameter χ is

χ = ρh

2π

(V0Np)2

(4mc2a2)2
. (29)

For V0 = 10 eV nm2, Np = 50 nm, mc2 = 511 keV (for this
estimate we use the speed of light in vacuum), a = 1 nm, and
ρh = 0.3/nm2 this yields χ ≈ 10−9. For an electron energy
of 1 eV the value of k is 6 × 109 so ka ≈ 6 and the order of
magnitude of the result is not changed by much. Furthermore,
the transition probability is symmetric for positive and neg-
ative helicities and equivalently, as noted above, for +→ −
and −→ + spin transitions. It therefore does not lead to a net
spin polarization. In Appendix B we further show that a model
with two helical molecules yields essentially similar results.
In conclusion, the axial motion of the electron through the he-
lix is not a good model for explaining the spin polarization of
the electrons that pass through the DNA molecule.

It should be noted that because motion in the z direction
has been taken classical, the calculation that leads to Eq. (28)
does not take into account possible constructive interference
in the diffraction of the electronic wavefunction from the pe-
riodic helix structure (see Sec. V, Eq. (88) and the discussion
following it for a treatment that takes this constructive inter-
ference into account). Removing this shortcoming still leads
to a negligibly small contribution.42

III. INDUCED FILTERING

We define induced filtering (or induced selectivity) as a
process where geometry or symmetry-imposed selectivity in
one variable A causes selectivity in another variable B that is
coupled to it. Specifically, let Ĥ = Â + B̂ where [Â, B̂] = 0.
Then eigenstates of the Hamiltonian can be written as prod-
ucts ψa, b = |a〉|b〉 of eigenstates of the Â and B̂ operators.
When in such a state, the probability to observe the system in
eigenstate state b′ of B̂, is obviously δb, b′ . Consider the trans-
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formation ψa, b → ψa′, b induced by some external or internal
perturbation represented by a hermitian operator V̂ that cou-
ples only states in the {|a〉} sub-space, so that ψa′b = V̂ ψa,b

(e.g., in optical transitions V̂ is often the dipole operator) with
||ψa′, b|| = 1. As indicated, the state in the B subspace is not
affected by this coupling, so the probability of observing a
particular value of the B variable is the same before and after
the transition. Indeed,

Pb′ = 〈b′|TrA(|V ψa,b〉〈V ψa,b|)|b′〉
= δb,b′

∑
a′

〈a|V |a′〉〈a′|V |a〉 = δb,b′ . (30)

In the presence of coupling between Â and B̂ the eigenstates
of the system Hamiltonian are no longer simple products of
|a〉 and |b〉, but can be expanded in the form

ψ =
∑

a

∑
b

cab|a〉|b〉. (31)

For a system in this state the reduced density matrix in the B
subspace is

ρ
(B)
b,b′ = TrA(|ψ〉〈ψ |) =

∑
a

cabc
∗
ab′ (32)

and in particular, the probability to observe the system in state
b is

Pb =
∑

a

|cab|2. (33)

The transformed state is now V̂ ψ =∑a

∑
b cab|b〉V̂ |a〉 and

the reduced density matrix in the B subspace is

ρ
(B)
b,b′ = TrA(V̂ |ψ〉〈ψ |V̂ ) =

∑
a′′

∑
a,a′

cabc
∗
a′b′ 〈a′′|V |a〉〈a′|V |a′′〉

=
∑
a,a′

cabc
∗
a′b′ 〈a′|V V |a〉. (34)

The probability to observe b is then

Pb =
∑
a,a′

cabc
∗
a′b〈a′|V V |a〉. (35)

Comparing to (33) we see that the final distribution in the B-
subspace is now affected by the transition—any selectivity ex-
pressed by the 〈a′|V V |a〉 matrix elements is partly imparted
into this distribution. As a variation of this theme we note that
instead of TrA in (34) we often need to sum only over states
on an energy shell, so that the quantity of interest is

ρ
(B)
b,b′ (E) =

∑
a′′

∑
a,a′

cabc
∗
a′b′ 〈a′′|V |a〉〈a′|V |a′′〉δ(E − Ea′′ )

= 1

2π

∑
a,a′

cabc
∗
a′b′�a,a′(E), (36)

where

�a,a′ (E) = 2π
∑
a′′

〈a′|V |a′′〉〈a′′|V |a〉δ(E − Ea′′ ). (37)

Equations (35) and (36) are manifestations of induced selec-
tivity. In what follow we consider two concrete examples.

FIG. 2. A schematic view of a helical molecular bridge connecting two metal
leads, left and right, characterized by the electronic electrochemical poten-
tials, μL, μR, respectively.

A. Induced selectivity in transmission

Consider a junction in which a molecular bridge M con-
nects two free electron reservoirs, L (left) and R (right), as
seen in Fig. 2. The transmission function T (E) is given by
the Landauer formula

T (E) = Tr[�(L)(E)G†(E)�(R)(E)G(E)], (38)

where G is the molecular retarded Green function and �(K),
K = L, R is twice the imaginary part of the self-energy of the
bridge associated with its coupling to the reservoir K and the
trace is over the bridge subspace. In the basis of eigenstates
of the bridge Hamiltonian

(�(k)(E))n,n′ = 2π
∑

k

VnkVk,n′δ(E − εk), (39)

where the sum is over the free electron states of energies εk

in the reservoir K and Vnk is the matrix element between the
a molecular state n and a reservoir state k. The subscript k
that enumerates the states in the reservoirs is usually associ-
ated with eigenstates of operators that appear in, and com-
mute with, the reservoir Hamiltonian. Consider now the situ-
ation where the single electron states in the right lead R are
characterized, in addition to their energy, by quantum num-
bers l, s associated with independent operators L̂ and Ŝ that
commute with the Hamiltonian, while in the left lead L these
operators are coupled by some internal single electron force
field, so that only some combined operator Ĵ commutes with
the Hamiltonian. For example, if the left and right electronic
reservoirs are metals with single electron states described by
Bloch wavefunctions ψnk(r) = eik · runk(r), the quantum num-
bers n (or a set of such numbers) characterizing different
bands will have atomic character if the bands are narrow rela-
tive to the spacing between the parent atomic levels. In such a
case, n can stand for the quantum numbers (l, s) of the orbital
and spin angular momenta in a metal with no spin-orbit cou-
pling, while in the presence of spin orbit coupling only the
state j of the total angular momentum is meaningful. (Note
that in reality we should also consider the projections of these
vector operators on some axis, and the corresponding quan-
tum numbers ml, ms, and mj. This is done in the application
discussed in Sec. IV). Equation (39) can then be recast in
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more detailed forms

(�(L)(E))n,n′ =
∑

j

(�(Lj ))n,n′ ,

(40a)
(�(Lj ))n,n′ = 2π

∑
k

Vn,jkVjk,n′δ(E − εjk),

(�(R)(E))n,n′ =
∑
l,s

(�(Rls))n,n′ ,

(40b)
(�(Rls))n,n′ = 2π

∑
k

Vn,lskVlsk,n′δ(E − εlsk)

Equations (40a) and (40b) are identical to what will be ob-
tained in a multi-terminal junction, where each of the {Lj} and
{Rls} groups of states represent different terminals. The trans-
mission fluxes between two such terminals take the forms43

TLj→Rls(E) = Tr[�(Lj )(E)G†(E)�(Rls)(E)G(E)]. (41)

Whether such fluxes are measurable or not depend on the en-
ergetic details of the system. For example, if the bands j are
energetically distinct, it is possible in principle, by tuning the
voltage bias window, to focus on the flux associated with a
particular “j terminal.” If the electrons emerging on the right
can be also analyzed and their quantum state (l, s) can be de-
termined, we are in a position to determine the flux associated
with the transmission function of Eq. (41).

In the application considered in Sec. IV we are interested
in the transmission into a particular eigenstate s of the oper-
ator Ŝ (that is, in an experiment where Ŝ is monitored in the
outgoing electronic flux in R). This corresponds to the trans-
mission function

TLj→Rs(E) =
∑

l

TLj→Rls(E)

= Tr[�(Lj )(E)G†(E)�(Rs)(E)G(E)], (42)

�(Rs) ≡
∑

l
�(Rls).

Suppose now that the bridge Hamiltonian, as well as the
Hamiltonian of the R reservoir and the couplings between
the bridge and the reservoirs, do not depend on the operator
Ŝ. In this case (cf. Eq. (40)) (�(Rls))n,n′ = 2π

∑
k Vn,lkVlk,n′δ

(E − εlk) ≡ �(Rl) as well as �(Rs) defined in Eq. (42) do not
depend on s. In particular, �(Rs) will be denoted �(R) below.
On the left, writing (as in (31)),

|j 〉 =
∑

l

∑
s

cj,ls |l〉|s〉, (43)

we find

(�(Lj ))n,n′ = 2π
∑

k

∑
l

∑
l′

∑
s

cj,lsc
∗
j,l′sVn,lkVl′k,n′δ(E−εjk)

=
∑

s

�(Ljs), (44a)

(�(Ljs))n,n′ ≡ 2π
∑

k

∑
l

∑
l′

cj,lsc
∗
j,l′sVn,lkVl′k,n′δ(E − εjk).

(44b)

If in addition we disregard in the Green functions in Eq. (42)
terms that make them non spin-diagonal, then the separability

of Eq. (44) into its s components make it possible to write the
transmission function for the flux from the L terminal into a
particular state s in the outgoing flux on the right in the form

TLj→Rs(E) = Tr[�(Ljs)(E)G†(E)�(R)(E)G(E)]. (45)

Two comments regarding this result are in order: First, al-
though we have made the assumption the bridge Hamiltonian
does not depend on S, the Green functions G(E) are in general
non spin-diagonal because of the self-energy terms associated
with the coupling between the bridge and the left reservoir in
which strong S-L coupling exists. Such terms can couple dif-
ferent s states of the bridge through their interaction with the
same j-state on the left reservoir. Such couplings have been
disregarded in obtaining Eq. (45)—a reasonable approxima-
tion when the molecule-lead coupling is not too strong. Sec-
ond, the appearance of the subscript j reflects our assumption
that transmission out of the L reservoir is dominated by a par-
ticular band whose atomic origin is indicated by the quantum
number j.

Equation (45) constitutes our final result for this case. To
see its significance consider, for example, the transmission
from L to R as would be realized if the bias is such that (a)
a particular band j in L is the source and (b) the L states are
occupied while their R counterparts are vacant. The probabil-
ity to measure a value s for the observable Ŝ in the source
terminal is, from Eq. (43),

P (Lj )
s =

∑
l

|cj,sl |2, (46)

while the probability for this measurement in the exit terminal
is given by

P (R)
s = TLj→Rs(E)∑

s

TLj→Rs(E)
. (47)

Obviously, P (R)
s �= P

(Lj )
s , implying that the bridge acts as a Ŝ

filter although its transmission properties do not depend on
Ŝ. As already noted, in Sec. IV we will replace j, l, and s by
(j, mj), (l, ml) and (s, ms)—the quantum numbers that charac-
terize the total, orbital and spin atomic angular momenta and
their projections, respectively.

Finally, we note two simplified special cases. First, in the
case of a single state bridge, or when the coupling between
the bridge and the left terminal is channeled through a single
state of the bridge (denoted by |1〉), Eqs. (47) and (45) lead to

P (R)
s = �(Ljs)∑

s

�(Ljs)
,

(48)
�(Ljs) ≡ 2π

∑
k

∑
l

∑
l′

cj,lsc
∗
j,l′sV1,lkVl′k,1δ(E − εjk).

Second, as will be seen below, sometimes the sum over l,l′ is
dominated by the diagonal l = l′ contributions, in which case

�(Ljs) = 2π
∑

k

∑
l

|cj,ls |2|V1,lk|2δ(E − εjk). (49)
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B. Induced selectivity in photoemission

We consider photoemission from a simple atomic lat-
tice model, where the electronic bands are narrow relative
to the energy separation between the electronic levels of
the constituent atoms. Photoemission then reflects the sym-
metry property of ionization from a single atom with one
difference—the existence of the solid-vacuum interface. Ac-
cordingly, we consider a one-electron atom located at the ori-
gin and positioned at a distance a to the left of this interface,
represented by a planar surface, z = a. To the right of this
surface is vacuum. The interface is simply treated as a step
potential given by

V (z) =
{

V0 if z < a

0 if z > a
, (50)

where V0 < 0.
Consider next the atomic state in the absence of the in-

terfacial wall. It is taken to be an eigenstate of total angular
momentum operator ĵ and its azimuthal projection ĵz, with
quantum numbers j and mj, respectively. In terms of eigen-
states of the orbital angular momentum and spin operators,
the corresponding wavefunction takes the form

uj,mj
(�r) =

∑
ml,ms

〈lmlsms |jmj 〉vj,l(r)Yl,ml
(θ, ϕ)χs

ms
. (51)

Here Yl,ml
(θ, ϕ) are eigenfunctions of the angular momen-

tum operator, vj,l(r) are their radial counterparts, and χs
ms

are
spin wavefunctions—two-component spinors. The symbols
〈lmlsms|jmj〉 are Clebsch-Gordan coefficients. We assume that
this wavefunction was obtained by absorbing a photon, so its
energy E is positive and the state is 2j + 1 degenerate.44

This atomic wavefunction is embedded in a continuum of
states associated with the semi-infinite spaces to the right and
left of the wall at z = a. In the vacuum, z > a, the Schrödinger
equation is

(∇2 + k2)φR(R, ϕ, z) = 0, k2 = 2mE/¯2, (52)

where m is the (effective) electron mass. The relevant solu-
tions may be expressed in the form of a sum of Bessel trans-
forms,

φR(R, ϕ, z) =
∑
ml,ms

∞∫
0

Aml,ms
(Q)Jml

(QR)eiqz+imlϕχs
ms

dQ,

(53)

where q =
√

k2 − Q2 for Q < k and q = i
√

Q2 − k2 for
Q > k. In the former case these are outgoing waves into vac-
uum whereas the latter case describes evanescent waves in the
vacuum side of the interface.

In the solid, z < a, the free Schrodinger equation is
(∇2 + κ2)φL(R, ϕ, z) = 0, (54)

where κ =
√

k2 − 2m|V0| / ¯2. The outgoing solution, i.e., a
left-travelling wave, may also be expressed as a sum of Bessel
transforms

φL(R, ϕ, z) =
∑
ml,ms

∞∫
0

Bml,ms
(Q)Jml

(QR)e−iq ′z+imlϕχs
ms

dQ,

(55)

where q ′ =
√

k2 − Q2.

We will approximate the total wave function in the solid
with the atom as a linear combination of an atomic wave func-
tion and the free wave function. By using the free wave func-
tion rather than the more general solution of the solid-plus-
atom potential we are neglecting final-state interactions.45 In
this approximation, the total wave function for z < a is

φ(R, ϕ, z) = φL(R, ϕ, z) + uj,mj
(�r), (56)

whereas in vacuum, z > a, the total wave function is simply
φ(R, ϕ, z) = φR(R, ϕ, z). (57)

This wavefunction represents a scattering “in-state.” A similar
construction may be used to obtain the scattering “out-state.”

The expansion coefficients A and B in (53) and (55)
can be found by matching the wave functions at the surface
z = a, using the continuity of φ and its normal derivative at
this surface. This is done in Appendix C, leading to[

Aml,ms
(Q)

Bml,ms
(Q)

]
= 1

q + q ′

[
q ′e−iqa −ie−iqa

−qeiq ′a −ieiq ′a

] [
α

β

]
, (58)

where
α = Q〈lmlsms |jmj 〉

×
∞∫

0

Jml
(QR)vj,l(

√
R2+a2)Yl,ml

(�, 0)RdR (59)

and

β = Q〈lmlsms |jmj 〉
∞∫

0

Jml
(QR)

([
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]

× vj,l(r)Yl,ml
(θ, 0)

)
r=√

R2+a2

θ=�

RdR. (60)

The coefficients Aml, ms(Q) and Bml, ms(Q) are seen to be simply
proportional to the Clebsch-Gordan coefficients.

Equations (53) and (57), and (58)–(60) give an explicit
expression for the outgoing solution outside the solid. The
emitted electron flux in the direction normal to the surface
is

Jz = ¯

2mi

(
φ∗

R

∂

∂z
φR − φR

∂

∂z
φ∗

R

)
. (61)

The total current is obtained by integrating the current density
over an area in vacuum parallel to the surface

Iz =
∞∫

0

dRR

2π∫
0

dϕJz = 2π¯

m

∑
ml,ms

k∫
0

dQ
q

Q

∣∣Aml,ms
(Q)
∣∣2

= 2π¯

m

∑
ml,ms

|〈lmlsms |jmj 〉|2
k∫

0

dQ
qQ

(q + q ′)2

×
[
q ′2
( ∞∫

0

Jml
(QR)vj,l

(√
R2 + a2

)
Yl,ml

(�, 0)RdR

)2

+
( ∞∫

0

Jml
(QR)

([
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]

× vj,l(r)Yl,ml
(θ, 0)

)
r=√

R2+a2

θ=�

RdR

)2]
. (62)
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To get (62) we have used the identities
∞∫

0

ei(ml−ml′ )ϕdϕ = 2πδml,ml′ (63)

and (orthogonality for spinors)

χs†

ms′ χ
s
ms

= δms,ms′ . (64)

Also, the upper limit of the Q-integration has been changed
from ∞ to k since for Q > k the variable q is imaginary and
there is no contribution to the current.

As before (Eqs. (45) and (44b)), the appearance here of
the Clebsch-Gordan coefficients in the emitted current im-
plies that if an ml-filter was in effect, induced filtering of ms

could result. In particular, ml selectivity can be imposed by
circularly polarized light. Indeed it should be noted that our
treatment is an analogue of the Fano theory of spin-polarized
photoemission from atoms characterized by strong spin-orbit
coupling,33 generalized to the presence of the solid-vacuum
interface.

IV. INDUCED SPIN FILTERING IN TUNNELING
THROUGH A MOLECULAR HELIX

Here we implement the results from Sec. III, Eqs. (44),
(45), and (47), to calculate the induced spin selectivity in a
model that incorporates a metal substrate and an adsorbed
helical molecule. While we keep the calculation at a generic
level, we use the band structure of gold and the structure of
the DNA helix to choose specific parameters when needed. It
should be emphasized that the actual behavior of electron tun-
neling between substrate and adsorbate depends on details of
the electronic structure as manifested mainly in the alignment
between their levels and in their electronic coupling. As we
are not using such data but instead make assumptions and take
shortcuts in order to simplify the calculation,46 the results ob-
tained below should be regarded as suggestive of the order of
magnitude of the spin polarization effect, rather than conclu-
sive. In order to get such estimate, the following assumptions
are made:

(a) The tunneling electrons originate primarily from the rel-
atively narrow d-band of gold. More specifically, this
band split into a higher energy 2D5/2 and a lower en-
ergy 2D3/2 band which are somewhat overlapping,29 and
we assume that the tunneling current is dominated by
the 2D5/2 sub-band. This spectroscopic term reflects the
atomic parenthood of these states, of orbital angular mo-
mentum l = 2 and total angular momentum j = 5/2.

(b) The DNA molecule is represented by a tight binding he-
lical chain with nearest neighbor intersite coupling V and
axis normal to the gold surface, taken below as the z
direction.47

(c) The DNA-substrate coupling is dominated by the sub-
strate atom at position �rA nearest to the DNA (see Fig. 3).
We disregard crystal-field distortion of the atomic wave-
functions, so the relevant coupling results from the over-
lap between the l = 2 wavefunctions of this atom and the
DNA site orbitals. In the calculation below we assume
that this coupling, between the atomic wavefunction

z

A

1

2

N
N-1

p

a

FIG. 3. The DNA-substrate model, with the DNA described as a tight-
binding chain while the DNA-substrate coupling is assumed to be dominated
by a substrate atom A nearest to the molecule.

ψl=2,ml
(�r − �rA) centered at �rA and a DNA site wavefunc-

tion centered at �rn is proportional to ψl=2,ml
(�rn − �rA).

Otherwise, the substrate density of states in the energy
range relevant for the tunneling process is assumed con-
stant. Atomic wavefunctions used are hydrogenic wave-
functions for the n = 5 (outer gold) shell, calculated with
effective atomic number Z = 2 to account for screening
by inner shell electrons.

To evaluate the transmission probability we need to spec-
ify the substrate density of states ρ, the position �r1 − �rA of the
helix site 1 nearest to the surface atom (Fig. 3), the self-energy
of the helix associated with its coupling to the reservoirs near
positions 1 and N, and the geometrical and electronic struc-
tures of the helix as expressed by the relative position of the
helix sites and the intersite coupling. Only the last two intrin-
sic helix properties affect the resulting spin polarization of
the electronic wave injected into the helix; however, the over-
all spin polarization at a detector placed outside the far end
of the helix, as expressed by the analog of Eq. (47), also de-
pends on the transmission properties at the two interfaces (see
below). In cylindrical coordinates the position of a helix site is
written (z, a, φ), where a is the helix radius. The surface atom
is placed at (zA = 0, rA, φA = 0) so that rA measures its dis-
tance from the symmetric position on the axis, the first helix
site is placed at (z1, a, φ1 = 0) and subsequent sites are po-
sitioned so that two nearest neighbors are positioned at (z, a,
φ) and (z ± p/Np, a, φ ± 2π /Np) so that the nearest neighbor
distance is dnn = √2a2(1 − cos(2π/Np)) + (p/Np)2. In our
calculation we use typical DNA values for the helix: radius,
a = 1 nm, pitch, p = 3.4 nm and number of sites per pitch,
Np = 11. The intersite coupling is set to V = 1 and is used in
what follows as our unit of energy.

Because of the Kramers degeneracy, substrate states that
belong to a given j band must appear as degenerate pairs
{±mj}. From mj = ml + ms, it follows that for each sub-
strate state with a given ms parent there is a substrate state of
the same energy with the opposite, −ms, parent. Therefore, if
the transmission process is by itself spin independent, without
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S-L coupling both spin orientations will be expressed in the
transmitted flux in equal amounts. As seen in Sec. III, spin
selectivity can be affected in the transmission process by the
combined effect of (a) dependence of the transmission on the
orbital motion and (b) the spin-orbit coupling in the substrate
or at the substrate surface.

The calculation proceeds by rewriting Eqs. (44b) and (45)
so as to take into account the actual selection rules. For our
problem the operators of interest are the orbital angular mo-
mentum L̂, the spin Ŝ, and the total angular momentum Ĵ

as well as their projections L̂z, Ŝz, and Ĵz. The correspond-
ing quantum numbers are s = 1/2 and j = 5/2 and l = 2 as
determined by our assumption concerning the incoming elec-
trons. Also, the spin projection, ms, is determined by the fi-
nal measurement that checks whether ms is +1/2 or −1/2.
The expressions for the transmission function equivalent to
Eqs. (45) and (44b) are

T2D5/2→ms
(E) =

∑
n

∑
n′

〈n|�(ms )(E)|n′〉〈n′|G†(E)|N〉

×�N (E)〈N |G(E)|n〉, (65)

(�(ms ))n,n′ ≡ 2πρ
∑
mj

∑
ml

∑
ml′

〈
2,ml,

1

2
,ms

∣∣∣∣52 ,mj

〉

×
〈
2,m′

l ,
1

2
,ms

∣∣∣∣52 ,mj

〉∗
Vn,ml

Vml′ ,n′ , (66)

where 〈l, ml, s, ms|j, mj〉 are Clebsch-Gordan coefficients.
Since these coefficients vanish unless mj = ml + ms, Eq. (66)
can be simplified. We get

(�(ms ))n,n′ ≡2πρ
∑
ml

∣∣∣∣
〈
2,ml,

1

2
,ms

∣∣∣∣52 ,ml+ms

〉∣∣∣∣
2

Vn,ml
Vml,n′ .

(67)

In obtaining this result we have assumed that all states of the
2d5/2 sub-band of gold contribute equally to the transmission.
Other models could be considered. For example, a more care-
ful study of the density of states of the 2d5/2 sub-band for gold
shows peaks in the density of states that arise from Stark split-
ting of the different |mj| atomic states by the crystal electric
field.29 The ±mj states with the highest energy fill the en-
ergy interval within a depth of 2.8 eV below the Fermi level.
If we assume that only this group of mj states contributes
to the photoemission signal, the calculation described above
will be modified. For example, if these states correspond
to mj = ± 5

2 , that is, only these values of mj contribute to
Eq. (67), this equation becomes

(�(±1/2))n,n′ ≡ 2πρ

∣∣∣∣
〈
2,±2,

1

2
,± 1/2

∣∣∣∣52 ,
5

2

〉∣∣∣∣
2

×Vn,ml=±2Vml=±2,n′ . (68)

The model should be supplemented by the self-energies
that account for the coupling of the helix to its environment.
For the self-energy at the far end (site N) of the molecular
helix we consider two models. In one, we take a completely
transparent boundary, in effect assuming that the helix extends

to infinite length, by associating with end site the exact self-
energy of a tight binding lattice,

�N (ε) = ε − ε0 −
√

(ε − ε0)2 − 4V 2

2
≡ �N (ε) − i

2
�N (ε),

(69)

where ε0 and V are the site energy and nearest neighbor
coupling of the molecular tight-binding model. In the other
model, we assume that the space outside site N is character-
ized by a wide-band spectrum, and associate with this site a
constant damping rate �N (i.e., �N = −(i/2)�N). On the sur-
face side, one contribution to the self-energy comes from the
coupling to the surface atom that dominates the electron in-
jection. For a given ms(=±1/2) state this is(

�
(ms )
A

)
n,n′ = −(i/2)(�(ms ))n,n′ . (70)

In addition, we assign a self-energy to site 1 of the helix that
accounts for electron flux losses all other available states of
the substrate. For this self-energy, �1 we take again one of
the two models used for �N, that is, either the tight bind-
ing expression (69) or a constant −(i/2)�1. Finally, the Green
functions that appear in Eq. (65) are obtained by inverting the
Hamiltonian matrix of the helix, including the relevant self-
energies

Gr (ε) = [εI − H − �1(ε) − �N (ε) − �A]−1 , (71)

where H is the nearest-neighbor tight-binding Hamiltonian of
the helix.

Results of these calculations are shown in Figures 4(a)–
4(c), which show the asymmetry factor

A(E) = T2D5/2→ms=1/2(E) − T2D5/2→ms=−1/2(E)

T2D5/2→ms=1/2(E) + T2D5/2→ms=−1/2(E)
, (72)

as a function of the transmission energy. Here ms = +1/2 cor-
responds to spin projection pointing towards the positive z
direction, that is, away from the surface. Figure 4(a) shows
the asymmetry factor in a model where �1 and �N are both
given by Eq. (69), while Fig. 4(b) show similar results for the
model with �j = −(i/2)�j with �j = 2 for j = 1, N. The full
(blue) line is the result for a calculation based on Eq. (67),
that is, assuming that all mj states of the j = 5/2 band con-
tribute equally, while the dashed (green) line corresponds to
Eq. (68) that singles out the contribution of the mj = ±5/2
states. In these calculations the substrate atom A is placed
on the helix axis, in cartesian position (xA, yA, zA) = (0.,
0., −0.1) nm, while the position of the nearest helix site
is (x1, y1,z1) = (0., 1., 0.) nm. Fig. 4(c) shows the effect
of breaking this axial symmetry, taking (xA, yA, zA) = (0.,
0.5, −0.1) nm. The following observations should be pointed
out:

(a) Considerable spin polarizations can be obtained for elec-
tron transmission out of a metal substrate through a
helical molecule by a mechanism that relies on strong
spin-orbit coupling in the substrate together with orbital
angular momentum selectivity imposed by the helix.
This polarization can be substantial and remains so even
when the axial symmetry is broken (Fig. 4(c)).
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FIG. 4. (a) The asymmetry factor, Eq. (72), plotted against the transmission
energy (in units of the intersite coupling on the helix. Note that the transmis-
sion vanishes at the band edges, E = ±2). The self-energies at sites 1 and
N are taken from Eq. (69). The full (blue) line shows the result of a calcu-
lation that takes all contributions associated with the j = 5/2 substrate band,
while the dashed (green) line corresponds to the case where only mj = ±5/2
contributes. These results do not depend on the helix length. (b) Same as
Fig. 4(a), except that the self-energies at sites 1 and N are taken to be �1, N

= −(i/2)�, with � = 2. The helix-length dependence of these results is neg-
ligible in the length range (a few pitches) considered. The inset shows the
transmission function for the two outgoing spin configurations. (c) Same as
Figs. 4(a) and 4(b), except that the injecting atom is positioned off axis, at
(xA, yA, zA) = (0., 0.5, −0.1) nm.

(b) The magnitude of the effect as well as its sign (posi-
tive asymmetry factor implies that the electron spin is
preferably polarized in the direction out of the surface)
is sensitive to the boundary conditions and the interfa-
cial geometry. We recall that negative asymmetry factor
is observed in the photemission experiments;1 however,
the present calculation is more appropriate for tunneling
transmission2 (see Sec. V for treatment of photoemis-
sion), for which the sign of the spin polarization cannot
be determined.

(c) We have found (not shown) that when �1 is set to
zero, the asymmetry factor, Eq. (72), becomes practi-
cally zero. It should be pointed out that the effect of re-
flection is expected to be less pronounced in pulse exper-
iments if the signal is over before appreciable reflection
sets in, see, e.g., Ref. 36.

(d) In the reflectionless case, the length of the helix does not
affect the resulting spin polarization. In the presence of
reflection (Fig. 4(b)) the length dependence is still very
small for lengths in the range of a few helix pitches.
We note that the effect of molecular length observed in
the tunneling transmission experiment2 is not very pro-
nounced above the experimental noise.

We conclude that this simple model of tunneling trans-
mission can account for the observed spin polarization for
tunneling out of gold. The computed polarization is positive
and essentially independent of molecular length. It is how-
ever sensitive to reflections, and it should be kept in mind that
reflections by structural irregularities, which are disregarded
here, can translate into length dependence. We defer such con-
siderations to future work.

V. INDUCED SPIN FILTERING IN A SCATTERING
MODEL FOR PHOTOEMISSION THROUGH A
MONOLAYER OF HELICAL MOLECULES

In this section we examine a different mechanism for
induced spin filtering by the molecular helix, perhaps better
suited to account for over-barrier transmission such as takes
place in photoemission. The electron is assumed to have been
excited by the light to a free particle state moving in the z (out-
ward, normal to the surface) direction with enough energy to
exit. We further assume that elastic collisions with the molec-
ular adsorbate are the primary source for filtering electrons
away from the outgoing flux. The calculation is simplified by
an additional, rather strong, assumption, that a single collision
with a molecular helix makes this electron lost to the detector
(the actual process may involve consecutive collisions). Our
goal is to determine the cross section for such collision and
its dependence on the azimuthal quantum number ml. To this
end we start with the Schrodinger equation

(∇2 + k2)ψ(�r) = 2m

¯2
V (�r)ψ(�r), (73)

where k2 = 2mE/¯2. The relevant solution to Eq. (73) is ex-
pressed as a sum of an incident plane wave and a scattered
wave

ψ(�r) = eikz + ψs(�r). (74)
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The incident wave, a solution of the homogeneous Helmholtz
equation, represents the electron emitted by a photoexcited
atom. Using a plane wave moving in the z direction (normal
to the surface) is a choice based on our expectation that such
waves are most likely to emerge through the adsorbed molec-
ular layer both because they travel parallel to the molecular
chains and because they carry the highest available energy in
the exit direction.

In terms of the Green function that satisfies the inhomo-
geneous Helmholtz equation with a point source,

(∇2 + k2)G(�r, �r ′) = δ(�r − �r ′), (75)

the scattered wavefunction satisfies

ψs(�r) = 2m

¯2

∫
G(�r, �r ′)V (�r ′)ψ(�r ′)d�r ′, (76)

and in the first Born approximation

ψ (1B)
s (�r) = 2m

¯2

∫
G(�r, �r ′)V (�r ′)eikz′

d�r ′. (77)

We are interested in the asymptotic form, r → ∞ of this
function. To this end we use the asymptotic form of the
Green function in cylindrical coordinates (R, φ, z) (see
Appendix D),

G(�r, �r ′)

r→∞→ − 1

4π

eikr

r
e−ikz′ cos θ

∞∑
n=0

εncos[n(φ−φ′)](−i)nJn(kR′sin θ ),

(78)

where εn is given by Eq. (D3). Using this in Eq. (77) yields

ψ (1B)
s (�r) = f (θ, φ)

eikr

r
, (79)

where the scattering amplitude is given by

f (θ, φ) = − m

2π¯2

∞∑
n=0

(−i)nεn

∞∫
−∞

dz′
∞∫

0

dR′R′

×
2π∫

0

dφ′cos(n(φ − φ′))eikz′(1−cos θ)

× Jn(kR′ sin θ )V (�r ′). (80)

As a model for the DNA molecule we represent the scat-
tering potential V (�r ′) as a helical delta-function potential

V (�r ′) = V0δ

(
x ′ − a cos

(
2πz′

p

))

×δ

(
y ′ − a sin

(
2πz′

p

))
�(z′)�(L − z′), (81)

where a is the radius of the helix, L is its length, p is the
pitch and (because the delta functions have dimension inverse
length) V0 is a constant of dimension energy × length.2 In
cylindrical coordinates this translates into

V (�r ′) = V0

R′ δ(R′ − a)δ

(
φ′ − 2πz′

p

)
�(z′)�(L − z′), (82)

which, when used with Eq. (80), leads to

f (θ, φ) = − mV0

2π¯2

∞∑
n=0

(−i)nεn

L∫
0

dz′ cos

(
n

(
φ − 2πz′

p

))

× eikz′(1−cos θ)Jn(ka sin θ ). (83)

Evaluating the integral and using the identities (−i)−n = in

and J−n(x) = (−)nJn(x) yields

f (θ, φ) =
∞∑

n=−∞
fn(θ )einφ, (84)

where

fn(θ ) = − mV0

2π¯2
(−i)nJn(ka sin θ )

e
i(k(1−cos θ)− 2πn

p
)L − 1

i

(
k(1 − cos θ ) − 2πn

p

) .

(85)

The differential scattering cross section is

dσ

d�
= |f (θ, φ)|2 =

∞∑
n=−∞

∞∑
n′=−∞

f ∗
n′ (θ )fn(θ )ei(n−n′)φ, (86)

and the total scattering cross-section is
∫ π

0 sin θdθ
∫ 2π

0 dφ

|f (θ, φ|2. Using
∫ 2π

0 dφei(n−n′)φ = 2πδn,n′ , the total cross-
section is obtained in the form

σ =
∞∑

n=−∞
σn, (87)

where

σn =
(

mV0

π¯2

)2

2π

π∫
0

dθ sin θJ 2
n (ka sin θ )

×

⎛
⎜⎜⎝

sin

((
k(1 − cos θ ) − 2πn

p

)
L

2

)

k(1 − cos θ ) − 2πn

p

⎞
⎟⎟⎠

2

. (88)

For the set of (positive) n values that satisfy

0 <
πn

kp
< 1, (89)

the denominator in Eq. (88) can vanish and the partial cross-
sections given by Eq. (88) are particularly large. They can be
evaluated for large L by using

∫∞
−∞ w−2 sin2 wLdw = πL to

make the approximation

sin2(wL)

w2
→ Lπδ(w), (90)

so that, for n in this range

σn = m2V 2
0 L

¯4k
J 2

n

⎛
⎝ka

√
1 −
(

1 − 2πn

kp

)2
⎞
⎠ . (91)

The resonant condition, vanishing of the denominator in Eq.
(88) may be given a simple physical interpretation. Consider
an electron that is incident along the helix and follows two
paths, labeled 1 and 2 in Fig. 5. Path 1 is longer than path 2 by
an amount �l = p − pcos θ . The condition for constructive in-
terference is �l = nλ = 2πn/k. So the resonance condition be-
comes k(1 − cos θ ) − 2πn/p = 0, which is precisely the form
of the denominator. For those angles which satisfy this condi-
tion constructive interference results in strong scattering.
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FIG. 5. Diffractive scattering from an helix: Interpretation of Eq. (88).

For n outside the range in Eq. (89), including all n < 0,
the cross section for scattering remains small, and becomes
independent of L for large L. To see this we note that the
rapidly oscillating sin2 function in Eq. (88) can in this case
be approximated by it average 1

2 , so Eq. (88) becomes, for n
outside the range of Eq. (89),

σn≈
(

mV0

π¯2

)2

π

π∫
0

dθ sin θJ 2
n (ka sin θ )

(
1

k(1− cos θ )− 2πn
p

)2

.

(92)

These observations are confirmed by numerical evaluation of
the full expression (88). As an example, the reduced partial
cross-section, σ̄n = [(mV0

π¯2 )22π ]−1σn, is shown as a function
of L in Fig. 6, using typical DNA parameters: a = 1.0 nm,
p = 3.4 nm, and energy E = ¯2k2/2me = 0.5 eV (me = ele-
ctron mass). The different modes of L dependence in the
n = ±1 cases are clearly shown.

Thus, in this model only those waves with azimuthal
quantum numbers n that satisfy (89) are effectively scattered
and therefore filtered out of the transmitted beams, and this

FIG. 6. The reduced cross-section σ̄n plotted against the molecular length L
for energy E = 0.5 eV.

effect grows linearly with L. Indeed,

σn

σ−n

≈L

πkJ 2
n

⎛
⎝ka

√
1−
(

1−2πn

kp

)2
⎞
⎠

∫ π

0
dθ sin θ

⎛
⎜⎜⎝ Jn (ka sin θ )

(1 − cos θ ) + 2πn

kp

⎞
⎟⎟⎠

2 , 0 <
πn

kp
< 1.

(93)

The amount of filtering is seen to grow linearly with the
molecular length L. Finally, as before, the correlation between
orbital and spin angular momenta implies that spin selectivity
also takes place.

In what follows we make some drastic simplifications in
order to estimate the resulting spin filtering effect. First, not-
ing that the azimuthal quantum number n that can contribute
to the incoming wave considered above in a given energy re-
gion corresponds to the values of the quantum numbers ±ml

that can be obtained by the photoexcitation of the substrate
metal, we assume at the outset that the magnitudes |ml| of
these values fall in the range (89). We further assume that an
electron that is scattered by the DNA is lost to the detector.
Denote by N the number of DNA molecules absorbed per unit
area. The probability that an electron with azimuthal quantum
number ml will pass through molecular layer without scatter-
ing is

Tml
= 1 − Nσml

=
{

1 − Nσml
, Nσml

< 1

0, Nσml
≥ 1

. (94)

In this model it may be possible for the DNA monolayer to be
opaque to one value of ml and yet allow electrons with other
values of ml through.

Consider now the expected degree of spin polarization
of electrons photoemitted from gold covered by a monolayer
of DNA molecules. For energies close to the photoemission
threshold the electrons originate primarily from the relatively
narrow d-band of gold and are promoted to the broad p-band
conduction band. Those electrons with energies above the
vacuum level can pass into the vacuum. Noting again that the
d-bands in gold are split into a higher energy 2D5/2 and a lower
energy 2D3/2 band (although there is some overlap between
the bands),29 it will be assumed that the energy of the incident
light is sufficiently low that only the 2D5/2 band contributes to
the photoemitted flux. Since these d-bands are narrow, we will
treat them as being atomic-like. Thus, in this simplified pic-
ture, photoemission originates from essentially atomic states
characterized by total angular momentum quantum number
j = 5/2 with azimuthal projection quantum numbers {mj} as-
sociated with the parent l = 2 orbital angular momentum state.
(The quantization axis is taken to be normal to the metal sur-
face). The set of mj states that contribute to the observed pho-
toemission may be further restricted by energy considerations
brought about, for example, by crystal fields in the solid.

Note that in the development of the theory above we
have assumed that the outgoing wavefunction is a plane wave.
For the physical picture that underlies our analysis it is more
appropriate to consider the emitted electrons as d-waves. In
this case the azimuthal phase must be taken into account. In
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Appendix E we develop the theory where such a possibility is
taken into account.

We examine photoemission by unpolarized incident light
and consider separately the contribution from its right-and
left-handed components whose handedness is denoted
μ = ±1. The selection rules for optically allowed dipole tran-
sitions involve the orbital angular momentum l and its az-
imuthal projection ml. They are

�l = ±1, �ml = μ, �s = �ms = 0, (95)

where s and ms are the quantum numbers for the spin and its
azimuthal projection. To implement these selection rules for
an initial (l = 2, j = 5/2, mj) state we expand it in terms of
the eigenstates (l, ml, s, ms) that characterize an atom without
spin-orbit coupling, keeping l = 2. Since for the optical d-
band → p-band transition �l = −1, it follows that −(l − 1)
≤ ml + μ ≤ l − 1. For μ = +1 we therefore have −2 ≤ ml

≤ 0, while for μ = −1 we have 0 ≤ ml ≤ 2. The conditional
probability to observe a final spin projection ms for a given
μ is denoted Pμ(ms). Since the probability of having either
component is Pμ = 1/2, the overall probability to observe a
final spin projection using unpolarized light is

P (ms) = P1(ms)P1 + P−1(ms)P−1

= (1/2)[P1(ms) + P−1(ms)]. (96)

We first assume (other assumptions will be considered later)
that all the mj states associated with (l = 2, j = 5/2) are de-
generate with each other, so their relative contribution to the
photoemission process is not restricted by their energy. The
probability to observe a final spin projection for μ = 1 is then

P1(ms) =
0∑

ml=−2

Tml+1

∣∣∣∣∑
mj

〈
2,ml,

1

2
,ms

∣∣∣∣52 ,mj

〉∣∣∣∣
2

, (97)

where 〈l, ml, s, ms|j, mj〉 are Clebsch-Gordan (CG) coeffi-
cients. The sum over mj can be dropped because mj = ml

+ ms has to be satisfied (that is, CG = 0 unless this is so).
Equation (97) becomes

P1(ms) =
0∑

ml=−2

Tml+1

∣∣∣∣
〈
2,ml,

1

2
,ms

∣∣∣∣52 ,ml + ms

〉∣∣∣∣
2

= T−1

∣∣∣∣
〈
2,−2,

1

2
,ms

∣∣∣∣52 ,−2 + ms

〉∣∣∣∣
2

+ T0

∣∣∣∣
〈
2,−1,

1

2
,ms

∣∣∣∣52 ,−1 + ms

〉∣∣∣∣
2

+ T1

∣∣∣∣
〈
2, 0,

1

2
,ms

∣∣∣∣52 , 0 + ms

〉∣∣∣∣
2

. (98)

Similarly for μ = −1,

P−1(ms) =
2∑

ml=0

Tml−1

∣∣∣∣
〈
2,ml,

1

2
,ms

∣∣∣∣52 ,ml + ms

〉∣∣∣∣
2

= T−1

∣∣∣∣
〈
2, 0,

1

2
,ms

∣∣∣∣52 , 0 + ms

〉∣∣∣∣
2

+ T0

∣∣∣∣
〈
2, 1,

1

2
,ms

∣∣∣∣52 , 1 + ms

〉∣∣∣∣
2

+ T1

∣∣∣∣
〈
2, 2,

1

2
,ms

∣∣∣∣52 , 2 + ms

〉∣∣∣∣
2

. (99)

The needed Clebsch-Gordan coefficients are listed in
Appendix F. Using these, Eqs. (98) and (99) lead to

P1

(
1

2

)
= 1

5
T−1 + 2

5
T0 + 3

5
T1, (100)

P1

(
−1

2

)
= T−1 + 4

5
T0 + 3

5
T1, (101)

P−1

(
1

2

)
= 3

5
T−1 + 4

5
T0 + T1, (102)

P−1

(
−1

2

)
= 3

5
T−1 + 2

5
T0 + 1

5
T1. (103)

Together the contributions from the two polarization states
gives, for spin up,

P (1/2) = P1(1/2) + P− 1(1/2)

2
= 2

5
T− 1 + 3

5
T0 + 4

5
T1. (104)

Similarly, for spin down,

P (−1/2) = P1(−1/2) + P−1(−1/2)

2
= 4

5
T−1 + 3

5
T0 + 2

5
T1.

(105)

Finally, the spin polarization asymmetry ratio is

A = P (1/2) − P (−1/2)

P (1/2) + P (−1/2)
= T1 − T−1

3(T−1 + T0 + T1)
. (106)

From Figure 5 we see that for large L, σ 0 � σ 1 � σ−1. If,
for the sake of quick estimate, we invoke Eq. (94) to assume
that T−1 = 1 while T0 = T1 = 0, we get the polarization ra-
tio A = −1/3, to be compared with the observed polarization
∼ −0.6.

This rough estimate should be regarded more as an ex-
ample of what can be estimated from such arguments rather
than a theoretical prediction. Other quick estimates may be at-
tempted. For example, if we assume as in Sec. IV that only mj

states with the highest energy contribute to the photoemission
signal, and if these states correspond to mj = ± 5

2 , Eqs. (98)
and (99) become

P1(ms) = T−1

∣∣∣∣
〈
2,−2,

1

2
,ms

∣∣∣∣52 ,−2 + ms

〉∣∣∣∣
2

δms,−1/2, (107)

P−1(ms) = T1

∣∣∣∣
〈
2, 2,

1

2
,ms

∣∣∣∣52 , 2 + ms

〉∣∣∣∣
2

δms,1/2, (108)

and Eqs. (100)–(105) are replaced by

P1

(
−1

2

)
= T−1, P1

(
1

2

)
= 0, (109)

P−1

(
−1

2

)
= 0, P−1

(
1

2

)
= T1, (110)

P (1/2) = P1(1/2) + P−1(1/2)

2
= 1

2
T1, (111)

P (−1/2) = P1(−1/2) + P−1(−1/2)

2
= 1

2
T−1. (112)

The spin polarization for this case is

A = P (1/2) − P (−1/2)

P (1/2) + P (−1/2)
= T1 − T−1

T1 + T−1
(113)
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and for T1 = 0, T−1 = 1 we get A = −1, that is full po-
larization towards to surface. Obviously, the observed result,
A = −2/3, can be obtained in intermediate situations.

VI. SUMMARY AND CONCLUSIONS

Three issues were discussed in this paper: We have first
argued that spin orbit coupling induced by electron motion
through a helical structure cannot, by itself, account for re-
cent observations of large spin selectivity in photoemission
through such structures. Second, and most important, we
have introduced the concept of induced selectivity or induced
filtering—selectivity in the dynamical evolution of one ob-
servable can induce selectivity in another observable that is
coupled to it. We have demonstrated such induced filtering in
transmission between two reservoirs: one in which two such
dynamical variables are coupled and another reservoir where
they are not, through a bridge whose transmission properties
depend only on the state of one of these variables. Another
example is electron photoemission from surfaces character-
ized by strong spin-orbit coupling using circularly polarized
light. Third, we have applied this theoretical framework to
the interpretation of recent experimental observations of large
spin selectivity in electron photoemission and tunneling pro-
cess through DNA and other chiral molecules, where at least
one of the metals involved is gold or silver—metals charac-
terized by strong spin-orbit coupling. We have studied two
models: in one, appropriate for tunneling situations, we have
estimated the spin polarizability in the transmission current
calculated from the Landauer formula. This model predicts
positive spin polarizability in the transmitted current and does
not show molecular length dependence of the effect in the ab-
sence of dephasing processes. In another, more suitable for
over-barrier transmission as in photoemission, we have stud-
ied the spin selectivity induced by the orbital angular momen-
tum dependence of electron scattering by helical structures.
This model yields negative spin polarization that increases
linearly with the helix length in the range studied. In either
case we considered only elastic process. It will be of interest
to consider the possible consequences of energy losses in fu-
ture studies, but at first glance it seems that such effects are
small in the energy range relevant to current experimental re-
sults, that is below the electronic excitation spectrum of DNA.
Another consideration for future study is the possibility that
the adsorbed helical layer affects the nature of the incident
light, perhaps inducing some circular polarization character
that is expressed in the photoexcitation process.

Both models considered yield spin polarization of the ob-
served order of magnitude using reasonable parameters for
the system geometry and its electronic structure. These re-
sults should be regarded as estimates only and should be re-
peated with more detailed structural data for the specific sys-
tems used in the experiments. In particular, we have used the
bulk electronic structure of gold as a guide for our arguments,
while, obviously, the surface electronic structure should also
be considered in rigorous calculations. While our results seem
to be in accord with published experimental results on gold
and silver, recent observation of considerable spin polariza-
tion in the photoemission from bacteriorhodopsin covered

aluminum bring up new questions. By itself, aluminum is a
low spin-orbit coupling material, so the mechanism discussed
in this paper can be relevant only provided such coupling is
caused at the molecule-metal interface by the interfacial built-
in potential. Obviously this may also be an indication that an-
other mechanism, yet unknown, is at play. These issues will
be subjects of future studies.
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APPENDIX A: PERTURBATIVE ESTIMATE
OF SPIN ROTATION

The initial conditions for the dynamical Pauli matrices
are the usual Pauli spin matrices

�σ (0) =
(

0 1

1 0

)
î +
(

0 −i

i 0

)
ĵ +
(

1 0

0 −1

)
k̂. (A1)

Assuming that the speed v varies in the range 105–107 m/s,
the parameters g and b of Eq. (11) assume values in the ranges
g ∼ (3 × 10−4)–(3 × 10−2) and b ∼ (1 × 10−7)–(1 × 10−3).
Note that b is roughly the same size as g2. Thus both parame-
ters are small in magnitude and this suggests that a perturba-
tion solution of the equations of motion would suffice.

To lowest order in both g and b the solutions of Eqs. (12)
are

σx(θ ) ≈
(

−b sin θ 1 + 2ig2θ

1 − 2ig2θ b sin θ

)
,

σy(θ ) ≈
(

b(cos θ − 1) −i + 2g2θ

i + 2g2θ b(1 − cos θ )

)
, (A2)

σz(θ ) ≈
(

1 ib(e−iθ − 1)

−ib(eiθ − 1) −1

)
.

If the initial state is one of positive spin projection, that is
ψ = ( 1

0 ), the expectation values of the Pauli spin matrix com-
ponents are 〈σ x(0)〉 = 0, 〈σ y(0)〉 = 0, 〈σ z(0)〉 = 1.

After traversing some length of the helix the expectation
values become

〈σx(θ )〉 ≈ −b sin θ, 〈σy(θ )〉 ≈ b(cos θ − 1), 〈σz(θ )〉 ≈ 1.

(A3)

If the helix consists of N turns (where N need not be an inte-
ger) then θ = 2πN. Since b is a small number the spin pro-
jection does not change much from its starting value. In this
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approximation, when N is an integer the expectation values
return to their original values.

APPENDIX B: SPIN FLIP BY SPIN-ORBIT
SCATTERING OFF A HELICAL POTENTIAL

Here we start from Eqs. (17)–(24) and derive Eq. (25).
First note that

�σ · k̂ × ∇V = k̂ · ∇V × σ = σy∂xV − σx∂yV . (B1)

Thus, Eq. (24) becomes

Hso = − ¯v

4mc2

(
0 −∂yV − i∂xV

−∂yV + i∂xV 0

)
. (B2)

The off-diagonal matrix elements connect spin-up states, ( 1
0 ),

and spin-down states, ( 0
1 ), and causes spin flipping. Carrying

out the derivatives gives

∂xV =V0 cos ϕδ′(x cos ϕ+y sin ϕ−a)δ(−x sin ϕ+y cos ϕ)

−V0 sin ϕδ(x cos ϕ+y sin ϕ−a)δ′(−x sin ϕ+y cos ϕ)

(B3)

and

∂yV =V0 sin ϕδ′(x cos ϕ+y sin ϕ−a)δ(−x sin ϕ+y cos ϕ)

+V0 cos ϕδ(x cos ϕ+y sin ϕ−a)δ′(−x sin ϕ+y cos ϕ).

(B4)

As noted in the main text, the effect of the helix is on
the xy-motion of the electron. We next use time-dependent
perturbation theory (first order) to calculate the amplitude for
making a transition from an initial state (�k⊥, s) to a final state
(�k′

⊥, s ′), i.e., ψi = χse
i�k⊥· �R/

√
A and ψf = χs ′ei�k′

⊥· �R/
√

A,
where �k⊥ corresponds to motion in the xy-plane, A is the nor-
malization area and χ s is the spin vector. Later it will be as-
sumed that the scattering is elastic, i.e., it changes only the
direction of �k⊥ but not its magnitude. (Affecting the spin is
also not an energetic issue in the absence of a magnetic field).

In what follows we disregard scattering by V(x, y, t) and
only take into account the magnetic coupling, that is, consider
scattering by Hso only.48 The transition amplitude is

c−→
k′ ⊥,s ′ = − i

¯

T∫
0

e− i
¯

(E−E′)t 〈−→k′ ⊥, s ′|Hso|�k⊥, s〉dt, (B5)

where T is the transit time. Thus, introducing the wave-vector
transfer �q = �k⊥ − �k′

⊥, we get

〈−→k′ ⊥, s ′|Hso|�k⊥, s〉=− ¯v

4mc2

1

A

∫
d2rei �q·�r⊥χ+

s ′

×
(

0 −i(∂x − i∂y)V

i(∂x + i∂y)V 0

)
χs.

(B6)

Note that

(∂x − i∂y)V = V0e
−iϕ[δ′(x ′ − a)δ(y ′) − iδ(x ′ − a)δ′(y ′)]

(B7)

and

(∂x + i∂y)V = V0e
iϕ[δ′(x ′ − a)δ(y ′) + iδ(x ′ − a)δ′(y ′)].

(B8)

It is convenient to introduce rotated wave-vector transfer com-
ponents

q ′
x = qx cos ϕ + qy sin ϕ (B9)

and

q ′
y = −qx sin ϕ + qy cos ϕ (B10)

and to recall that

x ′ = x cos ϕ + y sin ϕ (B11)

and

y ′ = −x sin ϕ + y cos ϕ. (B12)

Note that this is a time-dependent transformation. The vari-
ables x and y are defined in a fixed coordinate system, while
x′ and y′ are defined according to a coordinate system that
rotates in time. Then

�q ′ · �r ′ = �q · �r⊥ (B13)

and

d2r ′ = d2r. (B14)

Integration by parts yields∫
d2r ′

⊥ei �q ′ ·�r ′
⊥δ′(x ′ − a)δ(y) = −iq ′

xe
iq ′

xa (B15)

and ∫
d2r ′

⊥ei �q ′ ·�r ′
⊥δ(x ′ − a)δ′(y) = −iq ′

ye
iq ′

xa. (B16)

So

〈−→k′ ⊥, s ′|Hs |�k⊥, s〉

= −¯vV0

4mc2

1

A
eiq ′

xaχ
†
s ′

(
0 −q ′−e−iϕ

q ′+eiϕ 0

)
χs

= −¯vV0

4mc2

1

A
ei(qx cos ϕ+qy sin ϕ)aχ †

s ′

(
0 −q−
q+ 0

)
χs, (B17)

where q± = qx ± iqy. The transition amplitude becomes

c�k′
⊥,s ′ = ivV0

4mc2

1

A

T∫
0

e− i
¯

(E−E′)t ei(qx cos �t+qy sin �t)aχ
†
s ′

×
(

0 −q−
q+ 0

)
χsdt (B18)

and � = 2πυ
p

. It makes sense to take E′ = E since we are
interested mainly in processes that affect spin, not orbital mo-
tion. This assumes that changing the spin did not affect the en-
ergy (i.e., recall that k′ = k, whereas there is direction change
�q = �k⊥ − �k′

⊥).
Let the length of the helix be L = Np, where N is the

length in units of the pitch (which need not be an integer).
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The relevant transit time is T = L/v, so

c�k′
⊥,s ′= ivV0

4mc2

1

A

Np/v∫
0

ei(qx cos �t+qy sin �t)aχ
†
s ′

(
0 −q−
q+ 0

)
χsdt.

(B19)

Introduce polar coordinates (q, θ ) in place of the Cartesian
coordinates (qx, qy) so

c�k′
⊥,s ′ = ivV0

4mc2

p

2πv

1

A

2πN∫
0

eiqa cos(ϕ−θ)χ
†
s ′

(
0 −q−
q+ 0

)
χsdϕ.

(B20)

We can, without loss of generality, take θ = 0. This simply
means that we define the origin of the cylindrical angle ϕ by
the direction of �q. This leads to Eq. (25).

Finally we note that the introduction of a second helix
does not change the result by very much. The potential may
be written as

V (x, y)=V0δ(x cos ϕ+y sin ϕ−a)δ(−x sin ϕ+y cos ϕ)

+V0δ(x cos ϕ′+y sin ϕ′−a)δ(−x sin ϕ′+y cos ϕ′),

(B21)

where ϕ′ = ϕ − δ and δ is an offset angle distinguishing the
second helix from the first. The amplitudes turn out to be just
twice what they were before for a single helix.

APPENDIX C: DERIVATION OF EQS. (58)–(60)

The expansion coefficients A and B in (53) and (55) can
be found by matching the wave functions at the surface z = a.
The continuity of the total wave function at this surface can
be expressed in terms of the radial distance from the z-azis,
R as

∑
ml,ms

〈lmlsms |jmj 〉vj,l(
√

R2 + a2)Yl,ml
(�, 0)eimlϕχs

ms

+
∑
ml,ms

∞∫
0

Bml,ms
(Q)Jml

(QR)e−iq ′a+imlϕχs
ms

dQ

=
∑
ml,ms

∞∫
0

Aml,ms
(Q)Jml

(QR)eiqa+imlϕχs
ms

dQ, (C1)

where � = cos−1( a√
R2+a2 ). Similarly, the component of the

gradient of the wave function in the direction normal to the
surface must be continuous. Using

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(C2)

leads to∑
ml,ms

〈lmlsms |jmj 〉
[

cos θ
∂

∂r
− sin θ

r

∂

∂θ

]

× vj,l(r)Yl,ml
(θ, 0)eimlϕχs

ms

+
∑
ml,ms

∞∫
0

Bml,ms
(Q)Jml

(QR)(−iq ′)e−iq ′a+imlϕχs
ms

dQ

=
∑
ml,ms

∞∫
0

Aml,ms
(Q)Jml

(QR)(iq)eiqa+imlϕχs
ms

dQ, (C3)

where r = √
R2 + a2 and θ = �. It follows that

∞∫
0

Aml,ms
(Q)Jml

(QR)eiqadQ

= 〈lmlsms |jmj 〉vj,l(
√

R2 + a2)Yl,ml
(�, 0)

+
∞∫

0

Bml,ms
(Q)Jml

(QR)e−iq ′adQ (C4)

and
∞∫

0

Aml,ms
(Q)Jml

(QR)iqeiqadQ

= 〈lmlsms |jmj 〉
[

cos θ
∂

∂r
− sin θ

r

∂

∂θ

]
vj,l(r)Yl,ml

(θ, 0)

+
∞∫

0

Bml,ms
(Q)Jml

(QR)(−iq ′)e−iq ′adQ. (C5)

Multiplying Eq. (C4) through by the Bessel function
RJml

(Q′R), integrating over R using the relation
∞∫

0

Jml
(QR)Jml

(Q′R)RdR = 1

Q
δ(Q′ − Q) (C6)

leads to

Aml,ms
(Q)eiqa

= Q〈lmlsms |jmj 〉
∞∫

0

Jml
(QR)vj,l(

√
R2 + a2)

×Yl,ml
(�, 0)RdR + Bml,ms

(Q)e−iq ′a. (C7)

Similarly from (C5),

iqAml,ms
(Q)eiqa

= Q〈lmlsms |jmj 〉
∞∫

0

Jml
(QR)

[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]

× vj,l(r)Yl,ml
(θ, 0)RdR

− iq ′Bml,ms
(Q)e−iq ′a. (C8)

Solving Eqs. (C7) and (C8) for the coefficients Aml,ms
(Q) and

Bml,ms
(Q) yields the results (58)–(60) for the A and B coeffi-

cients.
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APPENDIX D: THE ASYMPTOTIC GREEN
FUNCTION, EQ. (78)

In what follows we will use the following expression for
the Green function in cylindrical coordinates (R, φ, z),49

G(�r, �r ′) = − 1

4π

∞∑
n=0

εnG
n
H (k, R,R′, z − z′)cos[n(φ − φ′)],

(D1)

where

Gn
H (k, R,R′, z − z′)

= 1

π

π∫
0

eik
√

R2+R′2+(z−z′)2−2RR′cos(ψ)√
R2 + R′2 + (z − z′)2 − 2RR′cos(ψ)

cos(nψ)dψ

(D2)

and

εn =
{

1 if n = 0

2 if n > 0
. (D3)

For the scattering process we are interested in the asymp-
totic form of the Green function for large R and |z|. If V (�r ′)
is localized in space, the values of R′ and |z′| remain bounded
and we may expand√

R2 + R′2 + (z − z′)2 − 2RR′cos(ψ)

≈ r

(
1 − zz′ + RR′ cos ψ

r2

)

= r − z′ cos θ − R′ sin θ cos ψ, (D4)

where r = √
R2 + z2, cos θ = z

r
, and sin θ = R

r
. Note that

(r, θ , φ) are the spherical coordinates of the point (R, z, φ) ex-
pressed in cylindrical coordinates. From Eqs. (D2) and (D4)
we get

Gn
H (k, R,R′, z − z′)

≈ 1

π

eikr

r

π∫
0

cos(nψ)e−ikz′ cos θ−ikR′ sin θ cos ψdψ

= (−i)n
eikr

r
e−ikz′ cos θJn(kR′ sin θ ), (D5)

where we have used the integral representation of the Bessel
function

Jn(z) = in

π

π∫
0

e−iz cos ψ cos(nψ)dψ. (D6)

Using this in (D1), the asymptotic Green function is obtained
in the form (78).

APPENDIX E: OUTGOING WAVES WITH ORBITAL
ANGULAR MOMENTUM

Suppose instead of having an incident wave which is a
plane wave (exp(ikz)) we have an incident wave with a def-
inite orbital angular momentum projection ml. It is taken to
be an eigenfunction of the homogeneous Helmholtz equation
(∇2 + k2)ψ in = 0. Such a wave may be built from Bessel

functions as

ψin(�r ′) = Jml
(QR′)ei

√
k2−Q2z′

eimlϕ
′
. (E1a)

To see this note that for any value of Q in the range
0 < Q < k

(∇2 + k2)ψin = (∇2 + k2)Jml
(QR′)ei

√
k2−Q2z′

eimlϕ
′

=
(

∂2

∂R2
+ 1

R

∂

∂R
+ ∂2

∂z2
+ 1

R2

∂2

∂ϕ2
+ k2

)

× Jml
(QR′)ei

√
k2−Q2z′

eimlϕ
′

= ei
√

k2−Q2z′
eimlϕ

′
(

d2

dR2
+ 1

R

d

dR
− (k2−Q2)

− m2
l

R2
+ k2

)
Jml

(QR′)

= ei
√

k2−Q2z′
eimlϕ

′
(

d2

dR2
+ 1

R

d

dR
+Q2−m2

l

R2

)
× Jml

(QR′) = 0. (E2)

We note in passing that one may write a more general solution
to the homogeneous Helmholtz equation as a superposition of
waves given in (E1a),

ψin(�r ′) =
∫

A(Q)Jml
(QR′)ei

√
k2−Q2z′

eimlϕ
′
dQ, (E1b)

which includes both propagating and evanescent waves, de-
pending on whether Q < k or Q > k), where the amplitude
A(Q) would be determined by matching boundary conditions
at z = 0.

Here we limit ourselves to the simple form (E1a). Ex-
pression (77) for the scattered wave in the first Born approxi-
mation becomes

ψ (1B)
s (�r) = 2m

¯2

∫
G(�r, �r ′)V (�r ′)ψin(�r ′)d�r ′. (E3)

We are interested in the asymptotic form, r → ∞ of this
function. To this end we use the asymptotic form of the
Green function in cylindrical coordinates (R, φ, z) (see
Appendix D),

G(�r, �r ′)
r→∞−−→− 1

4π

eikr

r
e−ikz′ cos θ

×
∞∑

n=0

εncos[n(φ−φ′)](−i)nJn(kR′ sin θ ), (E4)

where εn is given by Eq. (D3). Thus

ψ (1B)
s (�r) = f (θ, φ)

eikr

r
, (E5)

where the scattering amplitude is given by

f (θ, φ) = − m

2π¯2

∞∑
n=0

(−i)nεn

∞∫
−∞

dz′
∞∫

0

dR′R′

×
2π∫

0

dφ′cos(n(φ − φ′))Jn(kR′ sin θ )V (�r ′)

× Jml
(QR′)ei

√
k2−Q2z′

e−ikz′ cos θ eimlϕ
′
, (E6)
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As a model for the DNA molecule we represent the scat-
tering potential V (�r ′) as a helical delta-function potential as in
Eqs. (81) and (82). When used with Eq. (80), this leads to

f (θ, φ) = − mV0

2π¯2

∞∑
n=0

(−i)nεn

L∫
0

dz′ cos

(
n

(
φ − 2πz′

p

))

× ei(
√

k2−Q2−k·cos θ)z′
e
iml

2πz′
p Jn(ka · sin θ )Jml

(Qa)

(E7)

(Note that in the case of double-stranded DNA one would add
a second term to the expression for the potential with an an-
gular offset, thus

V (�r ′) = V0

R′ δ(R′ − a)

[
δ

(
φ′ − 2πz′

p

)

+ δ

(
φ′ − 2πz′

p
− β

)]
�(z′)�(L − z′), (E8)

where β is the offset angle for the second strand of DNA.
Both helices share a common axis.) Evaluating the integral
and using the identities (−i)−n = in and J−n(x) = (−)nJn(x)
yields

f (θ, φ) =
∞∑

n=−∞
fn(θ )einφ, (E9)

where

fn(θ )=− mV0

2π¯2
(−i)nJn(ka · sin θ )Jml

(Qa)

× e
i(
√

k2−Q2−k·cos θ− 2π(n−ml )
p

)L − 1

i

(√
k2 − Q2 − k · cos θ − 2π (n − ml)

p

) . (E10)

The differential scattering cross section is

dσ

d�
= |f (θ, φ)|2 =

∞∑
n=−∞

∞∑
n′=−∞

f ∗
n′(θ )fn(θ )ei(n−n′)φ (E11)

and the total scattering cross-section is
∫ π

0 sin θdθ
∫ 2π

0 dφ

|f (θ, φ|2. Using
∫ 2π

0 dφei(n−n′)φ = 2πδn,n′ , the total cross-
section is obtained in the form

σ =
∞∑

n=−∞
σn, (E12)

where

σn =
(

mV0

π¯2

)2

2π

π∫
0

dθ sin θJ 2
n (ka · sin θ )J 2

ml
(Qa)

×

⎛
⎜⎜⎝

sin

((√
k2−Q2 − k · cos θ− 2π (n − ml)

p

)
L

2

)
√

k2 − Q2 − k · cos θ − 2π (n − ml)

p

⎞
⎟⎟⎠

2

.

(E13)

For the set of (positive) n values that satisfy

−1 ≤
√

k2 − Q2

k
+ 2π

pk
(ml − n) ≤ +1, (E14)

the denominator in Eq. (E13) can vanish and the partial cross-
sections given by Eq. (E13) are particularly large. They can

be evaluated for large L by using
∫∞
−∞ w−2sin2wLdw = πL

to make the approximation
sin2(wL)

w2
→ Lπδ(w), (E15)

so that, for n in this range

σn = m2V 2
0 L

¯4k
J 2

n

⎛
⎜⎝ka

√√√√1−
(√

k2 − Q2

k
+ 2π

pk
(ml − n)

)2
⎞
⎟⎠

× J 2
ml

(Qa). (E16)

In the special case where Q = 0 the resonant condition, van-
ishing of the denominator in Eq. (E13), may be given a simple
physical interpretation. In that case only the ml = 0 term con-
tributes. Consider an electron that is incident along the helix
and follows two paths, labeled 1 and 2 in Fig. 5. Path 1 is
longer than path 2 by an amount�l = p − pcosθ , hence the
condition for constructive interference is �l = nλ = 2πn/k.
The resonance condition then becomes k(1 − cosθ ) − 2πn/p
= 0, which is precisely the form of the denominator. For those
angles which satisfy this condition constructive interference
results in strong scattering.

For n outside the range in Eq. (E14), including all n < 0,
the cross section for scattering remains small, and becomes
independent of L for large L. To see this we note that the
rapidly oscillating sin2 function in Eq. (E13) can in this case
be approximated by its average 1

2 , so Eq. (E13) becomes, for
n outside the range of Eq. (E14),

σn =
(

mV0

π¯2

)2

π

π∫
0

dθ sin θJ 2
n (ka · sin θ )J 2

ml
(Qa)

×

⎛
⎜⎜⎝ 1√

k2 − Q2 − k · cos θ − 2π (n − ml)

p

⎞
⎟⎟⎠

2

. (E17)

APPENDIX F: RELEVANT CLEBSCH-GORDAN
COEFFICIENTS

The Clebsch-Gordan coefficients needed for the evalua-
tion of the scattering cross-sections, Eqs. (98) and (99).

l ml s ms j mj 〈l, ml, s, ms|jm〉
2 −2 1/2 1/2 5/2 −3/2

√
1/5

2 −1 1/2 1/2 5/2 −1/2
√

2/5
2 0 1/2 1/2 5/2 1/2

√
3/5

2 1 1/2 1/2 5/2 3/2
√

4/5
2 2 1/2 1/2 5/2 5/2 1
2 −2 1/2 −1/2 5/2 −5/2 1
2 −1 1/2 −1/2 5/2 −3/2

√
4/5

2 0 1/2 −1/2 5/2 −1/2
√

3/5
2 1 1/2 -1/2 5/2 1/2

√
2/5

2 2 1/2 −1/2 5/2 3/2
√

1/5
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