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Mobility edge phenomenon in a Hubbard chain: A mean field study
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We show that a tight-binding one-dimensional chain composed of interacting and non-interacting atomic
sites can exhibit multiple mobility edges at different values of carrier energy in presence of external
electric field. Within a mean field Hartree–Fock approximation we numerically calculate two-terminal
transport by using Green’s function formalism. Several cases are analyzed depending on the arrangements
of interacting and non-interacting atoms in the chain. The analysis may be helpful in designing mesoscale
switching devices.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Electronic localization phenomena in one-dimensional (1D)
quantum systems have long been a central problem in condensed
matter physics. It is well established that in infinite 1D systems
with random site potentials, irrespective of the strength of ran-
domness, all the energy eigenstates are exponentially localized [1].
Apart from this Anderson type localization another kind of local-
ization known as Wannier–Stark localization is also observed in
1D materials, even in absence of any disorder, when the system
is subjected to an external electric field [2]. For both cases, i.e.,
infinite 1D systems with random site potentials and 1D chains
in presence of external electric field, one never encounters mo-
bility edges separating the localized energy eigenstates from the
extended ones, since all eigenstates are localized. However, there
are some classes of 1D systems such as correlated disordered
models, quasi-periodic Aubry–Andre model where several classic
features of mobility edges at some specific values of energy are
obtained [3–12]. Although the existence of such mobility edges in
one- or two-dimensional systems has been described by several
groups [10–15], a comprehensive study of this phenomenon is still
lacking, particularly in the presence of electron–electron interac-
tion. Still open fundamental questions are whether some special
features exist in disordered 1D systems, or in the response of 1D
systems to an externally applied electric field even in the presence
of electron–electron interaction.
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In the present Letter we investigate two-terminal electron
transport through a 1D mesoscopic chain composed of interacting
and non-interacting atomic sites in presence of external electric
field. Although some works have been done in such superlattice
structures [16–20], the analogous representation of metallic multi-
layered structures which exhibit several novel features [21–23], no
rigorous effort has been made so far, to the best of our knowledge,
to unravel the effect of the interplay of electron–electron interac-
tion and an imposed external electric field on electron transport
in such systems. Here we show that a traditional 1D lattice with
electron–electron interaction, evaluated at the Hartree–Fock (HF)
mean field (MF) level, is characterized by a mobility edge be-
havior at finite bias voltage. Furthermore, a superlattice structure
comprising sites on which electron–electron interactions are ex-
pressed differently (some sites are interacting and some sites are
non-interacting) is characterized by multiple occurrence of mobil-
ity edges at several values of the carrier energy. The applicability
of mean field approximation in such superlattice geometries has
already been reported in a recent work [24].

2. Model and calculation

We adopt a tight-binding (TB) framework to describe the model
quantum system and numerically calculate two-terminal transport
within a mean field Hartree–Fock approximation using a Green’s
function formalism. Several cases characterized by different ar-
rangements of interacting and non-interacting atomic sites in the
chain, are analyzed. For these models we calculate the average
density of states (ADOS) and the two-terminal transmission prob-
ability, and find that sharp crossovers from completely opaque to
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Fig. 1. (Color online.) A 1D mesoscopic chain, composed of interacting (filled black
circle) and non-interacting (filled green circle) atomic sites, is attached to two semi-
infinite 1D metallic electrodes, representing source and drain.

Fig. 2. (Color online.) Variation of voltage dependent site energies in a 1D chain
with 300 lattice sites for three different electrostatic potential profiles when the
bias voltage V is fixed at 0.2.

fully or partly transmitting zones take place at one or more specific
electron energies. This observation suggests the possibility of con-
trolling the transmission characteristics by gating the transmission
zone, and using such superlattice structures as switching devices.

Let us refer to Fig. 1 where a 1D mesoscopic chain, composed
of non-interacting and interacting atomic sites, is attached to two
semi-infinite 1D non-interacting source and drain electrodes. In the
arrangement of the two different atomic sites shown in Fig. 1, M
(M � 1) non-interacting sites are placed between two interacting
sites. Here and in what follows we make a restriction that inter-
acting atoms are not placed successively. In a Wannier basis, the
TB Hamiltonian for an N-site chain reads,

HC =
∑

i,σ

εiσ c†
iσ ciσ +

∑

〈i j〉,σ
t
[
c†

iσ c jσ + c†
jσ ciσ

]

+
∑

i

U ic
†
i↑ci↑c†

i↓ci↓ (1)

where, c†
iσ (ciσ ) is the creation (annihilation) operator of an elec-

tron at the site i with spin σ (=↑,↓), t is the nearest-neighbor
hopping element, εiσ is the on-site energy of an electron at the
site i of spin σ and Ui is the strength of on-site Coulomb interac-
tion where Ui = 0 for the non-interacting sites. In presence of bias
voltage V between the two electrodes an electric field is developed
and the site energies become voltage dependent, εiσ = ε0

i + εi(V ),
where ε0

i is a voltage independent term. For the ordered chain ε0
i

is a constant independent of i that can be chosen zero without loss
of generality, while for the disordered case we select it randomly
from a uniform “Box” distribution function in the range −W /2 to
W /2.

The voltage dependence of εi(V ) reflects the bare electric field
in the bias junction as well as screening due to longer range e–e
interaction not explicitly accounted for in Eq. (1). In the absence
of such screening the electric field is uniform along the chain
and εi(V ) = V /2 − iV /(N + 1). Below we consider this as well
as screened electric field profiles, examples of which are shown in
Fig. 2. We will see that the appearance of multiple mobility edges
in superlattice geometries strongly depends on the existence of fi-
nite bias and on the profile of the bias drop along the chain.

The Hamiltonian for the non-interacting (Ui = 0) electrodes can
be expressed as

H lead =
∑

p

ε0c†
pcp +

∑

〈pq〉
t0

(
c†

pcq + c†
qcp

)
(2)

with site energy and nearest-neighbor intersite coupling ε0 and t0,
respectively. These electrodes are directly coupled to the 1D chain
through the lattice sites 1 and N . The hopping integrals between
the source and chain and between the chain and drain are denoted
by τS and τD , respectively.

In the generalized HF approach [25–29], the full Hamiltonian
is decoupled into its up-spin and down-spin components by re-
placing the interaction terms by their mean field (MF) counter-
parts. This redefines the on-site energies as ε′

i↑ = εi↑ + U 〈ni↓〉 and

ε′
i↓ = εi↓ + U 〈ni↑〉 where, niσ = c†

iσ ciσ is the number operator.
With these site energies, the full Hamiltonian (Eq. (1)) can be writ-
ten in the MF approximation in the decoupled form

HMF =
∑

i

ε′
i↑ni↑ +

∑

〈i j〉
t
[
c†

i↑c j↑ + c†
j↑ci↑

]

+
∑

i

ε′
i↓ni↓ +

∑

〈i j〉
t
[
c†

i↓c j↓ + c†
j↓ci↓

]

−
∑

i

U i〈ni↑〉〈ni↓〉

= HC,↑ + HC,↓ −
∑

i

U i〈ni↑〉〈ni↓〉 (3)

where, HC,↑ and HC,↓ correspond to the effective TB Hamiltoni-
ans for the up and down spin electrons, respectively. The last term
provides a shift in the total energy that depends on the mean pop-
ulations of the up and down spin states.

With these decoupled Hamiltonians (HC,↑ and HC,↓) of up and
down spin electrons, we start our self consistent procedure con-
sidering initial guess values of 〈ni↑〉 and 〈ni↓〉. For these initial set
of values of 〈ni↑〉 and 〈ni↓〉, we numerically diagonalize the up and
down spin Hamiltonians. Then we calculate a new set of values
of 〈ni↑〉 and 〈ni↓〉. These steps are repeated until a self consistent
solution is achieved.

The converged mean field Hamiltonian is a sum of single
electron up and down spin Hamiltonians. The transmission func-
tion is therefore a sum T (E) = ∑

σ Tσ (E) where [30] Tσ =
Tr[ΓS Gr

C,σ ΓD Ga
C,σ ]. Here, Gr

C,σ and Ga
C,σ are the retarded and ad-

vanced Green’s functions, respectively, of the chain including the
effects of the electrodes. GC,σ = (E − HC,σ − ΣS − ΣD)−1, where
ΣS and ΣD are the self-energies due to coupling of the chain to
the source and drain, respectively, while ΓS and ΓD are their imag-
inary parts.

3. Results and discussion

In what follows we limit ourselves to absolute zero temperature
and use the units where c = h = e = 1. For the numerical calcula-
tions we choose t = 1, ε0 = 0, t0 = 3 and τS = τD = 1. The energy
scale is measured in unit of t .

Before addressing the central problem, i.e., the possibility of
getting multiple mobility edges in 1D superlattice geometries, first
we explore the effect of finite bias on electron transport in two
simple systems, one for a standard non-interacting chain and the
other for a conventional Hubbard chain where all sites are inter-
acting.

In Fig. 3 we show the variation of total transmission probabil-
ity (T ) together with the average density of states as a function
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Fig. 3. (Color online.) Transmission probability T (red color) and ADOS (green color)
as a function of energy E for a 1D non-interacting (Ui = 0 ∀i) ordered (W = 0)
chain with N = 300 sites. The electrostatic potential profile varies linearly (red curve
in Fig. 2), with the total potential drop across the chain to be (a) V = 0 and (b)
V = 0.2.

of energy E for an ordered (ε0
i = 0 for all atomic sites i in the

chain) non-interacting chain for two different magnitudes of the
voltage bias, assuming a linear bias drop (uniform electric field)
across the chain. In the absence of electric field electron transmis-
sion takes place throughout the energy band as clearly seen from
the spectrum Fig. 3(a), since in this case all the energy eigenstates
are extended. On the other hand, when a finite bias drop takes
place along the chain, several energy eigenstates appear in the en-
ergy regions around the band edges for which the transmission
probability is exactly zero (Fig. 3(b)). Therefore, the chain appears
insulating when Fermi energy is within the zone of zero trans-
mission, while finite transmission, T 	= 0, is seen more towards
the band centre. The sharp transition between these regimes illus-
trates the existence of a mobility edge phenomenon under finite
bias condition. For a finite bias, the localization of energy levels
always starts from the band edges and the width of the localized
energy zones can be controlled by the imposed electric field. Obvi-
ously, for strong enough electric field almost all the energy levels
are localized and the extended energy regions disappear, so that in
this particular case metal–insulator (MI) transition will no longer
be observed. This localization phenomenon in presence of an ex-
ternal electric field has already been established in the literature,
but the central issue of our present investigation – the interplay
between the Hubbard interaction strength, the superlattice config-
uration and the electric field has not been addressed earlier.

To explore it, we present in Fig. 4 the results of a traditional
Hubbard chain where all sites are interacting (left column) to-
gether with the results of a superlattice geometry where four
non-interacting atoms are placed between two interacting atoms
(right column). The results are shown for three different values of
the voltage bias, taking a linear bias drop along the 1D chain. For
the chain where all sites are interacting a single energy gap only
appears at the band centre, while in the superlattice geometry, de-
pending on the unit cell configuration, multiple energy gaps are
generated which are clearly visible from the ADOS spectra. There-
Fig. 4. (Color online.) Transmission probability T (red color) and ADOS (green color)
as a function of energy E for an ordered (W = 0) 1D chain. The left column corre-
sponds to the case where all sites are interacting (Ui = 2), while the right column
represents the results for a 1D superlattice geometry where four non-interacting
(Ui = 0) atoms are placed between two interacting (Ui = 2) atoms. The 1st, 2nd
and 3rd rows correspond to V = 0, 0.1 and 0.2, respectively. All these results are
shown for a linear bias drop along the chain.

fore, in a superlattice geometry, in presence of external electric
field associated with bias voltage V between two electrodes, zero
transmission (T = 0) energy regions exist, and are separated by
regions of extended states compared to the traditional Hubbard
chain, and, it leads to the possibility of getting an MI-like transi-
tion at multiple energies.

The total number of energy sub-bands in a superlattice geom-
etry for a particular energy range generated in the ADOS pro-
file strongly depends on structural details, i.e., the number M of
non-interacting atoms between two interacting lattice sites. This
is shown in Figs. 5 and 6 which show the ADOS and the trans-
mission probability for two models that are identical in all details
(see caption to Fig. 5) except that M = 5 in Fig. 5 and M = 6 in
Fig. 6. These structures show more mobility edge phenomena, that
is crossovers between fully opaque and a transmitting zone, than
in the corresponding case of Fig. 4(f), suggesting a design con-
cept based on such superlattice structures as a switching devices
at multiple energies.

The robustness of the observed behavior can be examined by
its sensitivity to the presence of disorder. Fig. 7 displays the ADOS
spectrum and the total transmission probability for a 1D chain
in presence of diagonal disorder affected by choosing ε0

i from
a uniform distribution of width W = 0.5 (−0.25 to +0.5). An
average over 50 disorder configurations is presented. The result-
ing ADOS and transmission show similar qualitative features, with
sharp transitions between localized and extended spectral regions
as seen above for the ordered cases. Note that the presence of dis-
order alone can cause state localization. For strong enough disorder
almost all energy levels get localized, even for such a finite size 1D
chain. In this limit such crossover behavior will no longer be ob-
served.

In the calculations presented so far we have assumed a linear
drop of the electrostatic potential along the chain. Figs. 8 and 9
show results obtained for an identical chain length with other po-
tential profiles that are characteristics of stronger screening. We
see that the localized region gradually decreases with increasing
flatness of the potential profile in the interior of the conducting
bridge. If the potential drop takes place only at the chain-to-
electrode interfaces, i.e., when the potential profile becomes al-
most flat along the chain the width of the localized region almost
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Fig. 5. (Color online.) Transmission probability T (red color) and ADOS (green color)
as a function of energy E for a 1D chain (N = 300) in absence of disorder (W = 0)
with on-site interaction Ui = 2 and bias voltage V = 0.2 that varies linearly along
the chain. Here we set M = 5, i.e., five non-interacting atoms are placed between
two interacting atoms.

Fig. 6. (Color online.) Same as Fig. 5, with M = 6.

Fig. 7. (Color online.) Transmission probability T (red color) and ADOS (green
color) as a function of energy E for a 1D chain (N = 300) in presence of disor-
der (W = 0.5) for the same parameter values used in Fig. 4(f): Ui = 2, V = 0.2
(linear potential profile) and M = 4.

vanishes and the metal–insulator transition is not observed, as was
the case for the zero bias limit.

Finally, we point out that by locating the Fermi energy in ap-
propriate places of the sub-bands, the system can be used as a
p-type or an n-type semiconductor. For example, let us imagine, at
absolute zero temperature, the Fermi level is fixed in the localized
region which is very close to the fully transmitting zone (right-
hand side). In this case, the left sub-bands up to the Fermi level
are completely filled with electrons. Now, if the energy gap be-
tween the Fermi level, pinned in the localized region, and the bot-
tom of the transmitting region (right-hand side) is small enough
for electrons to hop, then the system will behave as an n-type
Fig. 8. (Color online.) Transmission probability T (red color) and ADOS (green color)
as a function of energy E for a 1D chain (N = 300) with no disorder (W = 0). The
model parameters are U = 2, M = 4 and V = 0.2, with the bias potential profile
taken as the green curve given of Fig. 2.

Fig. 9. (Color online.) Same as Fig. 8, with the electrostatic potential profile given by
the blue curve in Fig. 2.

semiconductor. On the other hand, by reverting the situation we
can generate a p-type semiconductor where electrons hop from
a filled transmitting zone (valence band) to unoccupied localized
zone (conduction band) generating holes in the valence band.

4. Conclusion

To summarize, we have investigated in detail the two-terminal
finite bias electron transport in a 1D superlattice structure com-
posed of interacting and non-interacting atoms. The electron–
electron interaction is considered in the Hubbard form, and the
Hamiltonian is solved within a generalized HF scheme. We numer-
ically calculate two-terminal transport by using a Green’s function
formalism and analyze the results for some specific chain struc-
tures characterized by different arrangements of the atomic sites
in the chain. Our analysis may be utilized in designing a tailor
made switching device for multiple values of Fermi energy (or,
more practically, for different values of a gating potential). The
sensitivity of this switching action, i.e., metal-to-insulator transi-
tion and vice versa on the electric field variation has also been
discussed. Though the results presented in this Letter are worked
out at absolute zero temperature limit, the results should remain
valid even at finite temperatures (∼ 300 K) since the broadening of
the energy levels of the superlattice structure due to its coupling
with the metal electrodes is much higher than that of the thermal
broadening [31–34].
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