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Abstract. A continuous projective measurement of a quantum system often
leads to a suppression of the dynamics, known as the Zeno effect. Alternatively,
generalized nonprojective, so-called ‘weak’ measurements can be carried
out. Such a measurement is parameterized by its strength parameter that
can interpolate continuously between the ideal strong measurement with no
dynamics—the strict Zeno effect, and a weak measurement characterized by
almost free dynamics but blurry observations. Here we analyze the stochastic
properties of this uncertainty component in the resulting observation trajectory.
The observation uncertainty results from intrinsic quantum uncertainty, the effect
of measurement on the system (backaction) and detector noise. It is convenient to
separate the latter, system-independent contribution from the system-dependent
uncertainty, and this paper shows how to accomplish this separation. The system-
dependent uncertainty is found in terms of a quasi-probability, which, despite its
weaker properties, is shown to satisfy a weak positivity condition. We discuss
the basic properties of this quasi-probability with special emphasis on its time
correlation functions as well as their relationship to the full correlation functions
along the observation trajectory, and illustrate our general results with simple
examples. We demonstrate a violation of classical macrorealism using the fourth-
order time correlation functions with respect to the quasi-probability in the two-
level system.
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1. Introduction

The continuous projective von Neumann quantum measurement [1] leads to a suppression of
the dynamics, known as the quantum Zeno effect (QZE) [2]. To escape this problem, modern
quantum measurement theory offers generalizations of the projective measurement to the so-
called positive operator-valued measures (POVM) [3, 4], where a projection is replaced by a
softer operation such as a Kraus operator [5]. Such operators can describe not only projective
measurements but also weak measurement, in which case the action of the POVM leaves
the state almost unchanged. By virtue of the Naimark theorem [6], POVMs are equivalent to
projective measurements in an extended Hilbert space that includes additional detector degrees
of freedom. The effect of a continuous application of Kraus operators, which correspond to
a time-continuous measurement, can be described by stochastic evolution equations such as
Lindblad-type equations [7] for the system density matrix or Langevin equations for individual
system trajectories, physically describing irreversible effects such as decoherence and decay
affected by the measurement process.

Weak measurements [8] make it possible to escape the QZE by paying a price in terms
of an imperfect detection. In the extreme case the dynamics of the system is (almost) free
but the measurement outcome is obscured by a large detection noise. This is similar to the
problem of a quantum linear amplifier, which can amplify both complementary noncommuting
observables, like x̂ and p̂, but only if accompanied by a large noise [9]. The interpretation
of weak measurements of correlation functions is sometimes paradoxical: one must either
accept unusually large values of the physical quantity [8] or replace the probability by a quasi-
probability [10]. Weak measurements are also very useful in quantum feedback protocols [11].
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The QZE lies at the strong limit of a spectrum of measurements whose strong/weak
character can be changed continuously [12–19], using e.g. a Gaussian POVM [20, 21]. The
Gaussian POVM is also the key element of the continuous collapse interpretation of quantum
mechanics [22]. These models lead to various types of expressions for time correlation
functions [23]. Here, for the first time we use Gaussian POVM for continuous measurement
to describe higher-order symmetrized time correlation functions. Such functions are known
for the two-time case of a harmonic system [20] or in the weak measurement limit for the
two-level system [24] (but not in general) and are necessary to explain the recent experiment
that shows nonclassical behavior of time correlation functions in a two-level system [25]. The
calculations are facilitated by making a deconvolution of the outcome time trace probability into
the probability component associated with the white detection noise and a quasi-probability that
describes the intrinsic system uncertainty. Such a deconvolution has the advantage that we can
make use of basic properties of the quasi-probability, e.g. the weak positivity [26], which states
that the second-order correlation function matrix is positive definite. Our scheme provides a
unified and concise treatment of weak measurements and the QZE, pointing out the general
trade-off between measurement and decoherence. By comparing the average signal to the
associated noise we also establish limits on the uncertainty of the outcome and its dependence
on measurement characteristics.

The time correlation functions obtained by our approach provide a convenient route for
the analysis of uncertainty properties of systems undergoing weak measurements. Taking a
two-level system as an example, a single nondemolishing measurement of an observable not
commuting with the Hamiltonian is not possible in both time and frequency domains although
the latter gives a better signal-to-noise ratio. Although this is intuitively clear, using our
approach, it is possible to establish and compare bounds on the outcome uncertainty. For another
simple example, the continuous position measurement of a harmonic oscillator, we show that the
same measurement procedure does not lead to the QZE. Instead, the continuous measurement
leads to unbounded growth in noise, in agreement with the general observation [21] and in
analogy to the anti-Zeno effect [27].

The proposed separation has another important consequence. If we assume classical
macrorealism in quantum mechanics, then the statistics of the outcomes with the detection
noise subtracted in the limit of noninvasive measurement should correspond to a positive
definite probability. In contrast, we show that the macrorealism assumption is violated by
demonstrating that our quasi-probability is somewhere negative. Such violation has recently
been demonstrated experimentally [25]. In fact, if we additionally assume dichotomy or
boundedness of the quantum outcomes, the violation can occur already on the level of second-
order correlations of a single observable as shown by Leggett and Garg and [28] others [24], but
also indirectly, subtracting the unavoidable (and necessarily divergent) noise [29]. However, as
follows from weak positivity, without these additional assumptions, second-order correlations
are not sufficient to violate macrorealism. Instead, one needs at least fourth-order averages to see
this violation. In this paper, we demonstrate that a special fourth-order correlation function in
the two-level system, reminiscent of the Leggett–Garg proposal [28], can reveal the negativity of
the quasi-probability in this case and consequently can be used to violate macrorealism, without
having to make any additional assumptions.

This paper is organized as follows. We first define the continuous Gaussian POVM and
obtain the probability distribution for the continuously measured observable. We then make the
deconvolution of this probability into detection noise and a quasi-probability and introduce
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a formalism for evaluating time correlation functions. With that we are able to prove the
weak positivity. We show that the time evolution associated with the quasi-probability can be
formulated either as a quantum Langevin equation driven by a white Gaussian noise or as a
Lindblad-type master equation for the nonselective system density matrix. We also show how
the required time correlation functions can be calculated from these stochastic equations. Next,
we demonstrate the general trade-off between dynamics and measurement, taking a two-level
system as an example, and discuss the behavior of the average signal and the noise in these
prototype systems. Then we construct the Leggett–Garg inequality without assuming dichotomy
or boundedness of the measurement variable. Finally, for completeness, we discuss the harmonic
oscillator case and show how and when the Zeno effect emerges within our formalism. Several
instructive proofs of formulae are presented in the appendices.

2. Quasi-probability and weak positivity

We begin by introducing a general scheme of continuous measurement and describe its
properties. For a given system characterized by a Hamiltonian Ĥ and an initial system state
given by a density matrix ρ̂, we consider the measurement of one, generally time-dependent,
observable Â. A description amenable to continuous interpolation between hard and soft
measurements can be formulated in terms of the Kraus operators [5, 8]. We assume a Gaussian
form of the Kraus operators, whereupon the state of the system following a single instantaneous
measurement is given by

ρ̂1(a) = K̂ (a)ρ̂ K̂ (a), (1)

K̂ (a) = (2λ̄/π)1/4e−λ̄(a− Â)2
. (2)

Note that in (1) the non-negative definite operators ρ̂ and ρ̂1 represent the states of the system
just before and just after the measurement. The probability that the measurement of Â gives the
outcome a is given by [3]

P(a) = Tr ρ̂1(a), (3)

which is normalized,
∫

da P(a) = 1. The Kraus operator (2) depends on the parameter λ̄,
which characterizes the weakness of the measurement. For λ̄ → ∞, we recover a strong,
projective measurement with an exact result but a complete destruction of coherence, while
λ̄ → 0 corresponds to a weak measurement with almost no influence on the state of the system,
ρ̂1(a) ∼ ρ̂, but a very large measurement uncertainty of the order of ∼1/λ̄. The probability
distribution (3) is consistent with the projective measurement scheme, namely 〈a〉 = Tr Âρ̂.

Let us imagine that a continuous sequence of meters interacts with the system. The meters
are prepared with a Gaussian wave function, the interaction is proportional to the product of
the system observable Â and the meter momentum, and the position of each meter is read out
after the interaction. The post-interaction position of the meters is the measurement result a(t)
[4, 19, 20].

Repeated measurements of this type can be described by applying such Kraus operators
sequentially, separated by time steps 1t . In what follows we make the reasonable assumption
that for a given measuring device (‘meter’) the weakness parameter λ̄ is inversely proportional
to the measurements frequency, i.e.

λ̄ = λ1t (4)
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with constant λ. In the continuum limit, λ̄, 1t → 0, we obtain (appendix A) the Kraus operator
as a functional of a(t)

K̂h[a(t)] ≡ e(i/h̄)Ĥ t K̂ [a (t)] = CT e−
∫

λ(a(t)− Â(t))2dt , (5)

where a(t) is the measurement outcome, Â(t) is the operator Â in the Heisenberg representation
with respect to the Hamiltonian Ĥ , Â(t) = exp(iĤ t/h̄) Â exp(−iĤ t/h̄), T denotes time
ordering (later times on the left) and C is a normalization factor. Note that K̂h[a] is the
Heisenberg representation of K̂ [a]. The analogue of (3) is the functional probability

P[a] = Tr K̂ †[a]K̂ [a]ρ̂, (6)

which satisfies the normalization
∫

Da P[a] = 1. Whenever some functional measure D is
introduced here, we tacitly include all proper normalization factors in it.

It is convenient to write (5) as a Fourier transform

K̂h[a] =

∫
DφT e

∫
dt[iφ(t)( Â(t)−a(t))−φ2(t)/4λ] (7)

so that

P[a] = Tr(K̂ [a] ρ̂ K̂ [a]) = Tr

(∫
Dφ+T e

∫
dt[iφ+(t)( Â(t)−a(t))−φ2

+(t)/4λ]

× ρ̂

∫
Dφ−T̃ e

∫
dt[iφ−(t)( Â(t)−a(t))−φ2

−(t)/4λ]

)
, (8)

where T̃ denotes inverse time ordering (later times on the right). Changing integration variables
according to χ = φ+ + φ− and φ = (φ+ − φ−)/2, we can write

P[a] =

∫
Dφ e−

∫
dtφ2(t)/2λ

∫
Dχ e−

∫
dtχ2(t)/8λ e−

∫
iχ(t)a(t)dt

×Tr T e
∫

i(χ(t)/2+φ(t)) Â(t)dt ρ̂ T̃ e
∫

i(χ(t)/2−φ(t)) Â(t)dt . (9)

The last line can be written alternatively as (see appendix B)

Tr T ei
∫

χ(t) Âφ(t)dt/2 ρ̂ T̃ ei
∫

χ(t) Âφ(t)dt/2, (10)

where Âφ(t) denotes the operator Â in a modified Heisenberg picture, namely with respect to
the Hamiltonian Ĥ − h̄φ(t) Â.

Equations (9) and (10) describe the outcome of the continuous measuring process in
terms of the probability distribution functional P [a (t)] of the observation function a(t).
This distribution reflects the quantum uncertainty, the modified system time evolution caused
by the measurement (the backaction effect) and the uncertainty associated with the weak
measurement that can be thought of as reflecting detector noise. A more transparent view of
these contributions is obtained by separating the latter, system-independent contribution from
the system-dependent effects. This is achieved by considering the moment generating functional
M[χ ] = eS[χ ], where S [χ ] is the cumulant generating functional (CGF), given by

M[χ ] = eS[χ ]
=

∫
Da ei

∫
χ(t)a(t) P[a]

= e−
∫

dtχ2(t)/8λ

∫
Dφ e−

∫
dtφ2(t)/2λTr T ei

∫
χ(t) Âφ(t)dt/2 ρ̂ T̃ ei

∫
χ(t) Âφ(t)dt/2. (11)
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The CGF can be divided into two parts S[χ ] = Sd[χ ] + Sq[χ ] with

Sd[χ ] = −

∫
dtχ2(t)/8λ (12)

and

eSq[χ ]
=

∫
Dφ e−

∫
dtφ2(t)/2λTr T ei

∫
χ(t) Âφ(t)dt/2 ρ̂ T̃ ei

∫
χ(t) Âφ(t)dt/2. (13)

Note that S[0] = Sd [0] = Sq [0] = 0. On the level of probabilities this decomposition
corresponds to the convolution

P[a] =

∫
Da′ Pd[a − a′]Pq[a′], (14)

where

Pd [a] =

∫
Dχ e

∫
dt (χ(t)a(t)/i−χ2(t)/8λ)

∝ e−2λ
∫

a2(t)dt (15)

corresponds to a Gaussian noise with zero average and correlation 〈a(t)a(t ′)〉d = δ(t − t ′)/4λ

that may be interpreted as the noise associated with the detector, and where

Pq[a] =

∫
Dχ e−

∫
iχ(t)a(t)dteSq[χ ] (16)

is a distribution associated with the intrinsic system uncertainty as well as the measurement
backaction. It is normalized,

∫
Da Pq[a] = 1, but not necessarily positive, and will be referred

to as a quasi-probability [10, 30, 31]. In the limit of weak, noninvasive measurement, λ → 0, Pd

diverges while Pq has a well-defined limit

eSq[χ ] λ→0
−→ Tr T ei

∫
χ(t) Â(t)dt/2 ρ̂ T̃ ei

∫
χ(t) Â(t)dt/2. (17)

Consider now this distribution Pq. First note that while it is not a real probability functional,
it is possible to calculate moments 〈〉 and cumulants 〈〈〉〉 with respect to this measure as partial
derivatives of the quasi-CGF, respectively,

〈a(t1) · · · a(tn)〉q =
δn exp Sq[χ ]

δiχ (t1) · · · δiχ (tn)

∣∣∣∣
χ=0

,

(18)

〈〈a(t1) · · · a(tn)〉〉q =
δn Sq[χ ]

δiχ (t1) · · · δiχ (tn)

∣∣∣∣
χ=0

.

In particular, for tn > · · ·> t2 > t1,

〈a(t)〉q =

∫
Dλφ Tr[ Âφ(t)ρ̂], (19a)

〈a(t1)a(t2)〉q =

∫
Dλφ Tr[{ Âφ(t1), Âφ(t2)}ρ̂]/2, (19b)

〈a(t1)a(t2)a(t3)〉q =

∫
Dλφ Tr[{ Âφ(t1), { Âφ(t2), Âφ(t3)}}ρ̂]/4,

〈a(t1) · · · a(tn)〉q =

∫
Dλφ Tr[{ Âφ(t1), { Âφ(t2), · · · Âφ(tn)} · · ·}ρ̂]/2n−1 (19c)
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(see appendix C), where we have defined Dλφ = Dφ e−
∫

dt φ2(t)/2λ. Here and below we use the
standard notation { Â, B̂} = Â B̂ + B̂ Â and [ Â, B̂] = Â B̂ − B̂ Â.

Secondly, from equation (19b) follows the important so-called weak positivity property of
second-order correlations [26]

〈F2[a]〉q =

∫
Dφ e−

∫
dtφ2(t)/2λ Tr F2[ Âφ]ρ̂ > 0 (20)

for F[a] =
∫

dt ( f (t)a(t) + g(t)) and arbitrary functions f and g. It can be interpreted as
a generalization of the Robertson–Schrödinger uncertainty principle [32]. This property has
an important implication that no test based solely on maximally second-order correlations
can reveal the negativity of the quasi-probability. First- and second-order correlations can be
represented by a completely classical, positive Gaussian probability distribution

P ′

q[a] ∝ exp

(
−

∫
dt dt ′δa(t) f −1(t, t ′)δa(t ′)/2

)
, (21)

where δa(t) = a(t) − 〈a(t)〉q, f (t, t ′) = 〈δa(t)δa(t ′)〉q and f −1 is its inverse defined by∫
dt f (t ′, t) f −1(t, t ′′) = δ(t ′

− t ′′). The weak positivity guarantees that both f and f −1 are
positive definite and, consequently, P ′

q is a correct real probability distribution. To check
that Pq differs from P ′

q and demonstrate its negativity, one needs higher-order correlations or
additional assumptions (e.g. boundedness or dichotomy of a as it happens in the Leggett–Garg
inequality [28]).

To end this section, we consider the special case when the Hamiltonian commutes with
Â (or the noncommuting part is negligible during the interesting timescale). Furthermore, let
us take the initial state of the system to be an eigenstate |a〉 of Â, i.e. ρ̂ (t = 0) = |a〉〈a|,
Â|a〉 = a|a〉. Consider a measurement carried out during the time interval t0,

ā = (1/t0)

∫ t0

0
dt a(t). (22)

In this case, we find (appendix D) that 〈ā〉 = 〈ā〉q = a and 〈(δā)2
〉 = 〈(δā)2

〉d = 1/4λt0 with
δX = X − 〈X〉. We can see the intuitively expected effect of an increasing measurement
duration to lead to an improved signal-to-noise ratio with time, which goes as

〈ā〉√
〈(δā)2〉

= 2a
√

λt0 . (23)

Thus, even the weakest measurement (small λ) turns into a strong one if performed often enough
for a sufficiently long time.

3. Representation by stochastic evolution equations

Turning back to the general case, we note first that the correlation functions associated with
the quasi-probability Pq[a(t)], given by equations (19a)–(19c), can be calculated from the
Heisenberg equations

dB̂φ(t)/dt = (i/h̄)[Ĥφ(t) − φ(t) Âφ(t), B̂φ(t)] , (24)
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where Â represents the measured variable while B̂ is any system operator. In particular,

d Âφ(t)/dt = (i/h̄)[Ĥφ(t), Âφ(t)],
(25)

dĤφ(t)/dt = φ(t) d Âφ(t)/dt.

We can solve these equations for a general stochastic trajectory φ(t) and then take the averages
as defined by equations (19a)–(19c), over a Gaussian distribution of such trajectories. The
correlation functions obtained in this way coincide with the ones derived directly from the CGF
equation (16). If Ĥ = p̂2/2m + V (x̂), with [x̂, p̂] = ih̄1̂, and Â = x̂ is the position operator, the
Heisenberg equations for x̂φ and p̂φ are

Ĥφ = p̂2
φ/2m + V (x̂φ),

dx̂φ

dt
= p̂φ/m, (26)

d p̂φ

dt
= (i/h̄)[V (x̂φ), p̂φ] + h̄φ(t) = −

∂V (x̂φ)

∂ x̂φ

+ h̄φ(t).

Equation (26) is a quantum Langevin equation in which the quantum dynamics is augmented
by a zero centered white Gaussian noise, 〈φ(t)〉 = 0, 〈/(t)/(t ′)〉 = kd(t − t ′). Closed-form
solutions of this equation can be obtained for the harmonic oscillator, a case we discuss below.

Alternatively, the stochastic dynamics affected by the continuous measurement process
may be described by a Lindblad-type master equation [7] for the nonselective system density
matrix. The latter is defined by

ˆ̃ρ(t) =

∫ a(t)

a(0)

Daρ̂[a] =

∫ a(t)

a(0)

Da K̂ [a]ρ̂ K̂ †[a], (27)

where the integral is over all observation trajectories between times 0 and t . It is shown
(appendix E) to evolve according to (using a Liouville superoperator Ľ)

d ˆ̃ρ

dt
= L̆ ˆ̃ρ := [Ĥ , ˆ̃ρ]/ih̄ − λ[ Â, [ Â, ˆ̃ρ]]/2. (28)

In the representation of eigenstates of Â,

ˆ̃ρ =

∑
a,a′

ρ̃aa′|a〉
〈
a′

∣∣, (29)

L̆ρ̃a,a′ =
1

ih̄

∑
b

(Habρ̃ba′ − ρ̃ab Hba′) − λ(a − a′)2ρ̃aa′, (30)

showing, as is well known [4] and as may be intuitively expected, that the measurement damps
the off-diagonal terms (a 6= a′) with the rate proportional to the measurement strength. Note that
if some eigenvalues a are degenerate, then the corresponding off-diagonal elements of ˆ̃ρ are not
damped.

Together with the Liouville–Lindblad superoperator L̆ , we define the corresponding
evolution superoperator Ŭ (a, b) = T exp

∫ a
b L̆dt . It can be then shown (appendix F) that the

correlation functions (19a)–(19c) are given by

〈a(t)〉q = Tr[ ĂŬ (t, 0) ˆ̃ρ], (31a)
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〈a(t1)a(t2)〉q = Tr[ ĂŬ (t2, t1) ĂŬ (t1, 0) ˆ̃ρ], (31b)

〈a(t1)a(t2)a(t3)〉q = Tr[ ĂŬ (t3, t2) ĂŬ (t2, t1) ĂŬ (t1, 0) ˆ̃ρ],

〈a(t1) · · · a(tn)〉q = Tr[ ĂŬ (tn, tn−1) · · · ĂŬ (t2, t1) ĂŬ (t1, 0) ˆ̃ρ], (31c)

where Ă B̂ = { Â, B̂}/2. Note that in (31a)–(31c), ˆ̃ρ = ˆ̃ρ (t = 0) = ρ̂. Equations (31a)–(31c)
provide a more convenient route for the evaluation of these correlation functions.

In the following sections, we apply this general formalism to the two simplest quantum
systems: the two-level system and the harmonic oscillator.

4. The two-level system

Consider a two-level system defined by the Hamiltonian

Ĥ = h̄ωσ̂x/2 (32)

and suppose that the system is in the initial state

ρ̂ (t = 0) = (1̂ + σ̂z)/2, (33)

where σ̂ denotes Pauli matrices and 1̂ is the corresponding unit operator. Left uninterrupted, the
system will oscillate between the two eigenstates of σ̂z, a process analogous to Rabi oscillations
in a harmonically driven system. We focus on the measurement of Â = σ̂z and denote the
measurement outcome by a (t) = σz (t). We pose the following questions: can the oscillatory
time trace of σz be observed? How does the measurement process affect this oscillation? Is the
oscillation visible in a single run of an experiment or only as a statistical effect—average over
many runs or many copies of the same experiment? The latter question is particularly relevant
in light of the growth of activity in single-molecule spectroscopy.

To answer these questions we start by writing the action of L̆ , (28), in the basis of the
Hermitian operators (σ̂x , σ̂y, σ̂z). In a compact notation it reads

L̆(x σ̂x + yσ̂y + zσ̂z) = ω(yσ̂z − zσ̂y) − 2λ(x σ̂x + yσ̂y) (34)

and L̆ 1̂ = 0. Next, expressing the operation of Ŭ (t, 0) on σ̂z by

σ̂z (t) = Ŭ (t, 0)σ̂z = x(t)σ̂x + y(t)σ̂y + z(t)σ̂z (35)

and using (34) and (35) in (28) we find dx
/

dt = −2λx , dy
/

dt = − (ωz + 2λy) and dz
/

dt = ωy,
which, for z(t = 0) = 1, x(0) = y(0) = 0, yields

z(t) = e−λt [cos(�t) + λ sin(�t)/�], y(t) = dz/dt, x(t) = 0, (36)

where � =
√

ω2 − λ2. This allows us to write down the relevant averages (see appendix G),
namely

〈σz(t)〉q = z(t), 〈σz(t)σz(t
′)〉q = z(|t − t ′

|). (37)

The last line is known in the existing literature only for the stationary case (t, t ′
→ ∞) in the

weak measurement limit λ → 0 [17, 24]. It is interesting to note that although the system under
consideration is not in a stationary state and in fact evolves irreversibly, this correlation function
depends only on the time difference t ′

− t and remains finite when this difference is constant
while both t and t ′ increase.
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Recall that (D.3) and (D.4) imply that 〈σz(t)〉 = 〈σz(t)〉q, while 〈σz(t)σz(t ′)〉 =

〈σz(t)σz(t ′)〉d + 〈σz(t)σz(t ′)〉q, which implies 〈δσz(t)δσz(t ′)〉 = 〈δσz(t)δσz(t ′)〉d + 〈δσz(t) ×

δσz(t ′)〉q. In the limit λ � ω, we see (cf (36) and (37)) clear oscillation of 〈σz(t)〉. However,
in a single run this signal cannot be distinguished from the noise. Indeed, defining as in (22)
σ̄z = (1/t0)

∫ t0
0 dtσz(t), we obviously need to take t0 � ω−1. Therefore

〈(δσ̄z)
2
〉 > 〈((δσ̄z)

2
〉d = 1/t0λ � 1. (38)

The large detection noise covers the signal. This implies that Rabi oscillations cannot be seen
in a single run.

The above result was obtained in the time domain. We can also ask whether the Rabi
oscillation is visible in the frequency domain. This would imply seeing the peak in the Fourier
transform

σ̃z (ν) = (2/t0)

∫ t0

0
dt cos(νt)σz(t), (39)

where t0 is a time much longer than the oscillation period, but obviously much smaller than the
damping time: ω−1

� t0 � λ−1. From (36) and (37), the peak intensity is 〈σ̃z (ν = �)〉 ' 1. On
the other hand, under the measurement conditions the white detector noise satisfies

〈(δσ̃z(�))2
〉> 〈(δσ̃z(�))2

〉d = 1/2t0λ � 1, (40)

implying that, again, the noise exceeds the signal and a peak in the frequency domain will not
be seen. This time, however, the signal-to-noise ratio is not as bad as in the time domain because
t0 can be longer.

We conclude that Rabi oscillation cannot be seen in a single run/copy of the experiment
but only in a statistical average. The sample size, i.e. the number of runs/copies needed for
this average, is of the order (t0λ)−1, where λ−1

� t0 � ω−1 in the frequency domain and
t0 � ω−1

� λ−1 in the time domain. In the overdamped regime, λ � ω, one can see the QZE,
discussed below in section 7.

5. The Leggett–Garg-type inequality

The limit λ → 0 is consistent with the noninvasive measurement because the backaction
vanishes. In this case the negative quasi-probability demonstrates the violation of macrorealism
even for a single observable, as shown by Leggett and Garg [28]. In violations of this type, it
is essential to subtract the large detection noise, whose uncertainty must always diverge and
prevent any real violation [29]. The common confusion about the noninvasiveness condition is
caused by the fact that two-time correlations are numerically identical for the quasi-probability
in the limit λ → 0 and the instant projections (invasive because of collapse) for initial ρ̂ ∼ 1̂.
The equality still holds in the case of many times if the observable satisfies Â2

∝ 1̂. The
analysis above has used second-order correlations that, as stated in (20), are not sensitive to
the quasi-probabilistic nature of the distribution. The violation of the well-known Leggett–Garg
inequality [28] needs only second-order correlations but requires the additional assumption
of bounded observables which is effectively equivalent to higher-order correlations (e.g. the
dichotomy A = ±1 is equivalent to measuring 〈(A2

− 1)2
〉 = 0, which requires the fourth-order

correlator 〈A4
〉). Without this assumption, the quasi-probabilistic nature is, however, revealed

in higher-order correlations. To see this, we take ρ̂ = 1̂/2 and consider the following quantity:

X [σ ] = σz(0)σz(π/ω) + σz(−π/2ω)σz(π/2ω) + 2. (41)
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Figure 1. Demonstration of the violation of the Leggett–Garg-type inequality
〈X 2

〉q > 0 as a function of measurement strength λ. The function starts from the
value 16 for λ � ω as expected for the QZE, crosses the classical bound 0 and
tends to −2 in the limit of weak measurement λ � ω.

The fourth-order correlation 〈X 2
〉q is given by

〈X 2
〉q = 6 + e−λπ/ω[1/r 2 + (10 − 1/r 2) cos(πr) + 10λ sin(πr)/ωr ], (42)

where r =
√

1 − (λ/ω)2. The behavior of 〈X 2
〉q is shown in figure 1. In the limit of strong

measurement 〈X 2
〉q = 16. The origin is the QZE—the evolution is frozen by the measurement

and so σz(t) does not depend on time, which results in X = 4. In the opposite limit of
noninvasive measurement 〈X 2

〉q = −2 and it crosses zero at ω/λ ≈ 11. This implies that for
a sufficiently small λ the classical inequality 〈X 2

〉q > 0 is violated so the function Pq is not
positive definite and as such cannot describe a usual probability. Note, however, that (a) it
contains the relevant physical information, discarding the irrelevant detection noise; (b) by itself,
it cannot be directly measured, namely correlations such as 〈X 2

〉q are not directly measurable
since the real probability is the convolution (14); and (c) the actual detected observable certainly
satisfies 〈X 2

〉 > 0. However, an independent determination of the detection noise should be
experimentally feasible and allows us to find the negativity of 〈X 2

〉q after the noise has been
subtracted.

6. The harmonic oscillator

For completeness, we also consider another much studied simple problem—continuous position
measurement, Â = x̂ , in a system comprising one harmonic oscillator [20], described by the
Hamiltonian Ĥ = p̂2/2m + mω2 x̂2/2. Equations (26) become

dx̂φ/dt = p̂φ/m,

d p̂φ/dt = −mω2 x̂φ + h̄φ(t),
(43)

where φ represents the zero-centered white Gaussian noise, 〈φ(t)φ(t ′)〉 = λδ(t − t ′). We note in
passing that this quantum Langevin equation yields the Fokker–Planck equation for the Wigner
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function [33]

W (x, p) =

∫
dχdξ

(2π)2
e−iξ x−iχpTrρ̂ eiξ x+iχp (44)

in the form [34]

∂W (x, p, t)

∂t
= mω2x

∂W

∂p
−

p

m

∂W

∂x
+

λh̄2

2

∂2W

∂p2
. (45)

However, in what follows we calculate directly the required correlation functions. Solving (43)
we obtain

x̂φ(t) = x̂(0) cos ωt +
p̂(0)

mω
sin ωt +

∫ t

0

dt ′

mω
sin ω(t − t ′) h̄φ(t),

(46)

p̂φ(t) = p̂(0) cos ωt − mωx̂(0) sin ωt +
∫ t

0
dt ′ cos ω(t − t ′) h̄φ(t ′).

This implies that the oscillations of the average position are undamped,

〈x (t)〉 = 〈x (0)〉 cos (ωt) + (mω)−1
〈p (0)〉 sin (ωt) (47)

independently of the detection strength.
Turning to the noise term we first note that, as before, the detector noise combines

additively with the correlation functions obtained from (46). The latter take the form

〈δx(t)δx(t ′)〉q = 〈δx(t)δx(t ′)〉0 + fλ(t, t ′), (48)

where 〈δx(t)δx(t ′)〉0 is the free correlation function obtained in the limit λ → 0 or equivalently
φ → 0, that is, by ignoring the last (noise) terms on the RHS of (46),

〈δx(t)δx(t ′)〉0 = 〈δx(0)δx(0)〉 cos ωt cos ωt ′

+〈δx(0)δp(0)〉W(mω)−1 sin ω(t + t ′) + 〈δp(0)δp(0)〉(mω)−2 sin ωt sin ωt ′ (49)

with the Wigner-ordered average 〈2xp〉W = Tr[ρ̂{x̂, p̂}], and where fλ (t, t ′) is the correlation
function associated with the noise terms in (46),

fλ(t, t ′) =
λh̄2

2(mω)2
[min(t, t ′) cos ω(t − t ′) + (sin ω|t − t ′

| − sin ω(t + t ′))/2ω]. (50)

This measurement-induced correlation function represents the backaction effect of the
measuring process. It depends on the detector strength and the parameters of the dynamics
but not on the initial state of the oscillator. Moreover, because of the Gaussian nature of φ, it
contributes solely to the second cumulant 〈〈x(t)x(t ′)〉〉, leaving all the others unaffected. As
expected, it vanishes in the limit λ → 0. However, the most striking feature in (50) is the growth
of noise with time, as expressed by the first term in (50).

In analogy to the two-level system we discuss the behavior of the short-time (t � ω−1)
average x̄ and the long-time (t � ω−1) Fourier transform x̃ , defined by the analogues of (22)
and (39), respectively. In both limits we are now free to choose t0λ because, in contrast to the
two-level case, the averaged oscillations, (47), are not damped.

Consider first the time-domain observation. For t0λ � 1 the uncertainty of x̄ is determined
by the detection noise as in (38), while in the opposite limit it will be dominated by the
backaction (50). In either case the noise exceeds the signal.
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In the frequency domain, for x̃ (ω) = 2
∫ t0

0 dt cos(ωt)x(t)/t0, we obtain, using (47)–(50),
the peak signal

〈x̃ (ω)〉 = 〈x(0)〉 , (51)

and the intrinsic and backaction noise components

〈(δ x̃(ω))2
〉q ' 〈(δx(0))2

〉 +
λt0h̄2

6 (mω)2 (52)

to which we need to add the detector noise (2t0λ)−1. The total uncertainty originating from the
detector satisfies

λt0h̄2

6 (mω)2 +
1

2t0λ
>

h̄
√

3mω
(53)

with the lower bound (obtained as the minimum of the Lhs with respect to t0λ) independent of
λ and t0. Obviously, 〈x (0)〉 can be chosen large enough for the signal to dominate the noise at
intermediate times, but the noise will always exceed the signal at long enough times. As always,
the signal-to-noise ratio can be improved by repeated measurements.

The fact that the backaction contribution (50) to the noise grows with time reflects the
continuous pumping of energy to the system affected by the measurement process [35]. This
does not happen in the two-level system because of its bounded spectrum; still also in that
system the temperature grows to infinity (ρ̂(t) → (1/2)1̂) as implied by equations (35)–(37).
This unlimited growth can be avoided by assuming that the measurement process also involves
some friction [21, 34]. Indeed, measurement, even classical, means extraction of information
out of the system, so that without compensating for friction its entropy must increase and so
does the temperature.

7. The quantum Zeno effect

For completeness, we show now how the QZE emerges within the present formalism. So
far we have focused on weak measurements, represented by small λ. The opposite limit,
λ → ∞, represents the strong measurement case. In systems characterized by a single timescale
ω−1, strong and weak measurements are quantified by the inequalities λ � ω and λ � ω,
respectively.

Consider the two-level system discussed in section 4. For λ > ω its dynamics is given by
the overdamped analogue of equation (36), � = i

√
λ2 − ω2. In the extreme strong measurement

case, λ � ω, z(t) ∼ e−ω2t/2λ and the decay slows down as λ → ∞ [14, 36]. This corresponds to
the QZE where the system is almost frozen by the measurement, reaching its equilibrium state
z = 0 only on the timescale t ∼ λ/ω2.

For a position measurement in the harmonic oscillator case, we have seen, equation (47),
that the average position oscillates regardless of the strength of the measurement. This implies
that the Zeno effect is absent in this system, as is well known [14]. On the other hand, for
any measurement strength, the detector-induced backaction noise, equation (50), increases
without bound at long times at a rate that increases with λ. Already for short times we get
fλ(t, t) ' λh̄2/3 m2, and backaction adds fast diffusion in the phase space. This is somewhat
analogous to the anti-Zeno effect [27].
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8. Conclusions

Gaussian POVMs, represented here by the Kraus operators, were used in this paper to formalize
the description of weak measurements. A path integral representation of continuous weak
measurement described in this way leads directly to an analysis of backaction noise in terms
of stochastic evolution equations. The average signal and the associated noise were obtained in
terms of moments and time correlation functions of the measured quantity.

In particular, the noise was shown to be an additive combination of a term characteristic
of the measurement alone (detector noise) and terms associated with the system, which in
turn include contributions from the intrinsic quantum mechanical uncertainty in the system
and from backaction effects from the measurement process. A transparent representation of
this stochastic evolution was obtained by separating it into a process characteristic only of the
weak measurement and another representing the quantum uncertainty intrinsic to the system
as well as that arising from the measurement backaction. This yields the noise as an additive
combination of the corresponding contributions, while the total probability is found to be the
convolution of white Gaussian detections noise and the intrinsic system’s quasi-probability. The
quasi-probability can be negative although the negativity is not visible at the level of second-
order correlations due to weak positivity. The general formalism was applied to two simple
problems: continuous monitoring of the level population in a two-level system and continuous
measurement of the position of a harmonic oscillator. For both systems we have established
limits on the possibility of observing oscillatory motion in a single run of an experiment.
The negativity property of the quasi-probability can be demonstrated in the two-level system
using fourth-order correlations. In this way, we have constructed a Leggett–Garg-type inequality
without the assumption of dichotomy or boundedness of the variable.

We observe that the QZE occurs when both the Hamiltonian and the observable can
be represented in finite-dimensional Hilbert space. When the space is infinite or continuous
and both the Hamiltonian and the observable have no finite-dimensional representation, the
dynamics will not always be able to ‘pin down’ the state and consequently the dynamics may
get diffusive. Establishing criteria for the occurrence or absence of the QZE in realistic systems
continues to be an intriguing and challenging issue.
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Appendix A

Here we derive (5). Using (2), a succession of time evolutions and measurements in the interval
(0, t) reads

K̂ ({a j}) = (2λ̄/π)N/4e−(i/h̄)Ĥ(tN+1−tN )e−λ̄(aN − Â)2
· · ·

e−(i/h̄)Ĥ(t3−t2)e−λ̄(a2− Â)2
e−(i/h̄)Ĥ(t2−t1)e−λ̄(a1− Â)2

e−(i/h̄)Ĥ t1 . (A.1)
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Putting λ̄ = λ1t and t j − t j−1 = t1 = 1t and using 1t → 0 leads to

K̂ ({a j}) = (2λ1t/π)N/4
N∏

j=1

e[−(i/h̄)Ĥ−λ(a j − Â)2]1te−(i/h̄)H1t (A.2)

and, for 1t → 0,

K̂ [a(t)] = CT e
∫ t

0 [−(i/h̄)Ĥ−λ(a(t)− Â)2]dt . (A.3)

Alternatively, using Â(t j) = e(i/h̄)Ĥ t j Â e−(i/h̄)Ĥ t j yields

K̂ ({a j}) = (2λ1t/π)N/4 e−(i/h̄)Ĥ tN+1

N∏
j=1

e[−λ(a j − Â(t j ))
2]1t (A.4)

and in the continuum limit

K [a (t)] = C e−(i/h̄)HtT e−λ
∫ t

0(a(t)− Â(t))
2
dt . (A.5)

In (A.3) and (A.5), C are normalization factors.

Appendix B

Here we prove (10). Start from T exp
∫

i(χ(t)/2 + φ(t)) Â(t)dt and discretize to obtain

T ei
∫
(χ(t)/2+φ(t)) Â(t)dt

= T ei1t
∑

j (χ(t j )/2+φ(t j )) Â(t j )

=
{
t j = j1t; j = 1, ..., N

}
× ei1t (χ(tN )/2+φ(tN )) Â(tN )ei1t (χ(tN−1)/2+φ(tN−1)) Â(tN−1) · · · ei1t (χ(t1)/2+φ(t1)) Â(t1)

= e(i/h̄)HtN ei1t (χ(tN )/2+φ(tN )) Âe−(rmi/h̄)HtN

× e(i/h̄)HtN−1ei1t (χ(tN−1)/2+φ(tN−1)) Âe−(i/h̄)HtN−1

· · · e(i/h̄)Ht1ei1t (χ(t1)/2+φ(t1)) Âe−(i/h̄)Ht1 . (B.1)

Next replace

ei1t (χ(t j )/2+φ(t j )) Â
→ ei1t Âχ(t j )/2ei Âφ(t j )(t j −t j−1) (B.2)

for j = 1, . . . , N and define Ĥφ (t) = Ĥ − h̄φ (t) Â, Âφ(t) = T̃ e(i/h̄)
∫

0t Ĥφ(t ′)dt ′ Â ×

T e−(i/h̄)
∫ t

0 Ĥφ(t ′)dt ′ and discretize it again,

Âφ(tk) = T̃
∏
j6k

e(i/h̄)Ĥφ(t j )1t ÂT
∏
j6k

e−(i/h̄)Ĥφ(t j )1t, (B.3)

to obtain

eitN φ(tN )T ei1t
∑N

j=1 χ(t j ) Âφ(t j )/2
→ eitφ(t)T ei

∫ t
0 (χ(t ′)/2) Âφ(t ′)dt ′ (B.4)

from which follows (10).
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Appendix C

Here we derive equations (19a)–(19c). Start from (13) and take its functional derivatives

〈a (t)〉b =

∫
Da a (t) Pb[a] =

1

i

(
δeSb[χ ]

δχ (t)

)
χ(t)=0

=

∫
Dφ e−

∫
dtφ2(t)/2λTr T ( Âφ(t)ρ̂ + ρ̂ Âφ(t))/2

=

∫
Dφ e−

∫
dtφ2(t)/2λTr( Âφ(t)ρ̂), (C.1)

which is (19a).

〈a(t)a(t ′)〉b =

∫
Da a (t) a

(
t ′
)

Pb[a] = −

(
δ2eSb[χ ]

δχ (t) δχ (t ′)

)
χ(t)=0

=
1

4

∫
Dφ e−

∫
dtφ2(t)/2λTr{ Âφ(t

′), { Âφ(t), ρ̂}}. (C.2)

Time ordering implies that for t ′ > t , t ′ will be placed in the outer commutator; however,
the last expression is equal to

1

2

∫
Dφ e−

∫
dtφ2(t)/2λTr { Âφ(t), Âφ(t

′)}ρ̂, (C.3)

which does not depend on the operator ordering. Higher moments are obtained in the same way.

Appendix D

Here we consider the case [ Â, Ĥ ] = 0 and [ρ̂, Â] = 0. When the observable Â commutes
with the Hamiltonian, Âφ (t) = Â, so the trace in (13) becomes independent of φ. Using∫

Dφ e−
∫

dtφ2(t)/2λ
= 1 it follows that eSb[χ ] and Pb[a], (16), do not depend on λ. This implies

that the evolution associated with the backaction effect is deterministic and the only source
of noise is the detector. To see the implication of this on the moments consider the moment,
generating function (cf (12) and (13))

eS[χ ]
= eSd[χ ]eSb[χ ]

= e−
∫

dtχ2(t)/8λ

∫
Dφ e−

∫
dtφ2(t)/2λTr T ei

∫
χ(t) Âφ(t)dt/2 ρ̂ T̃ ei

∫
χ(t) Âφ(t)dt/2.

(D.1)

For the imposed initial conditions, this becomes

eS[χ ]
= e−

∫
dtχ2(t)/8λ (eia

∫
χ(t)dt/2)2. (D.2)

The first moment satisfies

〈a〉 =

(
δ

iδχ (t)
eSd[χ ]+Sb[χ ]

)
χ(t)=0

=

(
δ

iδχ (t)
eSb[χ ]

)
χ(t)=0

= a0, (D.3)
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which implies also 〈ā〉 = a when used in (22). It is easy to realize that the second moment
satisfies

〈a(t)a(t ′)〉 = −

(
δ2

δχ (t) δχ (t ′)
eSd[χ ]+Sb[χ ]

)
χ(t)=0

= −

(
δ2

δχ (t) δχ (t ′)
eSd[χ ]

)
χ(t)=0

−

(
δ2

δχ (t) δχ (t ′)
eSb[χ ]

)
χ(t)=0

. (D.4)

The second term yields a2, so 〈δa (t) δa (t ′)〉 = 〈δa (t) δa (t ′)〉 − a2 is determined just by the
Gaussian detector noise that in the case of (22) results in

〈(δā)2
〉 = 1/ (4λt0) . (D.5)

Appendix E

Here we derive the master equation (28). Following the steps that lead to (9) but without the
trace, we find that

ρ̂[a] = e−(i/h̄)Ĥ t

∫
Dφ e−

∫
dtφ2(t)/2λ

∫
Dχ e−

∫
dtχ2(t)/8λe−

∫
iχ(t)a(t)dt

×T e
∫

i(χ(t)/2+φ(t)) Â(t)dt ρ̂ T̃ e
∫

i(χ(t)/2−φ(t)) Â(t)dte(i/h̄)Ĥ t (E.1)

and

ˆ̃ρ (t) ≡

∫
Daρ̂[a]

= e−(i/h̄)Ĥ t

∫
Dφ e−

∫
dtφ2(t)/2λT ei

∫
φ(t) Â(t)dt ρ̂ T̃ e−i

∫
φ(t) Â(t)dte(i/h̄)Ĥ t . (E.2)

In what follows, we will use the incremental propagation version of this equation:

ˆ̃ρ (t + 1t) = e−(i/h̄)Ĥ(t+1t)

∫
Dφ e−

∫ t+1t
t dtφ2(t ′)/2λ

×T ei
∫ t+1t

t φ(t ′) Â(t ′)dt ˆ̃ρ (t) T̃ e−i
∫ t+1t

t φ(t ′) Â(t ′)dte(i/h̄)Ĥ(t+1t). (E.3)

Next use

T ei
∫ t+1t

t φ(t ′) Â(t ′)dt
= T exp(i1tφ(t)e(i/h̄)Ĥ t Âe−(i/h̄)Ĥ)

=

∏
j

e(i/h̄)Ĥ t j ei1tφ(t) Âe−(i/h̄)Ĥ t j

= e(i/h̄)Ĥ(t+1t)e
∫ t+1t

t (i/h̄)[φ(t ′) Â−Ĥ ]dt ′e−(i/h̄)Ĥ t (E.4)

to rewrite (E.3) in the form

ˆ̃ρ (t + 1t) =

∫
Dφ e−

∫ t+1t
t dtφ2(t)/2λ ei

∫ t+1t
t (φ(t ′) Â−Ĥ)dt ˆ̃ρ (t) e−i

∫ t+1t
t (φ(t ′) Â−Ĥ)dt . (E.5)
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We next expand the Rhs of (E.5), keeping only terms that can contribute to order O (1t). To
this end, we use

e±i
∫ t+1t

t dt (φ(t) Â−Ĥ/h̄) = 1 ± i Â
∫ t+1t

t
φ(t)dt ∓ i(Ĥ/h̄)1t

− Â2

∫ t+1t

t

∫ t+1t

t
dt dt ′φ(t)φ(t ′)/2. (E.6)

This leads, using 〈φ〉 = 0 and 〈φ(t)φ(t ′)〉 = λδ(t − t ′), to

ˆ̃ρ(t + 1t) = ˆ̃ρ(t) − 1t[Ĥ , ˆ̃ρ(t)](i/h̄) − i[ Â, ˆ̃ρ(t)]
∫ t+1t

t
〈φ(t)〉 dt

+
∫ t+1t

t
〈φ(t)φ(t ′)〉( Â ˆ̃ρ(t) Â − { Â2, ˆ̃ρ(t)}/2)

= ρ̂(t) − 1t[Ĥ , ˆ̃ρ(t)] (i/h̄) − λ1t{ Â2, ˆ̃ρ(t)}/2 + λ1t Â ˆ̃ρ(t) Â, (E.7)

which yields

d ˆ̃ρ(t)

dt
= −

i

h̄
[Ĥ , ˆ̃ρ(t)] − λ{ Â2, ˆ̃ρ(t)}/2 + λ Â ˆ̃ρ(t) Â

= [Ĥ , ˆ̃ρ(t)]/ih̄ − λ[ Â, [ Â, ˆ̃ρ(t)]]/2. (E.8)

Appendix F

Here we derive (31a)–(31c). We will demonstrate the derivation of the two-time correlation
function, (31b). We start from (19b) in the form (C.2) and use the cyclic permutation property
of the trace together with identities such as

T e(i/h̄)
∫ t ′

0 dτ Ĥφ(τ )T̃ e(i/h̄)
∫ t

0 dτ Ĥφ(τ )
= T e(i/h̄)

∫ t ′

t dτ Ĥφ(τ ) (t ′ > t) (F.1)

to obtain

〈a(t)a(t ′)〉b =
1

2

∫
Dλφ Tr

[
ÂT̃ e

∫ t ′

t Ĥφ(s)ds/ih̄
{

Â, T̃ e
∫ t

0 Ĥφ(s)ds/ih̄ρ̂T e
∫ t

0 iĤφ(s)ds/h̄
}
T e

∫ t ′

t iĤφ(s)ds/h̄
]
,

(F.2)

where Ĥφ(t) = Ĥ − h̄φ(t) Â. The functional integral
∫

Dλφ can be divided into a product
of integrals performed over trajectories φ(t) between 0 and t and between t and t ′. The
former operates only on the φ-dependent expression in the anticommutator brackets, yielding∫

Dλφ T̃ e−
∫ t

0 iĤφ(s)ds/h̄ρ̂T e
∫ t

0 iĤφ(s)ds/h̄ , which satisfies∫
Dλφ T̃ e−

∫ t
0 iĤφ(s)ds/h̄ρ̂T e

∫ t
0 iĤφ(s)ds/h̄

= Ŭ (t, 0) ρ̂ = ˆ̃ρ (t) (F.3)

(equation (F.3) is equivalent to (E.5), generalized for finite time evolution). Equation (F.2)
becomes

〈a(t)a(t ′)〉b =

∫
DλφTr

[
ÂT̃ e−i

∫ t ′

t Ĥφ(s)ds/h̄ ĂŬ (t, 0) ρ̂T ei
∫ t ′

t Ĥφ(s)ds/h̄
]
. (F.4)

Using (F.3) again, now in the form
∫

Dλφ T̃ e−
∫ t ′

t iĤφ(s)ds/h̄ x̂ (t) T e
∫ t ′

t iĤφ(s)ds/h̄
= Ŭ (t ′, t) x̂ (t),

leads to (31b). Equation (31c) is verified analogously.
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Appendix G

Here we prove (37). From (31a), (33) and (35), using also Ŭ 1̂ = 1 (since L̆ 1̂ = 0) and {σ̂ j , σ̂k} =

2δ jk 1̂, we obtain

〈σz(t)〉b =
1

2
Tr[σ̂z(1 + σ̂z(t))] =

z(t)

2
Tr(σ̂ 2

z ) = z(t). (G.1)

Next, from (31b) and (33)

〈σz(t)σz(t
′)〉b =

1

4
Tr[σ̂zŬ (t ′, t){σ̂z, (1̂ + σ̂z(t))}] (G.2)

for t ′ > t . Using (35) gives {σ̂z, (1̂ + σz(t))/2} = σ̂z + z(t)1̂. Finally,

〈σz(t)σz(t
′)〉b =

1

2
Tr[σ̂zŬ (t ′, t)(σ̂z + z(t)1̂)]

=
1

2
Tr[σ̂z(σ̂z(t

′
− t) + z(t)1̂)] = z(t ′

− t). (G.3)
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