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The transport properties of a conduction junction model characterized by two mutually coupled chan-
nels that strongly differ in their couplings to the leads are investigated. Models of this type describe
molecular redox junctions (where a level that is weakly coupled to the leads controls the molecular
charge, while a strongly coupled one dominates the molecular conduction), and electron counting de-
vices in which the current in a point contact is sensitive to the charging state of a nearby quantum dot.
Here we consider the case where transport in the strongly coupled channel has to be described quan-
tum mechanically (covering the full range between sequential tunneling and co-tunneling), while
conduction through the weakly coupled channel is a sequential process that could by itself be de-
scribed by a simple master equation. We compare the result of a full quantum calculation based on
the pseudoparticle non-equilibrium Green function method to that obtained from an approximate
mixed quantum-classical calculation, where correlations between the channels are taken into ac-
count through either the averaged rates or the averaged energy. We find, for the steady state current,
that the approximation based on the averaged rates works well in most of the voltage regime, with
marked deviations from the full quantum results only at the threshold for charging the weekly coupled
level. These deviations are important for accurate description of the negative differential conduction
behavior that often characterizes redox molecular junctions in the neighborhood of this threshold.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802587]

I. INTRODUCTION

Transport in mesoscopic and nanoscopic junctions is usu-
ally a multichannel phenomenon. Model studies of transport
in junctions that comprise two, often interacting, conduction
channels have been carried out in order to describe the es-
sential features of different physical phenomena. Prominent
examples are studies of interference effects in quantum con-
duction, analysis of single electron counting, where a highly
transmitting junction (a point contact) is used to monitor the
electronic state of a poorly transmitting one, and redox molec-
ular junctions, where (transient) electron localization in one
channel, stabilized by environmental polarization, determines
the transition between redox states that are observed by the
conduction properties of another channel. These three classes
of phenomena are described by different flavors of the two-
channel model. Interference is usually discussed as a sin-
gle electron problem and interaction with the environment
is minimized (often disregarded in model studies) so as to
maintain phase coherent transport. Single electron counting
with a point-contact detector is by definition a many electron
problem, however, environmental interactions are again min-
imized (and again often disregarded in theoretical analysis)
by lowering the experimental temperature in order to obtain
detectable signals. Conduction in redox junctions is usually
observed in room temperature polar environments and is char-
acterized by large solvent reorganization that accompanies the
electron localization at the redox site.

a)Present address: Department of Chemistry, Duke University, Durham,
North Carolina 27708, USA.

In recent work1–3, 7 we have studied the conduction prop-
erties of junctions of the latter type. We first analyzed, for
a model involving a single conduction channel, the conse-
quence of large solvent reorganization in the limit where the
coupling between the molecular bridge and the metal leads
is large relative to the frequency of the phonon mode used to
model the solvent dynamical response.1–3 It was shown (using
a mean field description essentially equivalent to the Born
Oppenheimer approximation) that solvent induced stabiliza-
tion of different charging states of the molecule can result in
multistable operation of the junction, offering a possible ratio-
nalization of observations of negative differential resistance
(NDR) and hysteretic response in molecular redox junctions.
Such multistability was indeed observed recently in numerical
simulations that avoid the mean field approximation.8, 9 Many
redox junctions, however, operate in the opposite limit of rel-
atively small molecule-lead coupling, where a single conduc-
tion channel model cannot show multistable transport behav-
ior. Two of us have recently advanced a two channel model
that can account for such observations.7 In the absence of
electron-phonon interaction (solvent polarization) this model
is given by the Hamiltonian (see Fig. 1),

Ĥ =
∑

m=S,W

εmd̂†
md̂m + Un̂Sn̂W +

∑
k∈L,R

εkĉ
†
kĉk

+
∑

k∈L,R

(VkW ĉ
†
kd̂W + H.c.)

+
∑

k∈L,R

(VkSĉ
†
kd̂S + H.c.), (1)
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FIG. 1. The two channel model discussed in the paper. Each channel com-
prises one level coupled to the left and right electrodes. W and S denote
weakly and strongly coupled levels, respectively.

where d̂
†
m (ĉ†k) creates electron in level m (state k of the

contact), and n̂m = d̂
†
md̂m, m = S,W . In this model, the two

channels are coupled only capacitively (no inter-channel elec-
tron transfer). U represents the standard Coulomb interaction
between them. Two coupled channel models such as (1) also
characterize single electron counting devices,10–15 where the
current in a point contact (that can be represented by chan-
nel S) measures the charging state of a quantum dot used as a
bridge in a nearby junction (channel W ). The noise properties
of such junctions have been studied extensively.16–21

In this model, supplemented by electron phonon coupling
that represents the response of a polar environment to the elec-
tronic occupations in levels W and S, the molecular redox site
dominates the properties of one channel (addressed below as
“weakly coupled” or “slow” and denoted by W ), character-
ized by strong transient localization stabilized by large reor-
ganization of the polar environment and weak coupling to the
metal leads. Transport through this channel, that is, charging
and discharging of the molecular redox site, was described
by sequential kinetic processes. A second channel (addressed
below as “strongly coupled” or “fast” and denoted by S) is
more strongly coupled to the leads and is responsible for most
or all of the observed current.22 Switching between charging
states of the slow channel amounts to molecular redox states
that affect the transmission, therefore the observed current,
through the fast channel. Bistability and hysteretic response
on experimentally relevant timescales are endowed into the
model in a trivial way23 and, as was shown in Ref. 7 (see also
Refs. 4, 24–26), NDR also appears naturally under suitable
conditions.

Obviously, this behavior is generic and results from the
timescale separation between the W and S channels together
with the requirement that the observed current is dominated
by the S channel. In Refs. 7 and 27, we have described the
expected phenomenology of such junction model in the limit
where transport through both channels is described by simple
kinetic equations with Marcus electron transfer rates. While,
as indicated above, it is natural to model the slow dynamics
(observed timescales ∼10−6 s) in this way, it is also of in-
terest to consider fast channel transport on timescales where
transport coherence is maintained. For example, one could en-
vision a redox junction that switches between two conduction
modes, which shows interference pattern associated with the

structure of the fast channel. As a prelude for such consider-
ations, we have studied in Ref. 27 also a model in which the
weakly coupled channel W is described by Marcus kinetics,
however conduction through the strongly coupled channel S
is described as a coherent conduction process by means of the
Landauer formula, assuming that the timescale of transport
through this channel is fast enough to make it possible to ig-
nore any interaction with the polar environment. As in any
mixed quantum-classical dynamics, such description is not
consistently derived from a system Hamiltonian, and ad hoc
assumptions about the way the quantum and classical subsys-
tems interact with each other must be invoked, as described in
Sec. II.

In this paper we present a full quantum calculation of
the current-voltage response of the two channel model de-
scribed above, and use it to assess the approximate solu-
tion obtained using Eqs. (2)–(6) with models A and B (see
Sec. II). The quantum calculation is done with the
pseudoparticle non-equilibrium Green function (PP-NEGF)
technique,28–31 named the slave boson technique when ap-
plied to a 3-states system (Anderson problem at infinite
U),32–35 which was recently used by two of us to study ef-
fects of electron-phonon and exciton-plasmon interactions in
molecular junctions.36, 37 We note that all the methods used in
the paper have their own limitations. In particular, PP-NEGF
is perturbative in the system-bath coupling. However, it ac-
counts exactly for the intra-system interactions, and it is the
role of these interactions (quantum correlations due to system
channels interactions) which is missed by the mixed quantum
classical approaches and is the focus of the present study.

In Sec. II we present our model, briefly review the master
equation description and introduce two approximate descrip-
tions of mixed classical-quantum dynamics. The PP-NEGF
technique and other details of the fully quantum calcula-
tion are described in Sec. III. Section IV presents our results
and discusses the validity of the approximate calculations.
Section V concludes.

II. MIXED QUANTUM CLASSICAL APPROXIMATIONS

To account for the current-voltage behavior of a junction
characterized by the Hamiltonian (1), several workers16–21

have used a master equation level of description, where-
upon, for a given voltage, the dynamics of populating and
de-populating the levels S and W is described by classical
rate equations involving only their populations, with occupa-
tion and de-occupation rates given by standard expressions
(see Eq. (4) below). Here, in order to focus on redox junction
physics, the coupling of channel W to the contacts is assumed
to be much smaller than that of channel S, so that in the ab-
sence of correlations channel W can be assumed to be clas-
sical and treated within such rate equations approach. At the
same time channel S will be treated as quantum, as discussed
in Sec. I.

In Ref. 27, we have assumed that on the timescale of in-
terest the junction can be in two states: 1 and 0, where the
weakly coupled channel, that is the molecular redox site—is
occupied or vacant, respectively. The probability P1 = 1 − P0
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that the junction is in state 1 satisfies the kinetic equation

dP1

dt
= (1 − P1)k0→1 − P1k1→0, (2)

where the rates k0→1 and k1→0 are electron transfer rates be-
tween a molecule and an electrode, here the rates to occupy
and vacate the redox molecular site, respectively. These rates
are sums over contributions from the two electrodes

ki→j = k
(L)
i→j + k

(R)
i→j ; i, j = 0, 1, (3)

and depend on the position of the redox molecular orbital en-
ergy εr relative to the Fermi energy (electronic chemical po-
tential) of the corresponding electrode. In Ref. 27 we have
used Marcus heterogeneous electron transfer theory to cal-
culate these rates, thus taking explicitly into account solvent
reorganization modeled as electron-phonon coupling in the
high temperature and strong coupling limit. For the purpose of
the present work it is enough to use the simpler, phonon-less,
model

k
(K)
0→1(εr ) = �K

r fK (εr ),

k
(K)
1→0(εr ) = �K

r [1 − fK (εr )],
(4)

where εr is the energy of the “redox level” (see below), fK(E)
= [exp ((E − μK)/T) + 1]−1 (K = L, R) is the Fermi-Dirac
function of the electrode K, μK is the corresponding electronic
chemical potential, and T is the temperature (in energy units).
�K

r , K = L, R are the widths of the redox molecular level due
to its electron transfer coupling to the electrodes.38 In terms
of the Hamiltonian, Eq. (1) above, these widths are given by
�K

W = 2π
∑

k∈K |VWk|2δ(E − εk). We have assumed that in
the relevant energy regions these widths do not depend on
energy.

From Eqs. (2) and (3), the steady state population of
the redox site is P1 = 1 − P0 = k0→1/(k0→1 + k1→0),
and the current through the weakly coupled channel is IW

= k
(L)
0→1P0 − k

(L)
1→0P1 = k

(R)
1→0P1 − k

(R)
0→1P0. This current is

however negligible relative to the contribution from the
strongly coupled channel. In each of the states 0 and 1, the
current IS as well as the average bridge population 〈nS〉 in
this channel, are assumed to be given by the standard Lan-
dauer theory for a channel comprising one single electron or-
bital of energy εS bridging the leads, disregarding the effect
of electron-phonon interaction,39, 40

IS(V ; εS) = e

¯

∫ +∞

−∞

dε

2π

�L
S �R

S [fL(E) − fR(E)]

(ε − εS)2 + (�S/2)2
, (5)

〈nS(V ; εS)〉 =
∫ +∞

−∞

dε

2π

�L
S fL(ε) + �R

S fR(ε)

(ε − εS)2 + (�S/2)2
, (6)

where �S = �L
S + �R

S and where εS and �K
S take the values

ε
(0)
S , �

K(0)
S in state 0, and ε

(1)
S = ε

(0)
S + U , �

K(1)
S = �

K(0)
S in

state 1. U is essentially a Coulomb energy term that measures
the effect of electron occupation in channel W , i.e., at the re-
dox site, on the energy of the bridging orbital in channel S.
�L

S , �R
S , εS, and U are model parameters. The average popu-

lation and current in channel S are given by 〈nS〉 = P0〈nS〉(0)

+ P1〈nS〉(1); 〈IS〉 = P0I
(0)
S + P1I

(1)
S , where I

(0)
S (〈nS〉(0)) and

I
(1)
S (〈nS〉(1)) are the values of IS, Eq. (5) (〈nS〉, Eq. (6))

in system states 0 (redox level empty), and 1 (redox level
populated). Finally, the total current at a given voltage is
I = IS + IW ≈ IS .

It should be noted that the rates defined by Eq. (4) are
not completely specified, because the “redox energy level” εr

is not known: it is equal to εW only if the capacitive inter-
action between the S and W channels is disregarded. To take
this interaction into account, two models were examined in
Ref. 27:

Model A. The rates are written as weighted averages over
the populations 0 and 1 of channel S with respective weights
1 − 〈nS〉 and 〈nS〉:

k0→1 = (1 − 〈nS〉(0))k(S0)
0→1 + 〈nS〉(0)k

(S1)
0→1,

k1→0 = (1 − 〈nS〉(1))k(S0)
1→0 + 〈nS〉(1)k

(S1)
1→0,

(7)

where k
(S0)
0→1, k

(S0)
1→0 are the rates to occupy and vacate, respec-

tively, the redox site when the fast channel is not occupied,
while k

(S1)
0→1, k

(S1)
1→0 are the corresponding rates when this chan-

nel is occupied. The dependence of these rates on the occu-
pation of the fast channel is derived from the dependence of
εr in Eq. (4) on the occupation of level S: εr = εW when this
level is not occupied, and εr = εW + U when it is. That is,

k
(K,S0)
0→1 = �K

r fK (εW ),

k
(K,S0)
1→0 = �K

r [1 − fK (εW )],

k
(K,S1)
0→1 = �K

r fK (εW + U ),

k
(K,S1)
1→0 = �K

r [1 − fK (εW + U )].

(8)

Here K = L, R.
Model B. The rates are given by Eq. (4), with εr calcu-

lated as the difference between the energies of two molec-
ular states, one with the redox level populated, E1 = (ε(0)

S

+ U )〈nS〉(1) + ε
(0)
2 = ε

(1)
S 〈nS〉(1) + ε

(0)
2 and the other with the

redox level empty, E0 = ε
(0)
S 〈nS〉(0):

εr = (
ε

(1)
S 〈nS〉(1) + ε

(0)
2

) − ε
(0)
S 〈nS〉(0). (9)

These two models are associated with different physi-
cal pictures that reflect different assumptions about relative
characteristic timescales. Model A assumes that the switching
rates between states 0 and 1 follow the instantaneous popula-
tion in channel S, while model B assumes that these switching
rates are sensitive only to the average population 〈nS〉. Model
B results from a standard Hartree approximation that would
be valid if the electronic dynamics in channel W is slow rel-
ative to that of channel S (see Appendix). From the discus-
sion above it may appear at first glance to be the case, since
transmission through channel W is small, implying that the
rates k0→1 and k1→0 are small. However, the electronic pro-
cess that determines the timescale on which these rates change
is not determined by the magnitude of these rates but by the
response of the electrodes to changes in εr following changes
in the bridge level population of the strongly coupled channel.
This characteristic time (or times), τB, which is bounded be-
low by the inverse electrode bandwidth, may depend also on
temperature and the energy dependence of the spectral den-
sity, and can be shorter than the timescale of order of �−1

S
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on which population in channel S is changing (note that τB is
vanishingly short in the wide band limit). In this case model
A would provide a better approximation. For comparison, we
also present below results for model C, in which the effect
of the interaction between the two channels on the electron
transfer kinetics in channel W is disregarded so that

kK
0→1 = �K

WfK (εW ),

kK
1→0 = �K

W [1 − fK (εW )],
(10)

while the current through channel S continues to be sensitive
to the difference between states 0 and 1, as before.

III. THE PSEUDOPARTICLE GREEN
FUNCTION METHOD

Models A and B above represent attempts to partly ac-
count for the coupling between channels within the classi-
cal rate equations description of channel W . The existence
of capacitive coupling between the channels makes such
mixed quantum-classical description potentially invalid, since
it misses quantum correlations between the two channels. To
estimate the performance of these approximations we shall
compare them to a fully quantum calculation based on the
pseudoparticle nonequilibrium Green function technique.36

In the PP-NEGF approach, a set of molecular many-body
states, {|N〉}, defines the set of pseudoparticles to be consid-
ered, so that one pseudoparticle represents each state. In par-
ticular, for the model (1) the molecular subspace of the prob-
lem is represented by four many-body states: |N〉 = |nW , nS〉,
where nW,S = 0, 1. Let p̂

†
N (p̂N ) be the creation (annihila-

tion) operator for the state |N〉. These operators are assumed
to satisfy the usual fermion or boson commutation relations
depending on the type of the state. In our case the pseudopar-
ticles associated with the states |1, 0〉 and |0, 1〉 are of Fermi
type, while those corresponding to states |0, 0〉 and |1, 1〉 fol-
low Bose statistics. The PP-NEGF is defined on the Keldysh
contour as

GN1,N2 (τ1, τ2) ≡ −i〈Tc p̂N1 (τ1) p̂
†
N2

(τ2)〉. (11)

In the extended Hilbert space it satisfies the usual Dyson equa-
tion, thereby providing a standard machinery for their evalua-
tion. Reduction to the physically relevant subspace of the total
pseudoparticle Hilbert space is achieved by imposing the con-
straint

∑
N

p̂
†
Np̂N = 1 (12)

on the Dyson equation projections. The resulting system of
equations for the Green function projections has to be solved
self-consistently (see, e.g., Ref. 36 for details). Finally, con-
nections to Green functions of the standard NEGF formula-
tion can be obtained by using relations between the electron
operators in the molecular subspace of Eq. (1) and those of
the pseudoparticles

d̂†
m =

∑
N1,N2

〈N1|d̂†
m|N2〉p̂†

N1
p̂N2 . (13)

0.1

0.2

0 1 2
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I
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(d) (e) (f)

FIG. 2. Current (panels (a)–(c)) and populations of the channels (panels (d)–
(f)). Results for the models A (panels (a) and (d)), B (panels (b) and (e)),
and C (panels (c) and (f)) are shown for the channels S (dashed-dotted line,
red) and W (dotted line, blue), and compared to the PP-NEGF results for the
same channels (solid, red, and dashed, blue lines, respectively). Note, the PP-
NEGF data are the same in panels (a)–(c) and (d)–(f). See text for parameters.

Thus the current through the junction can be obtained either
by the usual NEGF expression,40 or within its pseudoparticle
analog.36

Results of calculations based on this procedure and on
the kinetic schemes described in Sec. II are presented and dis-
cussed in Sec. IV.

IV. RESULTS AND DISCUSSION

In Figures 2–5 we compare results from the fully quan-
tum calculation based on the PP-NEGF technique with those
based on the kinetic approximations defined by models
A–C of Sec. II. Panels (a)–(c) in Fig. 2 show the current
through channels S (red) and W (blue) as function of voltage,
while the corresponding panels (d)–(f) show, with the same
color and line-forms codes, the electronic populations in these
channels. The full and dashed lines in these plots correspond
to the PP-NEGF calculations for channels S and W , respec-
tively, and are identical in the panels (a)–(c) and in panels
(d)–(f). The dashed-dotted and dotted lines show results based
on models A (panels (a) and (d)), B (panels (b) and (e)), and C
(panels (c) and (f)). The parameters used in these calculations
are EF = 0, T = 300 K, �L

W = �R
W = 1 meV, �L

S = �R
S

= 100 meV, εS = 150 meV, εW = 300 meV, and U = 10 eV.
For this choice of U states S and W cannot be populated si-
multaneously. The corresponding panels of Figs. 3 and 4 show

0.1
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FIG. 3. Same as Fig. 2 except U = 500 meV.
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FIG. 4. Same as Fig. 2 except �L
W = 1.9 meV and �R

W = 0.1 meV.

similar results for the same choice of parameters, except that
in Fig. 3 U is taken 500 meV while in Fig. 4 �L

W = 1.9 meV
and �R

W = 0.1 meV (so �W = �L
W + �R

W = 2 meV as before).
The latter choice designates level W as a blocking level—
current goes down considerably when the voltage bias ex-
ceeds the threshold (300 meV) needed to populate it), and
has been suggested before4–7 as a model for negative differ-
ential resistance in molecular junctions. Finally, in Fig. 5, the
parameters are the same is in Fig. 2 except that T = 0 K. The
voltage was changed by moving the Fermi level of the left
electrode, keeping the right electrode static. The insets in the
I/V plots show a closeup look at the contribution from chan-
nel W . The following observations are notable:

(a) In comparison with the full quantum calculation, Model
A performs considerably better than model B and, not
surprisingly, than model C. The failure of model B is no-
table in view of the common practice to use the timescale
separation as an argument for applying mean field the-
ory in such calculations; however, as argued above, it
follows from the use of the wide band limit for the elec-
trodes in the calculations.

(b) While model A seems to be quite successful in much of
the voltage regime, it fails, as expected, near and around
V = 0.3 V, the (bare) threshold to populate the W level.
It is at this point of maximal fluctuations in the W popu-
lation that electronic correlation is most pronounced, as
this population is strongly correlated with that in S.

(c) The deviation of the kinetic approximation from the full
quantum result is considerably larger for the current and
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FIG. 5. Same as Fig. 2 except T = 0 K.

population of channel W (the redox site) than for chan-
nel S. This reflects the fact that the rates of charging and
discharging the redox site are sensitive to its correlation
with the population on the strongly coupled level, while
the dynamics of the latter responds most of the time just
to the static population in W . Of course, these large de-
viations in the current carried by channel W have only
an insignificant effect on the overall observed current.
To see these important quantum correlation effects one
would need to monitor directly the electronic population
of the redox site, which is possible in principle using
spectroscopy probes.

(d) As a model for negative differential resistance (Fig. 4),
model A performs qualitatively well, however the full
calculation sets the NDR threshold considerably higher
than that predicated by the approximate calculation.

(e) As expected, the differences between the full quantum
calculation and the results of the quasiclassical models
become more pronounced at T = 0 K. While the results
of the quasiclassical models display sharp threshold be-
havior, the full calculation is much less sensitive to tem-
perature for the present choice of parameters because the
width of the transition region is dominated by �S that is
substantially greater than the thermal energy.

V. CONCLUSION

We have examined the electronic transport behavior of
a generic junction model that comprises a bridge character-
ized by two interacting transport channels whose couplings
to the leads are vastly different from each other. This is a
model for a molecular redox junction and also for a point
contact detector interacting with a weakly coupled nanodot
bridge. We have compared approximate kinetic schemes for
the dynamics of this junction to a full quantum calculation
based on the pseudoparticle NEGF methodology. We found
that a kinetic model in which the electron transfer rates in the
weakly coupled channel (redox site) respond instantaneously
to occupation changes in the strongly coupled channel works
relatively well in comparison with a mean field calculation.
Still, this model fails quantitatively when the molecular level
comes close to the electrochemical potential of the lead, re-
flecting the significance of electronic correlations in this volt-
age range.

This paper has focused on the steady state current. Cor-
relations between the two channels are expected to become
considerably more pronounced in the noise properties of such
junctions and, most probably, would not be amenable to anal-
ysis using the kinetic approximation of model A. We defer
this interesting issue to future work.
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APPENDIX: TIMESCALE CONSIDERATIONS LEADING
TO THE MODELS A AND B

When it is reasonable to speak about rate of a channel,
the formal expression for the W channel rate is41

∫ t

−∞
dt ′ ei

∫ t

t ′ ds εr (s)V (t) C(t − t ′) V (t ′), (A1)

where εr is the position of the redox level, V (t) is the coupling
between the channel W and the bath, and C(t − t′) is the bath
correlation time.

At least two timescales have to be taken into account:
one related to the dynamics of the redox level, εr(t), the other
representing characteristic timescale of the bath. Note, that in
general the bath is characterized by several timescales (e.g.,
the bandwidth of the metal, temperature, and variation of
spectral density). In our case the characteristic timescale for
the dynamics of the level in the W channel is given by the
rate of population change in the S channel. The latter is pro-
portional to �−1

S (Coulomb interaction is instantaneous). Let
assume that the characteristic time of the bath is τB. The two
extremes are τB � �−1

S and τB � �−1
S . The former case cor-

responds to slow motion of the level relative to the bath dy-
namics, so that expression (A1) yields a set of rates (2 in our
case) for different positions of the redox level. This corre-
sponds to the model A of the paper.

The other extreme, τB � �−1
S , corresponds to quick mo-

tion of the redox level position, which requires averaging of
the exponential factor in (A1). This leads to appearance of
a single rate, calculated at the average position of the level,
which is model B.
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