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We use a one-dimensional tight binding model with an impurity site characterized by electron-
vibration coupling, to describe electron transfer and localization at zero temperature, aiming to ex-
amine the process of polaron formation in this system. In particular we focus on comparing a semi-
classical approach that describes nuclear motion in this many vibronic-states system on the Ehren-
fest dynamics level to a numerically exact fully quantum calculation based on the Bonca-Trugman
method [J. Bonča and S. A. Trugman, Phys. Rev. Lett. 75, 2566 (1995)]. In both approaches, thermal
relaxation in the nuclear subspace is implemented in equivalent approximate ways: In the Ehrenfest
calculation the uncoupled (to the electronic subsystem) motion of the classical (harmonic) oscillator
is simply damped as would be implied by coupling to a Markovian zero temperature bath. In the
quantum calculation, thermal relaxation is implemented by augmenting the Liouville equation for
the oscillator density matrix with kinetic terms that account for the same relaxation. In both cases we
calculate the probability to trap the electron by forming a polaron and the probability that it escapes
to infinity. Comparing these calculations, we find that while both result in similar long time yields for
these processes, the Ehrenfest-dynamics based calculation fails to account for the correct time scale
for the polaron formation. This failure results, as usual, from the fact that at the early stage of polaron
formation the classical nuclear dynamics takes place on an unphysical average potential surface that
reflects the distributed electronic population in the system, while the quantum calculation accounts
fully for correlations between the electronic and vibrational subsystems. © 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4776230]

I. INTRODUCTION

Electron transfer between molecular systems has long
been recognized as a key process in many research fields of
chemistry, physics, and biology.1–5 Many of its aspects are
described by the Marcus theory,6 which has been extended
to describe such areas as artificial solar-energy conversion7–9

and molecular electronics.10–17

The Marcus theory relies in an essential way on electron-
vibration interaction. The initial and final states of the elec-
tron transfer process are fully equilibrated polarons localized
on different sites, and transitions between them are evaluated
within the assumptions of transition state theory. Motion in
an extended system is assumed to be a succession of hopping
steps, each described as a Marcus process. In the other ex-
treme limit, electronic motion in a frozen lattice, the electron
moves within its energy band, most simply described using a
tight binding model. In between these limits, electron-phonon
interaction and band motion can change the electron’s charac-
ter from being weakly perturbed by electron-phonon scatter-
ing to polaronic motion whose discrete representation is the
succession of hopping processes described above.

In the present paper we are interested in situations where
electronic band motion competes on the same time scale with
polaron formation, so that the dynamics of the latter process

a)nitzan@post.tau.ac.il.
b)ratner@northwestern.edu.

has to be considered explicitly. Such considerations are rel-
evant to recently studied models of photovoltaic cells,18, 19

where electrons (or holes) are injected at some location in
the system and a useful process is defined by their absorp-
tion at another (e.g., an electrode surface). The yield of such
processes, determined by the competition between electronic
motion and loss processes19 (e.g., carrier recombination) is
expected to be sensitive to electron-phonon interactions, and
in particular to transient polaron formation.

Exact treatment of such coupled many-body systems is
difficult, and it is tempting to resort to approximations such as
the semiclassical mean field (Ehrenfest) dynamics. In this ap-
proximation the electronic wavefunction �(r, t) (r represents
the electronic coordinates and t is the time) evolves under a
time-dependent Hamiltonian defined by a classical nuclear
trajectory, schematically represented by a nuclear coordinate
R(t), while the latter is obtained by solving the Newton
equation for the nuclear motion with a potential in which the
vibronic coupling V (r, R) is replaced by its instantaneous
expectation value V (R, t) = 〈�(r, t)|V (r, R)|�(r, t)〉. Such
an approximation, essentially a dynamical extension of the
Born-Oppenheimer (BO) approximation, is expected to per-
form well when the electronic motion is fast, throughout the
relevant electronic subspace, relative to the nuclear dynamics.
Its failure in describing processes in which transitions be-
tween BO electronic adiabatic states take place on the same
time scale as nuclear motions is also well known. Indeed, in
the analogous case of electron solvation in polar liquids such
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non-adiabatic processes have been addressed with the
necessary accounting for the quantum nature of the nu-
clear motion,20–22 usually within the surface hopping
methodology.21–23 Still, because Ehrenfest dynamics is so
easy to implement and to use, it is of interest to assess its
performance as an approximation to exact results in the
context described above.24 This is the purpose of the present
paper. Using a model that is simple enough to solve up to any
desired level of accuracy, we focus on two observables: the
extent of the polaronic localization and its formation time,
and compare results obtained from the semiclassical Ehren-
fest dynamics approach to the exact, fully quantum, results.
For model parameters that support polaron formation we find
that, while the Ehrenfest calculation yields a similar final state
as the exact one, it predicts a polaron formation time that is an
order of magnitude longer than the exact result. This implies
that Ehrenfest dynamics cannot be used as a reliable tool for
assessing polaronic effects in such systems. This does not
exclude its possible applicability in larger systems at higher
temperatures with many more nuclear degrees of freedom,
but indicates that its use should be exercised with caution and
after performing suitable benchmark calculations.

We start by formulating the basic Hamiltonian model and
comparing the different predictions of the quantum and the
semiclassical descriptions in Sec. II. In Sec. III we define the
population operator and the population formation time. Nu-
merical calculation and discussions are given in Secs. IV and
V, and a conclusion follows.

II. THEORETICAL MODEL

We consider an n + 1-site tight-binding electron model
(below we take n = 4) coupled to a system of harmonic oscil-
lators (see Fig. 1). We assume that only one oscillator (hence-
forth referred to as the “primary” vibration) directly couples
to the electronic systems. The others (“secondary” phonons)
constitute a thermal bath that affects relaxation in the primary
system. The Hamiltonian of the whole system shown is

H = HS + HB + HSB, (1)

HS =
4∑

l=0

εlc
†
l cl + V

3∑
l=0

(c†l cl+1 + c
†
l+1cl) + ¯ω0d

†
0d0

+α2c
†
2c2(d†

0 + d0), (2)

HB =
∞∑

s=1

¯ωsd
†
s ds, (3)

HSB =
∞∑

s=1

λs(d
†
0ds + d†

s d0). (4)

Vibration

−
0 1

2
3 4

e−vib

FIG. 1. The model chain including 5 sites. The electron-vibration interaction
is associated with transitions into and out of the middle site 2.

Here HS corresponds to the electronic system (described
by the creation and annihilation operators for each site l, c

†
l ,

cl), together with the primary vibration, of frequency ω0 de-
scribed by the creation and annihilation operators d

†
0, d0. HB

describes the secondary phonon bath (d†
s , ds are the creation

and annihilation operators for phonon of frequency ωs) and
HSB is the coupling between the primary vibration and sec-
ondary phonons. εl is the on-site energy level of site l, V is
the coupling parameter associated with electron tunneling be-
tween nearest neighbor sites. The parameters α2 and λs char-
acterize to the coupling between the electronic state at site 2
and the primary vibration, and between the primary vibration
and secondary phonons, respectively.

A. The quantum approach

In the quantum approach, the evolution described by the
Hamiltonian (2) is treated essentially exactly,24 using the ba-
sis set {|n, ν > } where n and ν denote the electronic state
localized on site n and the vibrational state ν of the primary
oscillator. In the numerical calculation we truncate the set {ν}
at some value, νmax and test for convergence as νmax increases.

The coupling to the thermal bath is treated in the master
equation approach: The density matrix ρT of the whole system
is assumed to keep the form ρT = ρS ⊗ ρB, where ρB, the
density matrix of the thermal bath (secondary phonons), is
assumed to remain in equilibrium at the ambient temperature.
Then the quantum master equation for ρS is

i¯
∂ρS(t)

∂t
= [HS, ρS(t)] − i¯γ0[d†

0d0ρS(t) + ρS(t)d†
0d0

− 2d0ρS(t)d†
0]/2, (5)

where γ 0 is the vibrational relaxation rate induced by the
vibration-phonon bath coupling. It is equal to the imaginary
part of the vibration self-energy � given by

γ0(ω)/2 = 1

¯
Im{�vibration(ω)} = 1

¯

∑
s

|λs|2δ(¯ω − ¯ωs).

(6)

In the basis chosen, Eq. (5) takes the form

i¯
∂ρnv,n′v′ (t)

∂t
= [HS, ρS(t)]nv,n′v′ − i¯γ0(v + v′)ρnv,n′v′/2

+ i¯γ0

√
v + 1

√
v′ + 1ρn,v+1,n′,v′+1, (7)

where the first term in the right side of Eq. (7) comes from the
contribution of primary system Hamiltonian HS, and second
part comes from the first two terms in the second bracket on
the right side of Eq. (5), and the last term involves energy
transfer from the higher to the lower vibrational levels.25 This
equation will be solved numerically.

B. The semiclassical approximation

The dimensionless displacement of the single primary os-
cillator is approximated in the semiclassical approximation by
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a time-dependent configuration q(t) = 〈d†
0(t) + d0(t)〉 as26, 27

q(t) = 1

¯

∫ t

0
dτDr (t − τ )α2〈c†2(τ )c2(τ )〉, (8)

arising from the interaction among the electron, the active vi-
bration and the phonon bath; here Dr is the retarded green
function of the active vibration.

Equation (8) assumes that the displacement coordinate q
responds to the average electron population (in the present
calculation, on site 2). This is a mean field description akin to
the Ehrenfest approximation that is to be tested in the calcu-
lations described below.

Using the wide-band approximation

Dr (ω) = 1

ω + ω0 + iγ0/2
− 1

ω − ω0 + iγ0/2
(9)

and its Fourier transform

Dr (t) = i[e(iω0−γ0/2)t − e(−iω0−γ0/2)t ] = −2sin(ω0t)e
−γ0t/2,

(10)

and substituting Eq. (10) into Eq. (8), we get

q(t) = − 2

¯

∫ t

0
dτsin[ω0(t − τ )]e−γ0(t−τ )/2α2〈c†2(τ )c2(τ )〉.

(11)

Here γ 0 has been defined in Eq. (6), and neglecting the real
part of the vibration self-energy gives the solution for q(t).
Finally replacing d

†
0 + d0 in the electron-vibration coupling

Eq. (2) by q(t) (Eq. (11)), we get the effective semiclassical
electronic system Hamiltonian as26, 28, 29

Heff =
4∑

l=0

εlc
†
l cl + V

3∑
l=0

(c†l cl+1 + c
†
l+1cl) + F (t)c†2c2,

(12)

with30

F (t) = α2q(t) = −2α2
2

¯

∫ t

0
dτsin[ω0(t − τ )]e−γ0(t−τ )/2

×〈c†2(τ )c2(τ )〉. (13)

The system density matrix ρS, which in this semiclas-
sical approximation is derived from the Hamiltonian Heff in
Eq. (12), can be solved using the Liouville equation

i¯
dρS

dt
= [Heff , ρS]. (14)

III. POPULATION DISTRIBUTION, POPULATION
FORMATION TIME, AND ELECTRON-VIBRATION
COUPLING ENERGY

The on-site electronic population at any time t is

Pl(t) = 〈c†l (t)cl(t)〉, with
4∑

l=0

Pl(t) = 1. (15)

Since the time-dependent values Pl oscillate, it is better
to show these values using a coarse grained time-dependent

average value

P̄l(t) = 1

2�T

∫ t+�T

t−�T

dτPl(τ ). (16)

Below we use �T = 50 fs.
The population formation time in site 2 can be defined as

the time point at which population P2 reaches a certain value.
Below, we shall define the “formation time” as the time at
which the target population reaches ∼(1 − e−1 ≈ 0.76) of its
final value.31 Thus we use the criterion

P̄2(τp) = P ∞
2 (1 − e−1). (17)

P ∞
2 is the time-averaged value of P2 in the long time limit and

τ p is the population formation time.
The electron-vibration coupling energy EP is

Ep =
{

α2〈c†2c2(d†
0 + d0)〉, quantum approach,

F (t)〈c†2c2〉, semiclassical approach.
(18)

Note that the semiclassical result is proportional to α2
2〈c†2c2〉2,

in contrast to the quantum result.

IV. NUMERICAL CALCULATION

For the initial numerical simulation, we set εl = 0 for
l = 0, 1, 3, 4 with ε2 = −0.2 eV (ε2 is lower than the other
site energies), V = 0.1 eV, vmax = 9, α2 = 0.0707 eV, ω0

= 0.1 eV, γ0 = 0.04 eV. We will vary those parameters to ex-
amine more cases. All the results described below use the ini-
tial condition c

†
ncn = δn,0 with a given site index n for the

electronic state (in the calculations presented below n = 0),
and ν = 0 (ground vibrational level) for the primary phonon.
For our purpose—comparing the quantum calculation and
the mean-field semiclassical approximation—it is sufficient
to consider the zero temperature case.

In the quantum approach, we need to set νmax large
enough to assure convergence of the calculation. At T = 0
only vibrational damping takes place and the calculation
converges at νmax = 3 (see Fig. S1 in the supplementary

FIG. 2. Average population distribution on different sites l (l = 0, 1, 2, 3,
4) shown as a function of time starting from 0.05 ps. εl = 0 (l = 0, 1, 3,
4), ε2 = −0.2 eV, V = 0.1 eV, αl = 0 (l = 0, 1, 3, 4), α2 = 0.0707 eV, ¯ω0
= 0.1 eV, ¯γ0 = 0.04 eV. P̄1=P̄3.
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information32). At non-zero temperatures vibrational excita-
tion is possible, and larger νmax will be needed.

V. POPULATION LOCALIZATION AND POLARON
FORMATION

As noted above, the electron-vibration coupling is associ-
ated with transitions involving site 2 and the system is coupled
to the bath through the single primary vibration. As shown
in Fig. 2, for small V , much of the electron population will
localize on site 2, forming a local polaron with large popu-
lation. The quantum results (Sec. II) are shown on left panel
and the semiclassical results (Sec. III) are displayed in the
right panel. The respective results are qualitatively similar: P̄2

(polaron population) rises and saturates at values that are sim-
ilar in both approaches. However, the rise time obtained from
the quantum calculation is much shorter than its semiclassical
counterpart: P̄2 reaches its maximum value at 2 ps in the quan-
tum calculation, while in the semiclassical calculation it takes
about 15 ps. This difference demonstrates the shortcoming of
the semiclassical approximation, or rather—its reliance on the
mean field approximation: The localizing phonon moves on a

FIG. 3. Population distribution on different sites l (l = 0, 1, 2, 3, 4) shown as
a function of time. εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2 eV, V = 0.1 eV, αl = 0
(l = 0, 1, 3, 4), α2 = 0.0707 eV, ¯ω0 = 0.1 eV, ¯γ0 = 0.04 eV.

FIG. 4. Average population P̄2 as a function of time with different near-
est neighbor tunneling parameter V . εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2 eV ,
αl = 0 (l = 0, 1, 3, 4), α2 = 0.0707 eV, ¯ω0 = 0.1 eV, ¯γ0 = 0.04 eV.

potential surface that is substantially different from what it
actually experiences once the localization process has started.
Figures 3(a) and 3(b) show time-dependent dynamics of those
populations on a short time scale.

A. Influence of the tunneling amplitude V

The dynamics and extent of population localization is
sensitive to the coupling V between nearest neighbor sites.
For small V the coherent transfer between the different sites is
weak and the population tends to localize, forming a polaron
on site 2 whose coupling to the primary vibration results in
a lower energy. For large V the population tends to equalize
on neighboring sites, showing an oscillatory behavior (here
only the average is shown). As shown in Fig. 4, the average
population P̄2 on the impurity site decreases with increasing
V , although the polaron is in principle formed on site 2. For
V = 1.0 eV, delocalization dominates and the charge popu-
lation rapidly reaches a uniform distribution. Recall that the

FIG. 5. Average population P̄2 shown as a function of time with differ-
ent electron-vibration coupling parameter α2. εl = 0 (l = 0, 1, 3, 4), ε2
= −0.2 eV, V = 0.1 eV, αl = 0 (l = 0, 1, 3, 4), ¯ω0 = 0.1 eV,
¯γ0 = 0.04 eV.
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original small-polaron model of Holstein33–38 was developed
for narrow-band (small V ) materials.

B. Effect of the electron-vibration coupling

The coupling strength α2 between the electronic motion
and the vibration at site 2 also affects the localization process.
In the quantum method, electrons can evolve from the other
sites to the vibronic states through this coupling as shown in
the last term on the right side of Eq. (2). With larger α2, more
population will transfer and form a polaron with large popula-
tion on the middle site. Qualitatively, similar evolution takes
place in the semiclassical calculation, as seen in Eq. (13),
and some population will be localized to form a polaron. As
shown in Fig. 5, the population P̄2 in the steady state increases
with this coupling strength. The more rapid population relax-
ation obtained in the quantum treatment occurs because in the
quantum analysis, the actual population at site 2 is used, while
in the semiclassical treatment, it is only the average popula-
tion which drives the coupling.

FIG. 6. P ∞
2 (population on site 2 in the steady state) shown as a function of

the nearest neighbor site coupling parameter V and electron-phonon coupling
α2. εl = 0 (l = 0, 1, 3, 4), ε2 = −0.2 eV, ¯ω0 = 0.1 eV, ¯γ0 = 0.04 eV.
Quantum method used for panel (a) and semiclassical method used for (b).

In Figs. 6(a) and 6(b), P ∞
2 (defined below Eq. (17)) is

plotted in 3D changing the coupling V and the electron-
phonon coupling α2. With a small V , P ∞

2 is around 0.5.39

Choosing larger values of V decreases the site 2 population
as can be expected, as shown in the corners of Figs. 6(a) and
6(b). However upon increasing α2, the population builds up
again; the polaron population value is mainly determined by
the parameters V and α2.

C. Comparison of population formation times

In Figs. 7(a) and 7(b) the population formation time is
shown in 3D as a function of V and α2. The formation time
obtained by the semiclassical method is longer than the quan-
tum method. The population formation time decreases with
electron-phonon coupling α2 but then saturates. It also de-
creases with coupling V , but there is a turnover in the quan-
tum formation time beyond a V ∼ 0.1 eV. This is due to the
fact that for large V , the excitation relaxes into a delocalized
population. The population distribution is roughly constant in
this limit as shown in Fig. 4. The formation time should now
be referred to simply as population relaxation time.

As shown in Figs. 6(a) and 6(b), with a larger value of
V, the population on site 2 decreases, while by increasing
the electron-phonon coupling strength α2, the population
builds up. The Hamiltonian parameters are selected to

(a)

(b)

FIG. 7. Population formation time for P2 shown as a function of the near-
est neighbor site coupling parameter V and electron-phonon coupling α2. εl

= 0 (l = 0, 1, 3, 4), ε2 = −0.2 eV, ¯ω0 = 0.1 eV, ¯γ0 = 0.04 eV. Quantum
method used for panel (a) and semiclassical method used for (b).

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.66.152.41 On: Mon, 18 Nov 2013 11:19:32



044112-6 Li et al. J. Chem. Phys. 138, 044112 (2013)

represent realistic values of V and electron-phonon
coupling28 encountered in real organic and inorganic
systems. From Figs. 7(a) and 7(b) we see that the population
formation time decreases with increasing V and α2. It also
decreases with increasing γ0, which represents the coupling
strength between the vibrations and the environment. Increas-
ing the frequency ω0 of the primary vibration, makes the
relaxation process and the population formation time shorter.
These four parameters V , α2, γ0, and ω0 can work together to
determine the population formation time.

D. The short time dynamics of polaron formation

In Fig. 8(a) we compare the time-dependent dynamic
processes for P2 and EP (Eq. (18)). Both of them reach their
steady state very quickly. When P2 reaches its maximum, Ep

is at minimum, and vice versa. This represents the damping of
a coherent oscillator where displacement and population keep

FIG. 8. (a) Population P2 and electron-vibration coupling energy EP are
shown as a function of time; (b) Population P2 and the electron-phonon
coupling energy F2(t) are shown as a function of time. εl = 0 (l = 0, 1,
3, 4), ε2 = −0.2 eV, αl = 0 (l = 0, 1, 3, 4), α2 = 0.0707 eV ¯ω0 = 0.1 eV,
¯γ0 = 0.04 eV. Quantum method used for panel (a) and semiclassical method
used for (b). The unit of EP and F2 is eV.

their phase delay throughout. The picture (Fig. 8(b)) is some-
what different in the semiclassical case, P2 and F2 are also
delayed but we now see beats due to the interference of waves
scattering from an oscillating potential. Both quantities reach
their steady state more slowly in this case.

VI. CONCLUSION

In this paper we have compared fully quantum and semi-
classical models for polaron formation. The latter is based on
Ehrenfest dynamics for the calculation of the polaron forma-
tion process. We used a one-dimensional tight binding model
that includes electron-phonon coupling at only one site, which
acts as a polaron trap. Subsequent vibrational relaxation al-
lows the system to relax into equilibrium. The results from
both methods show qualitatively similar behavior, however
with markedly different time scales: the population forma-
tion time obtained from the quantum calculation can be 10
times faster compared to the semiclassical method. This dis-
crepancy becomes smaller with increasing intersite coupling
V (for large V no localized polaron is formed) since the clas-
sical limit is reached for V 
 ω0.

The different relaxation times obtained in the quantum
and the semiclassical calculations result from the use of mean
field approximation in the latter. In this approximation, the
primary oscillator responds to the average occupation of site
2 which effectively makes it move on a potential surface that
is markedly different (less binding) than the one it experi-
ences once localization is initiated. Localization on this av-
erage potential is slower. This averaging assumption may be
justified when the electron motion is much faster than the vi-
bration, that is, for large V (V 
 ¯ω0). Another minor differ-
ence between the two calculations is the use of a master equa-
tion in the quantum calculation, and an essentially equivalent
Langevin equation in the semiclassical one, to describe the
relaxation of the primary phonon. These relaxation schemes
are equivalent, provided that care is taken to use parameters
that imply the same relaxation rate in both cases, as was done
here.

The conclusion would also apply to the simulations of
Kopidakis et al.40 and the many other papers where the vibra-
tions are also treated with semiclassical dynamics. It would
seem that depending on electron bandwidth, the formation
time is considerably overestimated in these works, perhaps
by an order of magnitude or more. The semiclassical results
are essentially in agreement with the conclusions reached by
Emin and Kriman41, 42 using the Holstein diatomic polaron
lattice model. These authors showed that population localiza-
tion and polaron formation depend critically on the ratio of the
tunneling energy V and the width of the Bloch phonon disper-
sion, which effectively plays the role of the dissipation term
since outward traveling phonon Bloch waves will not return.
Finally, it turns out in this model that the population on site 2
never exceeds 0.5 however small we make V . However, intro-
ducing a small electron phonon coupling on the other sites in
the chain allows the system to reach the true ground state and
the population on site 2 can now climb up to 1. This interest-
ing observation should be investigated in detail, particularly
at finite temperature.
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