
Author's personal copy

Short Communication

On the evaluation of the Marcus–Hush–Chidsey integral

Agostino Migliore ⇑, Abraham Nitzan
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

a r t i c l e i n f o

Article history:
Received 30 January 2012
Received in revised form 26 February 2012
Accepted 27 February 2012
Available online 6 March 2012

Keywords:
Electron transfer rate
Marcus–Hush–Chidsey integral

a b s t r a c t

The electrochemical rate constant obtained from the Marcus–Hush theory of heterogeneous electron
transfer is given as a relatively complex integral. Recently, two apparently different expressions of this
rate constant in the form of a series of analytical functions appeared in the literature. We demonstrate
here the equivalence of these expressions and discuss their different approximations, resulting from
the two distinct analytical derivations, which have implications in the practical calculation of electron
transfer rate constants at electrode surfaces.

� 2012 Elsevier B.V. All rights reserved.

The Marcus–Hush theoretical model of heterogeneous electron
transfer [1–3], usefully implemented in the context of electrode
reactions [4,5], has been increasingly employed in recent years
[6] as an alternative to Butler–Volmer equations. Considering a
metal electrode in contact with a redox molecule, and assuming
that the electronic coupling between metal and molecule and the
density of states in the metal are independent of the energy, one
arrives at an expression of the interfacial electron transfer rate con-
stant as an integral of the Fermi–Dirac distribution of the electrons
and the Marcus free energy factor, where a potential-dependent
activation energy appears. For a single electron transition it can
be written as
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In Eq. (1), c is the coupling strength to the electrode, which depends
on the electronic coupling and the density of electronic states in the
metal. e, kB, and T are the electron charge, Boltzmann constant, and
temperature, respectively. k is the reorganization energy and DE is
the overpotential, The ± signs refer to the oxidative and reductive
transition rate constants. Evaluation of the integral (1) is facilitated
by expressing it as a series. This has been first elegantly done in Ref.
[7], exploiting the expansion
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which leads to the expression
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Moreover, useful approximations to S in different ranges of the
overpotential are provided [7].

In Ref. [7], it is noticed that the expansion (2) ‘‘fails at x = 0, but
this causes no problems in practice.’’ An alternative procedure, re-
cently offered by us [8], does not use this expansion. Considering
that the transition rate constants are most sensitive to the overpo-
tential at ejDEj ¼ k and that, at such DE, the integrand in Eq. (1) has
a maximum for x = 0, an optimal series solution of the integral can
be obtained by an expansion of the Fermi function describing the
electron distribution on the metal levels

f ðeÞ ¼ 1

exp e�l
kBT
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; ð5Þ

(where e is the metal level energy and l is the overpotential-
dependent Fermi level of the electrode) that is rapidly convergent
and particularly effective at and near x = 0. Thus we used [8]
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and exploited the binomial theorem, obtaining an expression of Rox/

red as in Eq. (3) but with the series S replaced by
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Inverting the two sums in Eq. (7) and using the ordinary generating
function of the binomial coefficients (for a given j) [9]
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with y = 1/2, we get
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which establishes the identity of the two series expressions of the
integral (1). However, any application of this formula requires its
truncation to a finite number of terms. Hence, the quantities of
interest are the partial sums of suitable order N:
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tend to unity for N !1. The two partial sums SN [7] and TN [8] in-
volve the same set of functions wj but with different coefficients.
Such difference results from the different expansions used in the
two approaches and brings about different convergence proprieties
of the two solutions. As shown in Fig. 1, TN tends smoothly to the
exact value T for very small N values, while SN shows a damped
oscillation toward the same exact value, S = T. TN, compared to SN,
offers a much more efficient route to the calculation of the rate
constants over a wide overpotential range, all the more that most
computational time is spent in evaluating the common set of func-
tions wj.

The continuous oscillation in the value of SN at each term addi-
tion is a consequence of the failure of expansion (2) at x = 0. Be-
cause of the indeterminate character of the series for x = 0, its

truncation at the Nth term has a relative error of ±1, with sign
dependent on the parity of N and magnitude independent of the
value of N (see Fig. 2). As N?1, the x range where the error is con-
siderable reduces to the zero measure interval x = 0, so that the ser-
ies of integrated terms in Eq. (4) yields the exact result.

On the other hand, for DE� k=e, SN is very close to S for each N.
The behavior of TN is similar to that at smaller DE values, with a
smooth and quick convergence to T (see Fig. 3). TN �T finally be-
comes smaller than SN �S (right panel in Fig. 3). Notice that N val-
ues less than 10 ensure a relative difference between TN and T
smaller than 0.1% over all the explored DE range.

Let us compare the applications of the rate constant expressions
using SN and TN to the description of a typical linear sweep voltam-
mogram. Indeed, the expressions of the interfacial rate constants in
Eq. (1) have been widely used not only in the study of electrochem-
ical redox reactions [4,5], but also in the context of redox molecu-
lar junctions [10,11]. Therefore, we will formulate our discussion
on a ‘‘per molecule’’ basis, which, on the one hand, provides an
immediate link to the literature on diffusionless electrochemical
systems [12,13] and, on the other hand, can be directly exploited
in the study of sequential charge transport through redox molecu-
lar junctions [8,10,11]. The molecule adsorbed at the electrode sur-
face is modeled as a two-state (A and B) system. Either A or B can
represent the oxidized or reduced adsorbate, consistently with the
sign convention for DE. On a per-molecule basis, the surface con-
centration of the electroactive species in a given redox state is re-
placed by the occupation probability P of the molecular redox site.
In terms of P and of the rate constants RA?B and RB?A for the A-to-B
and B-to-A transitions, respectively, the current at the electrode is
proportional to the quantity [12,13]

Fig. 1. Relative errors rR = (SN �S)/S (empty squares) and (TN �T)/T (full squares) in the rate constant, plotted against N, at a fixed overpotential DE0 of (left) 0.1 V and (right)
0.6 V. The model parameters are T = 298 K, k = 0.7 eV.

Fig. 2. Relative error rsech made by truncating the series expansion of the
hyperbolic secant in Eq. (2) to 20 (solid line) and 21 (dashed line) terms.
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J � dP
dt
¼ v dP

dV
¼ ð1� PÞRA!BðVÞ � PRB!AðVÞ; ð12Þ

where v = DE/t is the sweep rate. The assumptions and conditions
underlying the above equation as well as its suitable inclusion in
a more complete mechanism that ensures charge balance through
appropriate inter-phase transport are well known [14,15]. The peak
position and the shape of the voltammogram resulting from Eq. (12)
depend on the competition between the interfacial charge transfer
rates and the scan rate, which can be quantified by the parameter
m ¼ RA!Bð0ÞkBT=ev [12].

Eq. (12) has been implemented in a finite differences simula-
tion, as described by Eq. (13) of Ref. [13], but inserting the expres-
sions of the rate constants that result from Eq. (3) with S
approximated either by SN or by TN. Results are shown in Fig. 4.
Note that the employed small value of k can be easily encountered
also in the context of molecular junctions [16]. The use of T and TN

with N = 6 in the rate constants of Eq. (12) yields indistinguishable
voltammograms in Fig. 4, while a visible departure from such
curves results from SN.

The value of the theoretical development in Ref. [7] is not af-
fected by these results. Yet, Fig. 4 demonstrates that analytical con-
ditions that may appear as mathematical ‘pedantry’ from the
viewpoint of the description of a physical system, can lead to ob-
servable effects in the accuracy of such description. Moreover,
the present analysis aims to shed light on the level of accuracy that
needs to be kept truncating the series expression of the electron
transfer rate constant as SN [7] or TN [8]. Ultimately, it may also

be worth reconsidering the valuable and useful reformulations
and approximations of S in [7] in terms of the partial sums TN.
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Fig. 3. Relative errors rR = (SN �S)/S (empty squares) and (TN �T)/T (full squares) in the electron transfer rate constant, plotted against N, at DE0 = 1.4 V. Smaller ranges of N
and correspondingly of the ordinate are reported in the right panel.

Fig. 4. J versus V, for a model system with T = 298 K, k = 0.15 eV, and m = 0.08 (lower curves), 0.04 (upper curves). Left: S = T as simulated by N = 30 (full gray lines) and TN with
N = 6 (dash). Right: dashed lines reported from the left panel and results using SN with N = 6 (full lines). Visible differences are seen between the J–DE responses resulting from
SN and TN.
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