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Raman scattering from molecular conduction junctions: Charge transfer mechanism
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We present a model for the charge transfer contribution to surface-enhanced Raman spectroscopy (SERS) in a
molecular junction. The model is a generalization of the equilibrium scheme for SERS of a molecule adsorbed on
a metal surface [B. N. J. Persson. Chem. Phys. Lett. 82, 561 (1981)]. We extend the same physical consideration
to a nonequilibrium situation in a biased molecular junction and to nonzero temperatures. Two approaches
are considered and compared: a semiclassical approach appropriate for nonresonance Raman scattering, and
a quantum approach based on the nonequilibrium Green’s function method. Nonequilibrium effects on this
contribution to SERS are demonstrated with numerical examples. It is shown that the semiclassical approach
provides an excellent approximation to the full quantum calculation as long as the molecular electronic state is
outside the Fermi window, that is, as long as the field-induced charge transfer is small.
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I. INTRODUCTION

Single-molecule Raman spectroscopy is by now a well-
established field of research, where surface enhancement of
the signal makes experimental observation feasible.1,2 Recent
advances in fabricating molecular junctions3 have made
it possible to observe surface-enhanced molecular optical
response of such systems under nonequilibrium current-
carrying conditions.4–6 In particular, surface-enhanced Raman
spectroscopy (SERS) of molecular junctions has the potential
to become an important diagnostic and control tool in the
field of molecular electronics. Together with inelastic electron
tunneling spectroscopy,7–9 it can provide detailed information
on the vibrational structure (molecular fingerprint) and dynam-
ical effects of a junction. SERS also is an invaluable source of
information on vibrational energy distribution in a molecular
junction.6,10

Development of experimental techniques has led to a surge
in theoretical research on spectroscopy of nonequilibrium open
molecular systems. Theoretical studies on current-induced
fluorescence11–15 and photoassisted current16–19 are available
in the literature. Recently, we20,21 proposed an approach for
describing resonant Raman spectroscopy of molecular conduc-
tion junction within a two-level (HOMO-LUMO) model for
the molecular bridge. With many experiments done far from
resonance, a natural extension is the formulation of a theory for
off-resonant Raman scattering. Another important extension is
to address the often raised issue of the so-called “chemical”
contribution, a name usually referred to as charge transfer
(CT) effect to SERS in such systems. The issue is particularly
relevant in molecular junctions, where CT is significantly
expressed in their behavior under bias.

Many studies aimed to characterize the role played by CT
in SERS from molecules adsorbed on metal surfaces have
been published in the past three decades.22–29 A particularly
simple model by Persson30 considers the light-scattering signal
resulting from the oscillating dipole formed by CT between an
adsorbed molecule and the underline metal as evaluated within
a Newns-Anderson–type model.31 In this paper, we extend this
theory to a molecule confined between the two metal electrodes

of a biased molecular junction. We use a nonequilibrium
Green’s function (NEGF) technique to calculate the light
scattering from such systems and identify diagrams on the
Keldysh contour that contribute to the charge transfer SERS.
We derive an expression for the Raman flux at steady state,
thus generalizing the theory of Ref. 30 to nonzero temperature
and current-carrying conditions. Our results become identical
to those of Ref. 30 in the equilibrium zero-temperature limit.

The problem of Raman scattering from a molecule in a
metal-molecule-metal junction is associated with two fun-
damental issues. One is the electromagnetic response of
the junction, specifically, one needs to relate the incident
electromagnetic field to the local field in the junction as well as
outgoing radiation to the time-dependent charge distribution
in the junction. The other is the evaluation of the transport
properties of the junction and the time-dependent charge
distribution in the junction in the presence of the combined
driving by the dc voltage bias and the local time-dependent
electromagnetic field. Here, we focus on the second problem,
assuming that the electromagnetic response of the junction
has been (or can be) evaluated in a separate calculation. Such
an approach has been tacitly followed in most treatments
of radiation field effects on electronic transport in tunneling
junctions. Several recent calculations15,32 have addressed
the needed input using numerical solutions of the Maxwell
equations in an environment defined by a given junction
geometry.

Our model is introduced in Sec. II. A quasiclassical
approach to CT contributions to SERS is discussed in Sec. III.
Section IV introduces corresponding quantum consideration
and identifies the Keldysh contour diagrams for the light-
scattering process relevant to obtain the CT contributions to
SERS. Numerical examples are presented in Sec. V, and our
conclusions are summarized in Sec. VI.

II. MODEL

Following Ref. 30, the molecular junction is represented by
a single level of energy ε0 coupled to two metal contacts L and
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R, each at its own equilibrium characterized by the junction
temperature T and the electrochemical potentials μL = EF +
η|e|Vsd and μR = EF − (1 − η)|e|Vsd , respectively, where
Vsd is the potential bias and where the bias division factor
η is used to model the voltage distribution in the junction. The
tunneling electron is coupled to a single molecular vibration
of frequency ωv , which in turn is coupled to a thermal bath
of harmonic oscillators. In addition to the imposed bias, the
junction is driven by an external field represented by a single
pumping mode of frequency νi and a continuum of modes
{νf } that are assumed vacant. The light-scattering signal is
calculated as the flux into the latter modes.

In the absence of the electromagnetic field, the system
Hamiltonian is

Ĥ = Ĥ0 + V̂ , (1)

Ĥ0 = ĤM +
∑

K={L,R,B}
ĤK, (2)

V̂ = V̂M +
∑

K={L,R,B}
V̂MK, (3)

where ĤM is the molecular Hamiltonian that describes the
electronic and vibrational degrees of freedom of the molecule

ĤM = ε0n̂ + ωvv̂
†v̂ (4)

and ĤK (K = {L,R,B}) are Hamiltonians of the electrodes
(L and R) and thermal bath (B):

ĤK =
∑
k∈K

εkĉ
†
kĉk, (5)

ĤB =
∑

β

ωβb̂
†
β b̂β . (6)

V̂M is the coupling between the molecular electronic and
vibrational degrees of freedom, and V̂MK (K = L,R,B) are
couplings between molecule and corresponding bath:

V̂M = Mv(v̂ + v̂†)n̂, (7)

V̂MK =
∑
k∈K

(Vkd̂
†ĉk + V ∗

k ĉ
†
kd̂), K = L,R (8)

V̂MB =
∑

β

WβQ̂βQ̂v. (9)

In Eqs. (4)–(9), d̂† (d̂) and ĉ
†
k (ĉk) are creation (annihilation)

operators for electrons on the molecule and in state k of the
contacts, n̂ ≡ d̂†d̂ is the population operator of the molecular
level, v̂† (v̂) and b̂

†
β (b̂β) are creation (annihilation) operators

of vibrational excitation (phonon) on the molecule and in
state β of thermal bath, Q̂v ≡ v̂ + v̂† and Q̂β ≡ b̂β + b̂

†
β

are coordinate operators for the molecular vibration and the
thermal bath mode β. Equation (8) describes the standard
electron transfer interaction between the molecule and the two
metals. The coupling (9) induces thermal relaxation of the
molecular vibration because of interaction with the external
thermal harmonic bath.

For the light-scattering problem, the minimal model for
the electromagnetic field is represented by a single pumping
(incident) mode i and a set of final accepting modes {f }.
The unperturbed Hamiltonian now becomes Ĥ0 = ĤM +

∑
K={L,R,B} ĤK + Ĥrad, where

Ĥrad = νi â
†
i âi +

∑
f

νf â
†
f âf . (10)

Here, â
†
i (âi) and â

†
f (âf ) are creation (annihilation) operators

for photons in the initial (pumping) and final modes i and {f },
respectively. For the system-radiation field interaction V̂rad,
we follow Ref. 30 in assuming that the field affects relative
energies of single electron states localized on the molecule
and in the leads. Specifically, we assume that the field acts as
a time-dependent gate potential, affecting oscillations of the
molecular energy level relative to the electrodes. We write it
in the form

V̂rad = −( �pCT · �̂E)n̂ (11)

[note that either n̂ or (n̂ − n̄) can be used in these expressions
since only the time-dependent part of n contributes to the light-
scattering processes], where �̂E is the electric field operator and
�pCT(n̂ − n̄) is the dipole associated with the charge transfer
into/out of the molecule. The form (11) is valid when the
molecular charging dynamics [determined by the rates �L, �R

(defined in Eq. (33)] are slow relative to the metal dielectric re-
laxation measured by the plasma frequency. In Ref. 30, which
considers a molecule adsorbed on a single metal substrate, this
charge transfer dipole is represented by �pCT = e �d , where �d is
the distance vector from the electrode surface (or image plane)
to the molecule and e is the electron charge. Again, such a
model is valid at low frequencies, in which case electric field
is perpendicular to the metal surface so that Eq. (11) becomes
V̂rad = −edÊn̂. In the present case, the determination of the
charge transfer dipole, i.e., the dipole induced in the junction
in response to molecular charging is a complex problem
even in the electrostatic limit and depends on details of the
junction geometry. In the simplest case of a point molecule
located at midpoint between two metal planes, this dipole
vanishes. A realistic junction does not usually possess this
perfect symmetry, and charge transfer to/from the metal will
usually lead to induced dipole. At the same time, for a molecule
located between plasmon-sustaining metal structures, pCT may
be strongly enhanced if νi is close to the plasmon resonance
frequency. Another source of coupling may be dominant in the
case where the molecular permanent dipole �pM (n) depends
strongly on its electronic population n [within our model, this
implies that the molecular HOMO (highest occupied molecu-
lar orbital) and LUMO (lowest unoccupied molecular orbital)
are associated with different molecular permanent dipoles]. In
this case, (d �pM/dn)n̄ provides another important contribution
to �pCT.33 In what follows, we carry the calculations assuming
that �pCT is known or has been determined.

In the following sections, we evaluate the Raman light
scattering associated with this model. In a quasiclassical
approach (Sec. III), the incident field is treated classically
and the scattered radiation is evaluated from the resulting
oscillating dipole. In a fully quantum treatment (Sec. IV), the
field is an operator expressed in terms of its photon degrees of
freedom. Equation (11) then takes the form

V̂rad = −i

(
Ui(âi − â

†
i ) +

∑
f

Uf (âf − â
†
f )

)
n̂ (12)
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with

Ui = − �pCTKi
�Ei, (13a)

Uf = − �pCTKf �σf , (13b)

where �Ei is the electric field vector associated with the
incident laser field, �σf is the polarization vector (unit vector
in the electrical field direction) associated with the outgoing
mode f , and Ki and Kf are local tensors that depend on the
corresponding incoming and outgoing frequencies, relating the
incident and outgoing vector field to the corresponding local
fields at the molecule. In particular, elements of these tensors
contain all the information pertaining to possible local field
enhancement associated with the given junction geometry. As
stated above, in this paper we assume that these tensors are
known, having been evaluated in a separate calculation (see,
e.g., Ref. 15). In using the form (13a) for the incident field,
we have expressed its amplitude explicitly, allowing for the
formalism presented below to consider a steady state driven
by an incoming photon mode populated by one photon.

III. RAMAN SCATTERING: THE QUASICLASSICAL
APPROACH

Classically, light scattering is expressed as the radiation
emitted by the dipole induced in the system by the driving
fields, and its Raman component is obtained from the expan-
sion of this induced dipole in the vibrational coordinate(s).34

The latter are treated as classical motions within the Born-
Oppenheimer approximation, so that the molecular level
energy, driven by the external (classical) optical field Ei(t) =
Ei cos(νit), is

ε0(Qv,t) = ε0(Qv) + Ui cos(νit)
(14)

= ε0(Qv) + Ui

2
(eiνi t + e−iνi t ),

where Ui = �pCT · �Eloc, with �Eloc being the local electric
field associated with the incoming radiation. Furthermore, in
the following we will assume that the vibrational deviation
from equilibrium is small enough to allow the lowest-order
expansion ε0(Qv) = ε0 + MvQv . The harmonic driving (14)
of the level energy relative to the Fermi energy of the contacts
yields an oscillating level occupation given by35

n(Qv,t) =
∞∑

k1,k2=−∞
Jk1

(
Ui

νi

)
Jk2

(
Ui

νi

) ∫ ∞

−∞

dE

2π

eiνi (k1−k2)t ∑
K={L,R} �KfK (E)[

E − ε0(Qv) − νik1 + i
2�

][
E − ε0(Qv) − νik2 − i

2�
] , (15)

where Jk(x) is the Bessel function of the first kind. In (15), �K = 2π |VK |2ρK [K = L,R; |VK |2 = 〈|Vk|2〉k∈K ≡∫
dεk|V (εk)|2ρK (εk)] is the electron escape rate from the occupied molecular level into the lead K and fK (E) is the Fermi-Dirac

distribution. The oscillating component of the level occupation is obtained from Eq. (15) to linear order in Ui in the form

n(1)(Qv,t) = Ui

νi

∑
K={L,R}

∫ ∞

−∞

dE

2π
Re

[
�KfK (E)

E − ε0(Qv) − i�/2

(
eiνi t[

E − ε0(Qv) − νi + i
2�

] − e−iνi t[
E − ε0(Qv) + νi + i

2�
]
)]

, (16)

where we have used Jk(x) ∼ (x/2)k/k! and J−k(x) = (−1)kJk(x). In our model, the corresponding oscillating dipole �p, hence
the corresponding polarizability tensor α = ∂ �p/∂ �Ei , is proportional to this average level population, e.g., �p(t) = �pCTn(t). For
simplicity, we will henceforth also assume that �p and �Ei are parallel to each other and perpendicular to the substrate surface, and
denote by α the corresponding nonzero component of the polarizability tensor.

In terms of pCT we then have (to linear order in the external field)

p(Qv,t) = Ei

[
α(Qv,νi)e

iνi t + α∗(Qv,νi)e
−iνi t

]
, (17)

where the polarizability is

α(Qv,νi) = p2
CT

2νi

∑
K

∫ +∞

−∞

dE

2π
�KfK (E)

(
1

[E − ε0 − i�/2][E − ε0 − νi + i�/2]
− 1

[E − ε0 + i�/2][E − ε0 + νi − i�/2]

)
.

(18)

The Raman polarizability is obtained by considering the term linear in Qv . In the classical limit, the Stokes and anti-Stokes
contributions are equal. We obtain

pRaman(t) = Ei

(
αv(νi)e

i(νi±ωv )t + α∗
v (νi)e

−i(νi±ωv )t
)
, (19)

where

αv(νi) =
(

∂α(Qv,νi)

∂Qv

)
Qv=0

= p2
CTMv

4πνi(� + iνi)

∑
K={L,R}

�K

[
2�νi(ε0 − μK )

[(ε0 + νi − μK )2 + (�/2)2][(ε0 − νi − μK )2 + (�/2)2]

+ i

(
ε0 + νi − μK

[(ε0 + νi − μK )2 + (�/2)2]
+ ε0 − νi − μK

[(ε0 − νi − μK )2 + (�/2)2]
− 2(ε0 − μK )

[(ε0 − μK )2 + (�/2)2]

)]
, (20)
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where we have taken T → 0 to perform energy integration
analytically.

From Eq. (19), the total scattered power is36

P = (νi ± ωv)4

3c3
|αv(νi)Ei |2 . (21)

(Note that the semiclassical approach assumes νi � ωv and
the Raman polarizability is obtained in terms of νi only.)
Equations (20) and (21) constitute our main classical limit
results, expressing the charge transfer contribution to the
Raman scattering, here derived for the response of the
molecular bridge in a (generally biased) molecular conduction
junction. The bias potential enters explicitly through the
chemical potentials μK (K = L,R) in Eq. (20).

To facilitate comparison with the results of Ref. 30, it is
convenient to consider the scattering function A(νi,νi ± ωv)
defined in Eq. (14) of that paper.37 In the quasiclassical case,
this function depends only on νi and we denote it by Asc(νi). A
relationship between this function and the Raman polarizabilty
may be found by comparing Eqs. (13) and (18) of Ref. 30, and
recalling that in Ref. 30, case ed = pCT. This leads to

Asc(νi) = αv(νi)

2p2
CTMv

. (22)

A comparison of the scattering function A calculated using
(22) and (20), our quantum results from Sec. IV and the results
of Ref. 30, is provided in Sec. V.

Note that in evaluating Eqs. (20) and (22), we have assumed
that all the dependence on Qv comes from its effect on
the molecular electronic energy. Other contributions could
come from the possible dependence of the junction transport
properties (e.g., the rate parameters �) on Qv through the
molecule-metal distance, or from the dependence on Qv of the
metal electronic response.38

IV. QUANTUM CONSIDERATION

As a quantum problem, Raman scattering in the present
model can be evaluated by following the approach of our
previous publications20,21 modified to take into account the
different system-radiation field coupling. First, we consider
the photon flux from the molecule to an empty accepting mode
f . We start from Eq. (25) of Ref. 21:

JM→f = −
∫ +∞

−∞
d(t − t ′) >

f (t ′ − t)G<(t − t ′), (23a)

where >
f (t ′ − t) is the molecular self-energy due to coupling

to the mode f , given, for a free unoccupied mode, by

>
f (t ′ − t) = −i|Uf |2e−iνf (t ′−t). (23b)

This leads to

JM→f = i|Uf |2G<(νf ). (24)

In Eqs. (23a) and (24), G<(t − t ′), the Fourier transform of
which is G<(νf ), is the lesser projection of the two-particle
Green’s function G defined by the form (11) of the molecular
coupling to the electromagnetic field, i.e., a density-density

correlation function given on the Keldysh contour by

G(τ1,τ2) ≡ −i〈Tc n̂(τ1) n̂(τ2)〉, (25)

where τ1,2 are variables on the Keldysh contour and Tc is
the contour ordering operator. The time evolution in (25) is
defined by the Hamiltonians (1)–(11) and the average is over
an electronic steady state of the biased junction in which the
interaction with the accepting modes {f } is absent. Note that
Eq. (24) is of second order in the interaction with the outgoing
modes, so that to this order the Green’s function (25) can be
evaluated while disregarding this interaction.

Next, regarding the interactions between the molecular
electronic state and the incoming radiation field Ui , as well as
with the molecular vibration Mv , as perturbations, we derive
(see Appendix A) a perturbative expression for the Green’s
function (25) within the lowest relevant order (second) in
each of these interactions. The resulting expression in which
the time evolutions are defined in terms of the quadratic
Hamiltonian (2) may be expanded using Wicks theorem
and expressed as a diagrammatic expansion. As discussed
in Appendix A, we focus only on those diagrams that are
relevant for the Raman process under discussion. The results
of Ref. 30 provide useful guidelines for identifying these
diagrams, which are displayed in Fig. 1. By substituting the
corresponding expressions (A2), for the Green’s function (25)
into (24), we obtain the outgoing Raman flux into an accepting
mode f that results from pumping the molecule by mode i:

Ji→f = |Ui |2|Uf |2|Mv|2
∫ +∞

−∞
d(t − t ′)eiνf (t−t ′)

×
∫

c

dτ1

∫
c

dτ2

∫
c

dτ3

∫
c

dτ4D̃i(τ1,τ2)Dv(τ3,τ4)

× [G(t ′,τ4)G(τ4,τ2)G(τ2,t
′) G(t,τ1)G(τ1,τ3)G(τ3,t)

(26a)

+G(t ′,τ2)G(τ2,τ4)G(τ4,t
′) G(t,τ3)G(τ3,τ1)G(τ1,t)

(26b)

+G(t ′,τ2)G(τ2,τ4)G(τ4,t
′) G(t,τ1)G(τ1,τ3)G(τ3,t)

(26c)

+ G(t ′,τ4)G(τ4,τ2)G(τ2,t
′) G(t,τ3)G(τ3,τ1)G(τ1,t)].

(26d)

Equation (26) is the main quantum result of this paper.
The terms (a)–(d) in this equation correspond to the similarly
labeled diagrams in Fig. 1. In Eq. (26), D̃i is the momentum
Green’s function of the pumping mode i:

D̃i(τ1,τ2) = −i〈TcP̂ (τ1)P̂ (τ2)〉, (27)

where P̂i ≡ −i(âi − â
†
i ), Dv is the coordinate Green’s func-

tion of molecular vibration v,

Dv(τ3,τ4) = −i〈TcQ̂v(τ )Q̂v(τ ′)〉, (28)

where Q̂v ≡ v̂ + v̂†, and G is the single-particle electron
Green’s function.
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FIG. 1. (Color online) Diagrams relevant for the charge transfer
contribution to SERS. Dashed lines represent Green’s functions of
the free photon modes (pumping and accepting), wavy lines represent
Green’s functions of molecular vibration, directed solid lines indicate
electronic single-particle Green’s functions with arrows indicating
electron propagation. Time labels correspond to the integration
variables in Eq. (26). The four diagrams represent scattering events
of particles and holes, interacting via electromagnetic field and
molecular vibration.

G(τ,τ ′) = −i〈Tc d̂(τ ) d̂†(τ ′)〉. (29)

Note that the contour variables τ1, τ2, τ3, τ4 in Eq. (26) are yet
to be projected. From all possible projections, we are interested
only in the rates, i.e., τ1 and τ2 as well as τ3 and τ4 have to be on
opposite branches of the Keldysh contour.39 These projections
involve the projected Green’s functions G, D̃i , and Dv , which
enter Eq. (26) and take the following forms in the lowest-order
approximation employed here:

(a) In the spirit of the perturbation expansion employed
above, the Green’s function D̃i for the pumping mode can be
taken for a free incoming photon, namely,40

D̃
>,<
i (t1 − t2) = −ie±iνi (t1−t2). (30)

(b) Similarly, on the simplest level of description, the
vibrational mode Green’s function Dv of the molecular
vibration can be taken as the noninteracting phonon Green’s
function, the lesser and greater projections of which are (in
energy space)41

D(0)>
v (ω) = −2πi[Nvδ(ω + ωv) + [Nv + 1]δ(ω − ωv)],

(31a)

D(0)<
v (ω) = −2πi[Nvδ(ω − ωv) + [Nv + 1]δ(ω + ωv)],

(31b)

where Nv = NBE(ωv) is the thermal Bose-Einstein population
of the molecular vibration.

(c) Finally, on the same level of description, the single-
electron Green’s function G can be replaced by G(0), the
electronic Green’s function of the resonant electronic level
model (disregarding electron-phonon coupling). The lesser

and greater projections of this function are (in energy space)41

G(0)>(E) = −i

∑
K=L,R �K (E)[1 − fK (E)]

(E − ε0)2 + [�(E)/2]2
, (32a)

G(0)<(E) = i

∑
K=L,R �K (E)fK (E)

(E − ε0)2 + [�(E)/2]2
. (32b)

In Eqs. (32), fK (E) is the Fermi-Dirac distribution,

�K (E) = 2π
∑
k∈K

|Vk|2δ(E − εk) (33)

is the electron escape rate to contact K (K = L,R), and
�(E) = �L(E) + �R(E). In the wide-band approximation
employed below, �K is taken to be energy independent.

This lowest-order approximation is the same as that
employed in Ref. 30. Indeed, as discussed below, the above
choice of Green’s functions D̃i , Dv , and G together with
the equilibrium condition (μL = μR) and zero-temperature
assumption, reproduces the results of Ref. 30.

Details of the calculation in which Eq. (26) is pro-
jected onto real-time axes using Eqs. (30)–(33) are pre-
sented in Appendix B. To facilitate comparison with the
zero-temperature equilibrium result of Ref. 30, we note
that in that paper the scattering flux equivalent to (26)
is obtained in the form [cf. Eqs. (11)–(15) of Ref. 30]

Ji→f = 2π |H ′|2δ(Ei − Ef ) (34)

with42

H ′ = MvE
2p2

CTA(νi,νf ), (35)

where the scattering amplitude A(νi,νf ) (Ref. 37) is given
as a sum A = ∑6

i=1 Ai of different contributions associated
with different orderings by which the different interactions
V̂M and V̂rad, Eqs. (7) and (11), enter in the perturbative
calculation and also with the different electronic processes
(electron or hole exchange between molecule and substrate)
involved (see Ref. 30 and Appendix B for details). Note that
in Ref. 30 no distinction is made between the incident and
the local field, therefore, in comparing results, the tensors
K in Eqs. (13) should be set to unities. With this provision,
we show in Appendix B that Eq. (13) yields the Stokes
scattering flux in the form (34), (35) where A is given by

A =
6∑

i=1

Ai, (36)

where

A1 ≡ A(−ωv,νf ), (37a)

A2 ≡ A(−ωv, − νi), (37b)

A3 ≡ A(νi,ωv), (37c)

A4 ≡ A(−νf ,ωv), (37d)

A5 ≡ A(νi,νf ), (37e)

A6 ≡ A(−νf , − νi), (37f)
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and

A(x,y)

= i

∫ +∞

−∞

dE1

2π

∫ +∞

−∞

dE2

2π

∫ +∞

−∞

dE3

2π

×
[
G(0)<(E1)

G(0)>(E2)

E2 − E1 + x − iδ

G(0)>(E3)

E3 − E1 + y − iδ

+G(0)>(E1)
G(0)<(E2)

E1 − E2 + x − iδ

G(0)<(E3)

E1 − E3 + y − iδ

]
,

(38)

which provide the generalization to nonequilibrium (biased
junction) and finite temperature of the result of Ref. 30. It is
easily seen to give the latter results in the zero-temperature
equilibrium limit.

We conclude this section by noting that this calculation
could be carried on a more advanced level by taking into
account the mutual influence of vibrational and electronic
degrees of freedom in the current-carrying junction. This is
often described in the self-consistent Born approximation
(SCBA),41 where these mutual effects are accounted for by
including, in the self-energy  of the molecular vibrational
mode, the contribution due to coupling to the tunneling
electron

el(τ,τ ′) ≡ −i|Mv|2G(τ,τ ′)G(τ ′,τ ) (39)

and in the electron self-energy �, a term due to coupling to
this mode

�ph(τ,τ ′) ≡ i|Mv|2Dv(τ,τ ′)G(τ,τ ′), (40)

and evaluating the vibrational and electronic Green’s functions
Dv and G, respectively, as self-consistent solutions of the
coupled Dyson equations

Dv(τ,τ ′) = D(0)
v (τ,τ ′) +

∫
c

dτ1

∫
c

dτ2 D(0)
v (τ,τ1)

× [ph(τ1,τ2) + el(τ1,τ2)]Dv(τ2,τ
′), (41)

G(τ,τ ′) = G(0)(τ,τ ′) +
∫

c

dτ1

∫
c

dτ2 G(0)(τ,τ1)

×�ph(τ1,τ2) G(τ2,τ
′). (42)

(Note that our choice of G(0), taken to include the molecule-
lead coupling, leaves �ph as the only contribution to the
self-energy.) The lesser and greater projections of the Green’s
functions D(0)

v and G(0) are given by Eqs. (31) and (32). ph

is the phonon self-energy due to coupling to the thermal boson
bath

ph(τ,τ ′) ≡
∑

β

|Wβ |2Dβ(τ,τ ′), (43)

where Dβ(τ,τ ′) = −i〈Tc Q̂β(τ ) Q̂β(τ ′)〉0 is the coordinate
free phonon Green’s function for mode β of this bath. ph

is associated with the vibrational relaxation rate

γ (ω) ≡ −2 Imr (|ω|) =
∑

β

|Wβ |2δ(ω − ωβ), (44)

which, in a wide-band approximation similar to that taken
above for the electronic escape rate, may be taken constant

when ωv � γ (ωv). For details of the SCBA implementation,
see, e.g., Ref. 43.

V. RESULTS AND DISCUSSION

In this section, we present numerical calculations of the
charge transfer contribution to the Raman signal, based
on the quantum results [Eqs. (34)–(38)] and the quasi-
classical calculation [Eqs. (20) and (22)]. Unless other-
wise stated, the parameters used in these calculations are
T = 300 K, �L = �R = 0.25 eV, ωv = 0.2 eV, M = 0.1 eV,
and γ = 10−4 eV. The bias was applied symmetrically, i.e.,
μL,R = EF ± |e|Vsd/2, and the Fermi energy was chosen
as the energy origin EF = 0. The frequency of incoming
photon is taken νi = 2 eV and the outgoing frequency is taken
to represent the Stokes peak νf = νi − ωv = 1.8 eV. Under
our control is the bias voltage Vsd itself, and in principle
also the gate potential that determines the position ε0 of the
molecular level relative to the Fermi energy. All calculations
were performed on an energy grid of step 10−3 eV, spanning
the region from −10 to 10 eV.

Figure 2 shows the Stokes scattering amplitude |A(νi,νf =
νi − ωv)| calculated from Eqs. (34)–(38) in the quantum case
and from Eqs. (20) and (22) in the quasiclassical approximation
for an equilibrium system Vsd = 0. The results can be
compared to those presented in Fig. 2 of Ref. 30 (note, however,
that our calculations are done at T = 300 K). It shows the
absolute value of the total Stokes scattering amplitude versus
position ε0 of the molecular level relative to the Fermi energy,
obtained from the quasiclassical approximation [Eqs. (20)
and (22)] and the quantum approach [Eqs. (34)–(38)]. The
following points should be noted: (a) Good agreement with

3

6

10
-2

|A
|(

eV
-2

)

3

6

10
-2

|A
|(

eV
-2

)

-3 -2 -1 0 1 2 3

0-EF (eV )

(a)

(b)

FIG. 2. (Color online) Absolute value of the total Stokes scat-
tering amplitude vs gate voltage calculated at Vsd = 0 within (a)
the quasiclassical approach [Eqs. (20) and (22)] and (b) the quantum
calculation [Eqs. (34)–(38)]. Shown are results for �L,R = 0.25 (solid
line, red), 0.5 (dashed line, blue), 1.0 (dashed-dotted line, green), and
2.0 eV (dotted line, black). See text for other parameters.
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the result of Ref. 30 is obtained in this equilibrium case.
(b) The symmetric character of the curve about ε0 = EF is
due to the particle-hole symmetry of our model, i.e., particle
transport contribution to scattering amplitude [first term in
Eq.(38)], and is equivalent to the hole transport contribution
[second term in Eq.(38)] for a molecular level positioned
symmetrically above and below Fermi energy, respectively.
(c) Destructive interference between the electron and hole
scattering processes leads to suppression of Raman signal at
ε0 = EF . (d) The signal also drops when |ε0 − EF | exceeds
the incident frequency νi since electron transfer between
metal and molecule can not be affected (and consequently
no molecule-contact dipole excitation can be created) in this
far-off-resonant regime. (e) The quasiclassical calculation
provides an excellent approximation to the quantum result
in this case.

Figure 3 demonstrates the generalization of the previous
results to the nonequilibrium (biased) junction. Shown is
absolute value of the total Stokes scattering amplitude |A|
versus the applied bias, calculated for ε0 = 1.8 V within the
quasiclassical and the quantum schemes. Consider first the
results of the quantum calculation. Similar to the equilibrium
case, the Stokes scattering amplitude has a nonmonotonic
dependence on the energy difference between the molecular
level and the leads chemical potential(s), which changes with
the bias potential. Again, the signal drops at the far-off-
resonance regime. In particular, for the �L,R = 0.25 eV case
(solid line, red), the peak at Vsd = 0 (ε0 − EF = νi − ωv)
corresponds to opening of a scattering channel, when an
electron starting at EF − ωv is scattered by the molecule
and ends just above the Fermi energy. A second peak is

3

6

10
-2

|A
|(

eV
-2

)

3

6
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-2

|A
|(
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-2

)

0 2 4 6 8

Vsd (V)
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(b)

FIG. 3. (Color online) Absolute value of the total Stokes scatter-
ing amplitude [Eqs. (36)–(38)] vs bias calculated at ε0 − EF = 1.8 V
within (a) the quasiclassical approach [Eqs. (20) and (22)] and
(b) the quantum calculation [Eqs. (34)–(38)]. Shown are results for
�L,R = 0.25 (solid line, red), 0.5 (dashed line, blue), 1 (dashed-dotted
line, green), and 2 eV (dotted line, black). Other parameters are as in
Fig. 2.

at Vsd = 3.2 V (ε0 − μL = ωv). Here, a metal electron of
energy near μL is scattered by the molecule and ends near
the molecular level. We could not identify a simple origin for
the third peak. We note in passing that at equilibrium (e.g., for a
molecule adsorbed on a single metal substrate) the dependence
of the Raman signal on the electrode potential (which, for
the equilibrium case, can be expressed by ε0) has been an
indicator for the electron-transfer (“chemical”) contribution to
the Raman enhancement. The dependence on bias potential
seen here can serve a similar purpose.

Turning now to the quasiclassical calculation, it again
agrees with the quantum result provided that the molecular
level is outside the window between the Fermi energies of
the two contacts (Vsd < 3.6 V for ε0 = 1.8 eV). Above this
threshold, marked deviations are seen. The reason for this
difference is that the quasiclassical calculation disregards the
blocking of scattering channels by electron exclusion when
molecular level(s) start to be populated. Indeed, the quasiclas-
sical approach is essentially a scattering-based theory, and the
inadequacy of scattering theory in describing inelastic effects
in nonequilibrium electronic transport junctions is a familiar
observation.44,45

Figure 4 shows the dependence of the total Stokes scat-
tering amplitude calculated from Eqs. (34)–(38), on both the
frequency of the pumping mode and the bias potential. The
calculation is done for ε0 = 1.8 eV and �L,R = 0.25 eV within
the model assumptions [Eqs. (31) and (32)]. The structure in
the bias dependence of the Stokes amplitude for fixed νi was
discussed above. For Vsd = 0, the amplitude as a function of νi

naturally peaks around the molecular level position, indicating
the opening of a channel for electron scattering that starts at
EF . This behavior was demonstrated also in Fig. 3 of Ref. 30.
Deviation from this peak structure at higher bias sets in when
the lead chemical potential comes into resonance with the
molecular level (at Vsd = 3.6 V), opening the channel for
electron scattering that is responsible for the second peak in
Fig. 3. Viewed with respect to the incoming frequency νi ,
contributions from the initial, intermediate, and final states
for electron scattering are most pronounced in the region of
maximum local molecular density of states, that is, close to
ε0, which is reflected in the scattering amplitude (hence the
scattering flux) dependence on the bias voltage (for a more

1.5 2 2.5 3i (eV )
2 4 6 8

Vsd
(V)

0

0.05

0.1

0.15

0.2

0.25

0.3

|A
|(

eV
-2

)

FIG. 4. (Color online) Absolute value of the total Stokes scatter-
ing amplitude [Eqs. (34)–(38)] vs bias Vsd and the incoming frequency
νi calculated for ε0 − EF = 1.8 eV. See text for other parameters.
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FIG. 5. (Color online) Absolute value of the total (a) Stokes and
(b) anti-Stokes amplitudes, plotted against the bias voltage Vsd for
a molecular level near ε0 − EF = 1.8 V. Shown are noninteracting
(dashed line, blue) and SCBA (solid line, red) results. See text for
other parameters.

detailed discussion of this line-shape structure, see Refs. 46
and 47).

The calculations presented above are based on the lowest-
order approximation [Eqs. (31) and (32)]. In this level of
approximation, the electron-vibration coupling, which is re-
sponsible for the Raman shift, is disregarded in the expressions
for single-particle Green’s functions. Figure 5 shows results
obtained when the electron-vibration interaction is treated
within the self-consistent Born approximation [Eqs. (39)–
(42)]. For simplicity, we treat the vibrational degree of freedom
in the quasiparticle approximation,40 whereupon hybridization
of the molecular vibration with states of the boson bath
is disregarded, while the average vibrational population is
influenced by the electronic flux. In turn, the electron Green’s
function is affected by the heated vibration. For details of the
SCBA implementation in the quasiparticle approximation, see,
e.g., Ref. 48. Figure 5 shows the absolute values of Stokes and
anti-Stokes scattering amplitudes as functions of bias. The
lowest-order result (dashed line) is compared to the SCBA
(solid line). We see that for our (reasonable) choice of molec-
ular and junction parameters, incorporating electron-vibration
interaction does not make an essential difference in the Stokes
signal below the threshold for resonance transmission (here,
Vsd = 3.6 V). The reason for this is that heating of the
molecular vibration in this regime is inefficient. Above this
threshold, however, the Stokes signal calculated within the
SCBA is markedly different from the low-order result. The
influence of this correction on anti-Stokes scattering is even
more pronounced. The latter is proportional to the average
vibrational mode population, and even inefficient heating
makes an important contribution to this signal.

VI. CONCLUSION

We have presented a model for the charge transfer
contribution to SERS in a molecular junction. This model
is a nonequilibrium finite-temperature generalization of an
approach describing SERS for a molecule chemisorbed on
metal surface.30 Physically, this contribution to light scattering
stems from the oscillating dipole induced in the system
by charge transfer from the metal(s). In addition to the
mechanism considered in Ref. 30, whereupon this dipole
reflects the time-dependent polarization at the metal-molecule
interface, we have identified another potential origin for
this scattering mechanism: the dependence of the molecular
permanent dipole on its charging state. We have presented
a quasiclassical treatment of this problem as well as a fully
quantum NEGF approach. Both reproduce the results of
Ref. 30 when used in the appropriate limit: zero-temperature
equilibrium situation, treated at the lowest order in the
molecular electronic-vibrational interaction. The quasiclassi-
cal approach was shown to provide a reliable approximation for
the full quantum result within its expected range of validity: in
the weak junction-radiation field coupling considered here, and
the far-off-resonance tunneling case where the molecular level
occupation is not affected by its coupling to the leads. We have
also used the self-consistent Born approximation to account for
the electron-vibration interaction on the molecule, and found
the effect of this correction to be small in the low bias regime,
while becoming dominant for the anti-Stokes component of the
scattered radiation above the resonance conduction threshold.

Our results provide a framework for describing the
charge transfer (“chemical”) contribution to Raman scattering
from a molecular junction. They supplement our previous
studies20,21,49,50 that focus on the effect of the biased junction
environment on Raman scattering that originates in the
molecule itself. Two points regarding both mechanisms are
noteworthy:

(a) Both mechanisms are affected, in different ways, by
charge transfer between the metal substrate and the molecule;
however, in the process that originates in the molecule,
charge transfer from the metal substrate(s), in particular in
biased and/or gated junctions, modifies a molecular process
that exists also away from the metal. In contrast, for the
so-called chemical mechanism, charge transfer is essential:
the corresponding contribution vanishes when it is disallowed.
It is therefore important only in direct proximity to the metal
surface. Since in molecular conduction junctions we naturally
consider molecules in such close proximity, both mechanisms
are potentially important.

(b) Both mechanisms reflect the properties of the local
electromagnetic field and are therefore affected by the elec-
tromagnetic enhancement mechanism in the same way. The
main difference between them arises from the additional
enhancement that takes place when certain resonance con-
ditions are obeyed. In standard molecular Raman scattering,
resonance implies matching between the incident photon
and the molecular excitation energy. In the charge transfer
mechanism, the closest we come to resonance is when the
incident photon bridges the gap between the vicinity of the
substrate Fermi energy (where an electron-hole pair is created
or destroyed in the Raman Stokes or anti-Stokes process) and
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a relevant molecular level. Experimentally, this is reflected
in the bias and gate potential dependence of such resonance
condition. Note that in a biased junction, two such Fermi
energies can contribute. This is the origin of the nonmonotonic
behavior of the scattering signal with bias and gate potentials,
and with the incident mode frequency, as discussed above.

Finally, we note that as a simple model for the behavior
of a molecular junction under illumination, we have followed
previous works that model this effect by assuming that the elec-
tromagnetic field affects oscillations in the molecular energy
position relative to the metal(s) Fermi energy. Alternatively,
this effect may be represented as an oscillating bias potential.
Both models yield qualitatively similar results, and comparison
between them will be presented elsewhere.
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APPENDIX A: PERTURBATIVE EVALUATION OF THE
DENSITY-DENSITY CORRELATION FUNCTION

To evaluate the nonequilibrium charge transfer assisted
Raman scattering from Eq. (24), we follow the lines of Ref. 21.
Guided by the zero-temperature equilibrium calculation of
Ref. 30, we focus on terms that correspond to three scattering
events undergone by the tunneling electron: one each with the
incoming and outgoing photons, and one with the molecular
vibration. Such terms should contain each of the correspond-
ing interactions at the second order of perturbation theory.
Equation (24) is already of the second order in the coupling to
the outgoing photon (through the corresponding self-energy),
thus the two-particle Green’s function (25) should be written to
second order in both the coupling to the incoming photon and
to the molecular vibration. The required expression is obtained
in a standard way expanding the contour evolution operator in
the interaction representation to fourth order in perturbation
V̂ = M(v̂ + v̂†)n̂ − iUi(âi − â

†
i ):

G(τ,τ ′) ≈ (−i)5

4!

∫
c

dτ1

∫
c

dτ2

∫
c

dτ3

∫
c

dτ4

×〈Tc n̂(τ ) n̂(τ ′) V̂ (τ1) V̂ (τ2) V̂ (τ3) V̂ (τ4)〉 (A1)

and keeping terms that are of the second order in each of
the couplings M and Ui . Time evolution in (A1) is under
Hamiltonian (1) without coupling to molecular vibration (7)
and optical field (11).

The resulting expression is evaluated by employing Wick’s
theorem. This procedure produces a set of diagrams, which
roughly can be separated into three groups: (i) renormalization

of electron propagator(s) due to coupling to external fields,
(ii) polarization of the environment due to presence of excess
charge, and (iii) electron scattering due to interaction with pho-
tons and phonons. In terms of the Bethe-Salpeter equation51

(two-particle propagator), the first category is characterized by
diagrams where at least one of the fields interacts with only
one of the particles. At our (low-order) level of description,
the second category is characterized by a polarization bubble
renormalized by the interaction with the external fields. Raman
scattering is described by diagrams of the third category. These
diagrams are presented in Fig. 1. They describe electron-hole
[Figs. 1(a) and 1(b)] and electron-electron [Figs. 1(c) and 1(d)]
scatterings (see the following). Their sum is given by

G(τ,τ ′)
= −i|Ui |2|Mv|2

×
∫

c

dτ1

∫
c

dτ2

∫
c

dτ3

∫
c

dτ4D̃i(τ1,τ2)Dv(τ3,τ4)

× [G(t ′,τ4)G(τ4,τ2)G(τ2,t
′) G(t,τ1)G(τ1,τ3)G(τ3,t)

+G(t ′,τ2)G(τ2,τ4)G(τ4,t
′) G(t,τ3)G(τ3,τ1)G(τ1,t)

+G(t ′,τ2)G(τ2,τ4)G(τ4,t
′) G(t,τ1)G(τ1,τ3)G(τ3,t)

+G(t ′,τ4)G(τ4,τ2)G(τ2,t
′) G(t,τ3)G(τ3,τ1)G(τ1,t)].

(A2)

Substituting this into (24) leads to (26).

APPENDIX B: THE ZERO-TEMPERATURE
EQUILIBRIUM CASE

Here, we outline the evaluation of the nonequilibrium
Raman flux, Eq. (26), and show that the resulting expression
reduces to the results of Ref. 30 in the equilibrium zero-
temperature limit. In Ref. 30, the scattering flux equivalent
to (IV) is given [cf. Eqs. (11)–(15) in that paper] in the form
Ji→f = 2π |H ′|2δ(Ei − Ef ) where H ′ = McE

2p2
CTA(νi,νf )

and A = ∑6
i=1 Ai . These contributions correspond to six

sequences of occurrences of the following three events: (a)
absorption from the pumping mode i, (b) emission into the
accepting mode f , and (c) vibrational excitation resulting from
the electron interaction with the molecular vibration v:

A1 ≡ A(−ωv,νf )(â†
f → âi → v̂†), (B1a)

A2 ≡ A(−ωv, − νi)(âi → â
†
f → v̂†), (B1b)

A3 ≡ A(νi,ωv)(v̂† → â
†
f → âi), (B1c)

A4 ≡ A(−νf ,ωv)(v̂† → âi → â
†
f ), (B1d)

A5 ≡ A(νi,νf )(â†
f → v̂† → âi), (B1e)

A6 ≡ A(−νf , − νi)(âi → v̂† → â
†
f ), (B1f)

where the expressions in parentheses indicate the event
sequence, for example, â

†
f → âi → v̂† shows creation of the

final photon preceding the absorption of the initial photon with
the creation of the vibrational quantum trailing both. Each
of these amplitudes is a sum of two terms corresponding to
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electron and hole electron transport [see Eq. (15) of Ref. 30]

A(x,y) ≡
∫ EF

−∞
dEρ0(E)

∫ +∞

EF

dE′ ρ0(E′)
E′ − E + x − iδ

×
∫ +∞

EF

dE′′ ρ0(E′′)
E′′ − E + y − iδ

−
∫ +∞

EF

dEρ0(E)
∫ EF

−∞
dE′ ρ0(E′)

E − E′ + x − iδ

×
∫ EF

−∞
dE′′ ρ0(E′′)

E − E′′ + y − iδ
, (B2)

where

ρ0(E) = 1

2π

�

(E − ε0)2 + (�/2)2
(B3)

is the local electron density of states and EF is the Fermi
energy of the metal substrate. For example, by using (B2) in
(B1a), one gets scattering amplitude for a process with two
intermediate states characterized by energies E′′ and E′ and
incoming energy ±E for electron/hole. The first and second
terms in Eq. (B2) correspond to electron and hole transport,
respectively.

In our calculation, the evaluation of the Raman flux (26)
leads to a sum of products. Contributions to the Raman
scattering flux in our scheme result from two amplitudes
At1

s1
and At2

s2
(bubble diagrams in Fig. 1). Here, s1,s2 =

{1,2,3,4,5,6} is one of the sequences of scattering events
defined in Eq. (B1) and t1,2 = {1,2} is one of the types
(electron or hole) of transport. The corresponding contribution
to the squared amplitude that enters into the Raman flux
T(s2,t2)←(s1,t1) ≡ [At2

s2
]∗ At1

s1
is calculated by taking the following

steps:
(i) Choose two sequences s1 and s2 from Eqs. (B1) and two

types t1 and t2 that correspond to the two terms in Eq. (B2).
Note that both the sequences and types may be the same,
that is, s1 = s2 and/or t1 = t2 are allowed. This choice fully
characterizes a particular contribution to the overall transition
probability. In what follows, we will refer a particular choice
(s,t) as a “process.”

(ii) For a term of the first type (particle transport), choose a
counterclockwise bubble [see, e.g., right bubble in Fig. 1(a)].
For a term of second type (hole transport), choose a clockwise
bubble [see, e.g., right bubble in Fig. 1(b)]. Note that in Fig. 1
and in Eq. (26), τ1 (τ2), t (t ′), and τ3 (τ4) are reserved for the
pumping mode i, accepting mode f , and vibration v on the
bubble corresponding to the first (second) process.

(iii) Draw a bubble representing the first process on the right
and a bubble representing the second process on the left, and
connect them by lines representing the Green’s functions of
the external optical fields and the vibration. The GF of the
pumping mode i connects τ1 and τ2, that of the accepting mode
f connects t and t ′, and the Green’s function for the molecular
vibration connects between τ3 and τ4. Note that under complex
conjugation, the bubble of the second process changes its
original direction (clockwise becomes counterclockwise and
vice versa). The resulting diagrams (one of the four types
presented in Fig. 1) has to be projected (see below) to get the
expression corresponding to this contribution to the transition
probability.

t3 t1 t

t4 t2 t

t1 t t3

t2 t4 t

(a)

(b)

′

′

FIG. 6. (Color online) Examples of projections on the Keldysh
contour.

(iv) On the upper (time-ordered) branch of the Keldysh
contour, set the times in order of the sequence of events of
the first process. On the lower (anti-time-ordering) branch of
the Keldysh contour, set the times in order of the sequence
of events of the second process (see Fig. 6). Connect the
corresponding times by optical and vibration Green’s function
lines. This is the projection of the diagram obtained in the
previous step. Note that t and t ′ are fixed.

(v) Taking the Fourier transforms of the resulting diagram
projection yields the result of Ref. 30 for this contribution to
the transition probability.

In what follows, we show some examples that illustrate this
procedure.

Transition probability for electron transport via the
Eq. (B1d) sequence. Here, the two processes are identical.
Focusing on particle (electron) transport dictates choosing
counterclockwise bubble for both processes. Drawing a con-
jugated (direction is reversed) bubble for the second process
on the left and original (counterclockwise) bubble for the first
process on the right (as in Fig. 1) and connecting times on the
bubbles leads to the diagram shown in Fig. 1(a). Ordering the
times on the Keldysh contour in accordance with the sequence
(B1d) leads to projection shown in Fig. 6(a). The diagram
projection will be

|Ui |2|Uf |2|M|2
∫ +∞

−∞
d(t − t ′)eiνf (t−t ′)

∫ t

−∞
dt1

∫ t ′

−∞
dt2

×
∫ t1

−∞
dt3

∫ t2

−∞
dt4 D̃<

i (t1 − t2) D(0)<
v (t3 − t4)

×G(0)<(t ′ − t4) G(0)>(t4 − t2) G(0)>(t2 − t ′)
×G(0)>(t − t1) G(0)>(t1 − t3) G(0)<(t3 − t). (B4)

Note that Ref. 30 considers the zero-temperature situation only,
i.e., Nv = 0.

After Fourier transform and evaluation of the integrals one
gets52

−2πδ(νf + ωv − νi)|Ui |2|Uf |2|M|2

×
∣∣∣∣
∫ +∞

−∞

dE1

2π

∫ +∞

−∞

dE2

2π

∫ +∞

−∞

dE3

2π

× G(0)<(E1) G(0)>(E2) G(0)>(E3)

[E2 − E1 − νf − iδ][E3 − E1 + ωv − iδ]

∣∣∣∣
2

, (B5)
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which is a generalization of the contribution to the Raman flux
that arises from the sequence represented by the last term of
Eq. (14) of Ref. 30 of the type represented by the first term in
Eq. (15) of that paper.

Interference between electron and hole transport via the
Eq. (B1d) sequence. Here, the two processes are different
by type of transport, while they share the same sequence
of events. A different type of transport for the first process
dictates choosing opposite (clockwise) bubble. As a result,
one gets the diagram shown in Fig. 1(d). Since the sequence
is the same as in the previous example, the projection is still
given by Fig. 6(a). This result comes from the same sequence
[last term in Eq. (14) of Ref. 30], but interference between the
two types [two terms in Eq. (15) of Ref. 30] is considered.
Writing down the diagram projection and evaluating integrals
is done in complete analogy with the previous case.

Interference between hole transport via the Eq. (B1f)
sequence and electron transport via the Eq. (B1b) sequence.
Here, both sequences and types of the processes are different.
Making appropriate choices, one gets diagram shown in
Fig. 1(a). Sequences of the process are ordered on the Keldysh
contour as shown in Fig. 6(b). The diagram projection will be

|Ui |2|Uf |2|M|2
∫ +∞

−∞
d(t − t ′)eiνf (t−t ′)

∫ t

−∞
dt1

∫ t ′

−∞
dt4

×
∫ +∞

t

dt3

∫ t4

−∞
dt2 D̃<

i (t1 − t2) D(0)<
v (t3 − t4)

×G(0)<(t ′ − t4) G(0)<(t4 − t2) G(0)>(t2 − t ′)
×G(0)>(t − t1) G(0)<(t1 − t3) G(0)>(t3 − t). (B6)

Evaluation of the integrals is straightforward. The result
corresponds to contribution to the total transition probability
coming from the first and fourth terms in Eq. (14) of Ref. 30
of the type that corresponds to the second and first terms in
Eq. (15), respectively, of that paper.

It is easy to see that the nonequilibrium version of the
model of Ref. 30, obtained from the formalism of Sec. IV in the
lowest order of electron-vibration interaction, and disregarding
anti-Stokes processes (valid at low T ), is obtained from the
results of Ref. 30 by the following substitutions:

∫ EF

−∞
dE ρ0(E) . . . → −i

∫ +∞

−∞

dE

2π
G(0)<(E) . . . , (B7)

∫ +∞

EF

dE ρ0(E) . . . → i

∫ +∞

−∞

dE

2π
G(0)>(E) . . . . (B8)

This becomes an identity at T = 0 and equilibrium. Explicitly,
this results in expressions (34)–(38) for the scattering flux. This
approach allows us to get the Stokes signal at nonequilibrium
with reasonable accuracy. For a more general description,
one has to follow the self-consistent procedure of Eqs. (41)
and (42), and use the resulting full Green’s functions in
projections of Eq. (26).
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