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We consider circular currents driven by voltage bias in molecular wires with loop substructures studied within
simple tight-binding models. Previous studies of this issue have focused on specific molecular structures.
Here we address several general issues. First we consider the quantitative definition of a circular current and
adopt a definition that identifies the circular component of a loop current as the sole source of the magnetic
field induced in the loop. The latter may be associated with the field at the loop center, with the magnetic
moment associated with this field or with the total magnetic flux threading the loop. We show that all three
measures yield an identical definition of the loop current. Second, we study dephasing effects on the loop
current and the associated induced magnetic field. Finally, we consider circular currents in several molecular
structuressbenzene, azulene, naphthalene, and anthracenesand show that circular currents occur generically
in such structures; can be, in certain voltage ranges, considerably larger than the net current through the
molecule; and are furthermore quite persistent to normal thermal dephasing.

1. Introduction

While most studies of transport properties of molecular
conduction junctions have focused on the overall conduction
properties associated with given junction geometry and elec-
tronic structure,1,2 some attention has been given to current
distribution within the junction. Such studies have come to the
forefront recently with several papers addressing possible
interference effects resulting from the existence of multiple
conduction pathways.3–11 In another context, we have recently
studied current transfer processes, in which a current imposed
on one pathways affects a current in another,12 and their
manifestation in affecting efficiencies and yields of charge
transport in helical molecular structures.13 Because interference
plays a central role in such processes, understanding the role
played by relaxation and dephasing is an important related issue.

An interesting phenomenon encountered when addressing the
current distribution within the molecular framework connecting
the junction metallic leads is the possibility to induce circular
currents.14–21 Observations of such phenomena are so far limited
to theoretical computations on model molecular junctions, but
calculations done on several different systems yield broadly
consistent results: First, circular currents often appear in certain
voltage regimes in junctions characterized by multiple pathways
that may close within a given molecular bridge to give a circular
pathway. Second, in some voltage regimes the circular currents
can be considerably larger than the net junction current.15,16,19

Third, such strong circular currents appear near conduction
thresholds in the current-voltage characteristic that are associ-
ated with nearly degenerate pairs of molecular orbitals whose
contribution to the net current is rendered small by destructive
interference. In the isolated ring these orbitals are degenerate,
and are characterized by equal and opposite orbital angular
momentum along the molecular ring.16,19,21,22 Finally, such
circular currents are found to be associated with considerable
magnetic fields at the center of the ring.17,20,23 While several
suggestions were made for possible experimental demonstration

of the existence of such currents,17,23 to the best of our
knowledge no such experiments were reported so far.

Circular currents in molecular rings as well as in other ring
conductors have been discussed in other contexts. Persistent
currents in mesoscopic conducting rings that have been under
discussion since their prediction in 1983 by Büttiker, Imry, and
Landauer24 (for a review of early work on this subject see ref
25) are induced by an external uniform and static magnetic field.
Analogous effects in molecules were discussed extensively in
the context of molecular magnetic response,26–32 in particular
as the origin of magnetic shielding phenomena in NMR
spectroscopy.33 Also, recent theoretical work has indicated the
possibility to excite such currents by external radiation34,35 and
control such effects using shaped photon pulses,36,37 circularly
polarized light,38–41 and twisted light.42 Loop currents can be
also induced in the absence of external fields in rings driven by
an external voltage43–46 and/or temperature bias.47 Indeed, such
circular currents are closely related in nature to those discussed
above for the molecular ring systems.

In spite of many discussions of circular currents in these
different contexts, a unique definition of such currents has not
been given. Consider the two terminal junction displayed in
Figure 1. The net total current in the external leads is Itot and
the currents in the two arms of the ring are I1 and I2. Many of
the papers cited above discuss the circular current in such a
setup only qualitatively, identifying the occurrence of a circular† Part of the “Mark A. Ratner Festschrift”.

Figure 1. Current distribution in a two terminal junction with a circular
ring connecting to conducting leads. The current in any segment of
the ring is defined to be positive when it flows in the counter-clockwise
direction.
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current as the case where the segmental currents I1 and I2 have
similar (clockwise or anticlockwise) orientations, so that the
magnitude of the current in at least one segment is larger than
|Itot|. A quantitative definition has been suggested in ref 43, where
circular currents have been associated only with such situations,
identifying the circular current component as the smaller of
(|I1|, |I2|). Such a definition seems to us rather arbitrary.

In this paper we reconsider the issue of circular currents with
three objectives. First, we suggest an alternative quantitative
measure of the circular current in a ring coupled to an arbitrary
number of external leads. Second, we examine the effect of
dephasing processes, always to be expected in molecular
junctions which are usually studied at room temperature, on
these circular currents. Finally, we use this new understanding
of circular currents to re-examine, within simple tight binding
(Hückel) level calculations of the type considered previously
in such studies, the magnitudes of the circular currents and the
associated induced magnetic fields that are expected in molecular
junctions involving simple molecular ring structures. In a
subsequent paper, we will examine the way in which the
presence of such circular currents is manifested in the interaction
of such molecular ring structures with an external magnetic field.

2. Circular Currents in Rings with External Links

Consider the system of Figure 1, where a current flows
between two leads through a ring of radius R. The overall
junction current is denoted Itot and the currents in the two ring
segments between the leads are I1 and I2. A positive sign is
assigned to current flowing in the counter-clockwise direction.
Obviously, with this sign convention, any decomposition of the
currents in the ring segments into a circular component Ic and
transverse components I1

tr and I2
tr satisfies

We propose to make the choice of Ic unique by assigning it
to be the sole source of current induced magnetic field threading
the ring. Putting differently, the transverse components, I1

tr in
ring segment 1 and I2

tr in ring segment 2 are defined such that
their combined contribution to this magnetic field vanishes.

It is not obvious that even this requirement defines the circular
and transverse components of the ring current uniquely. Indeed
we could request that the total magnetic field at the ring center
due to I1

tr and I2
tr vanishes, that the corresponding magnetic

moment vanishes, or, most generally, that the total magnetic
flux threading the ring due to I1

tr and I2
tr is zero. In Appendix A

we show that, in fact, all of these measures lead to an identical
definition of the circular and transverse components of the ring
current, as follows:

where l1 and l2 are the arc lengths of the corresponding ring
segments and L ) l1 + l2 ) 2πR is the circumference of the
ring. Note that I1

tr and I2
tr flow in the same direction of Itot; the

appearance of a negative sign in expression 3 for I1
tr results from

the sign convention defined above. It is interesting to note that
if the ring is homogeneous, so that its classical Ohm’s law

resistance Rj satisfies Rj ) Rlj for any ring segment j, we have
in this classical limit I1l1 ) -I2l2 which implies that Ic ) 0.
The existence of a circular current under these circumstances
is thus seen to be a purely quantum phenomenon.

The considerations that lead to eq 2 can be generalized in
two ways (see Appendix A). When the ring is replaced by a
regular (i.e., cyclic and equilateral) polygon of n sides, eqs 2
and 3 remain valid and may be also represented by Ic ) n-1(I1n1

+ I2n2), I1
tr ) -Itotn2/n, and I2

tr ) Itotn1/n where nj is the number
of sides associated with segment j and n1 + n2 ) n. More
significantly, if the ring is linked to external leads in N sites so
that it is divided into N segments carrying different currents Ij,
eq 2 becomes

Equations 2-4 are used below to evaluate the bias driven
circular currents associated with several molecular ring struc-
tures. Before that we outline in the next section the tight binding
model used for these estimates and the technique used to
compute the total current and the associated circular currents
that develop in several molecular junction structures with and
without dephasing processes.

3. Model and Method

We consider a molecule described by a tight-binding Hamil-
tonian model (site energies RM and nearest-neighbor coupling
�M) connecting two leads represented by infinite 1-dimensional
tight-binding chains (site energies and nearest-neighbor coupling
RK and �K, K ) L and R, respectively) that represent metal
electrodes (see Figure 2). The Hamiltonian in the site repre-
sentation is

where

and where {|n〉} is a set of orbitals, assumed orthogonal for
simplicity, centered about the atomic sites n and assumed to
span the Hilbert space required for the description of current
conduction through the molecular wire under consideration.

There are several ways to compute the current distribution
within the molecular structure bridging between the conducting

Itot ) I2 - I1 ) (I2 - Ic) - (I1 - Ic) ≡ I2
tr - I1

tr (1)

Ic )
1
L

(I1l1 + I2l2) (2)

I1
tr ) -Itot

l2

L
; I2

tr ) Itot

l1

L
(3)

Figure 2. Tight-binding model for current conduction through a
molecule (here represented by benzene structure) connecting between
two 1-dimensional metal leads, L and R with voltage bias VL - VR.

Ic )
1
L ∑

j)1

N

Ijlj; L ) ∑
j)1

N

lj (4)

Ĥ ) ĤL + ĤR + ĤM + V̂LM + V̂RM (5)

ĤK ) RK ∑
n∈K

|n〉〈n| + �K ∑
n∈K

(|n〉〈n + 1| + |n + 1〉〈n|);

K ) L, R, M (6)

V̂KM ) �KM(|n〉〈m| + |m〉〈n|); n ∈ K, m ∈ M;
K ) L, R (7)
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leads. In this paper we adopt the method used in refs 12 and
48. In the amplitude version of this approach we consider a
network of connected sites described by a tight binding
Hamiltonian, with a source wire in which electrons are injected
into the system and one or more drain wires on which carrier
absorption is affected by the exactly known self-energy terms.
The latter arise from treating explicitly a finite (“interior”)
system and representing the effect of infinite wires on this
system by renormalization of edge sites energies, Ej f Ej +
Σj(E). Here, Σj(E) vanishes unless j is an edge site on one of
the wire segments K. In the latter case it takes the form

The steady state calculation yields the energy dependent
transmission probability T(E) from the source to any drain while
at the same time giving the steady state amplitude Cj(E) on each
site j of the network. The particle current between any two
adjacent sites on the wire segment K is then given by

More significant for the calculation is the ratio

between the bond and the incoming particle currents. In
particular, if JK(j-1fj) is the current in any exit wire segment,
TK(j-1fj) is the corresponding transmission coefficient. In anal-
ogy, when such bond currents are used to evaluate the circular
particle current Jc in a given molecular ring, one can define the
“circular transmission coefficient”

It should be pointed out that in contrast to the standard
outgoing transmission coefficient, Tc can be larger than 1. Any
of these transmission coefficients can be used to calculate the
corresponding electronic current as function of bias voltage from
the standard Landauer formula

where fK(E) (K ) L,R) are the Fermi functions of the leads
biasing the junction.

The density matrix (DM) version of this approach considers
a system driven by given DM elements in the incoming wire
segment and by absorption terms associated with the current
on the outgoing segments, again represented by renormalization
of edge site energies. For example, if sites 1 and 2 are located
on the incoming wire to the left of the scattering region, the
density matrix describing a Bloch wave with wavevector k

propagating toward and reflected from the scattering region is
given in terms of the amplitudes A and B of the incident and
reflected waves, respectively, by

In the outgoing wire segments, the renormalization of edge
site energies by the self-energy terms Σ(E) appear in the steady
state equations for DM elements in the form

where “...” represents terms arising from the Hamiltonian (5)
written for the interior system and where, again, Σj(E) vanishes
if j is not an edge site.

Pure dephasing in the scattering region (i.e., on the molecular
structure) can be included approximately by supplementing the
DM equation of motions by phenomenological damping terms
associated with phase relaxation. This leads to

where, again, “...” represent all contributions arising from the
Hamiltonian (5) and where γj vanishes unless site j belongs to
the molecular bridge. Below we take γj ) γ, independent of
the site on the molecular bridge. The resulting state equations
give the amplitude B (A can be taken real with |A|2 ) f(E), where
f(E) is the Fermi function associated with the source electrode)
as well as the density matrix elements Fjl associated with all
system sites. From these, the outgoing particle current in any
exit wire K is obtained from

where j is an edge site on wire segment K. The equality Jjfl )
(2�jl/p)Im(Fj,l) in fact gives the current between any two adjacent
sites j and l with intersite coupling �jl. This yields the overall
current, as well as the current through every molecular bond at
energy E associated with carriers injected from any given
electrode. This leads in turn to the transmission coefficients
defined by eqs 10 and 11 and to the current as function of
voltage according to eq 12. More details on this calculation are
provided in ref 48.

Finally, the local magnetic field at point rb inside the molecule
is calculated from the Biot-Savart’s Law

where µ0 ) 4π × 10-7NA-2 is the magnetic constant and rb′ is
the position vector of an infinitesimal bond current element Im,n

drb′. The summation is taken over all the bonds (n,m) inside the
molecule.

Σj∈K(E) )
(E - RK) - √(E - RK)2 - 4�K

2

2

≡ ΛK(E) - (1/2)iΓK(E) (8)

JK(j-1fj) )
2�K

p
Im(Cj-1Cj*) (9)

TK(j-1fj) )
JK(j-1fj)

Jincoming
(10)

Tc )
Jc

Jincoming
(11)

I ) e
pπ ∫-∞

∞
dE T(E)[fL(E) - fR(E)] (12)

F11 ) |A|2; F22 ) |B|2

F12 ) |A|2e-ika + ABeika

F21 ) |A|2eika + ABe-ika

(13)

Ḟjl ) 0 ) ... - 1
2

(Σj(E) + Σl(E))Fjl (14)

Ḟjl ) 0 ) ... - 1
2

(γj + γl)Fjl (15)

JK(j-1fj) )
2�K

p
Im(Fj-1,j) )

ΓK(E)

p
Fjj (16)

Bb( rb) ) ∑
(m,n)

∫ µ0

4π
Im,n

d rb′( rb - rb′)
|( rb - rb′)|3

(17)
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4. Results and Discussion

Here, we present computational results obtained for circular
currents in a few typical molecules under “standard” biased
junction conditions. The molecular structures chosen have single
(benzene) and multiple rings, where in the latter group one may
distinguish between separated (biphenyl) and fused (azulene,
naphthalene, and anthracene) ring structures. It should be
emphasized that our calculations, aimed at demonstrating
qualitative generic behaviors, use the simplest tight binding
models for these structures. Similarly, the electrodes are
represented by simple 1-dimensional tight binding chains, each
connecting to one specified site of the molecular structure. The
results of these calculations should not by any means be
considered quantitatively representative, only as indications of
typical behaviors. In all calculations we set the on-site energies
in the left and right leads to zero, RL ) RR ) 0, while the
corresponding on-site energies in the molecular structures are
taken to be RM ) -1.5 eV. The nearest neighbor coupling
parameters are taken to be �M ) 2.5 eV, �L ) �R ) 2.4 �M (the
latter, unphysically large value is just a way to impose a wide
band limit in which we disregard any effect of the finite
electrode bandwidth) and, unless otherwise stated, �LM ) �RM

) 0.4�M. The leads conduction bands are assumed to be half
filled, i.e., their zero-bias Fermi energy EF is taken zero. The
imposed potential bias is assumed to fall on the metal-molecule
bond and to be distributed symmetrically between the two
molecule-electrode contacts. Thus, the biased electrochemical
potentials of the leads are µL ) eV/2 and µR ) -eV/2. The
electronic temperature is taken zero throughout our calculations.

We first focus on the benzene molecule which, for the model
considered, is characterized by doubly degenerate highest
occupied molecular orbitals (HOMOs) and lowest unoccupied
molecular orbitals (LUMOs) at -4 and +1 eV, respectively.
These doubly degenerate orbitals can be characterized by their
orbital angular momentum, representing Bloch waves going
clockwise or counter-clockwise along the ring. Because degen-
eracy is removed by the molecule-electrode coupling, circular
currents arise when one of these waves is expressed more
strongly than the other in the conduction, a situation that can
arise in some voltage ranges in meta- and ortho-connected
benzenes, but not in the para-connected molecule. This observa-
tion may also be described in terms of interference between
the pathways available to an electron moving between the two
contacts.3–11 The former point of view makes it understandable
that the direction of the circular current can depend on the
imposed bias, while the latter one suggests sensitivity to
dephasing processes. For para-benzene, the transverse compo-
nents I1

tr and - I2
tr are equal due to equal lengths of the ring

segments l1 ) l2, see eq 3. For geometrical symmetry reasons,
the currents I1 and - I2 are also equal, leading to zero circular
current, Ic ) 0, see eq 2.

Figure 3 shows the total current-voltage characteristics of
such model benzene junctions for the para, meta, and ortho
bridging configurations. The effect of dephasing, imposed on
the benzene sites as described in section 3, is shown as well.
The relatively large currents correspond to the strong molecule-
lead coupling taken here. Below (Figure 7) we consider the
dependence on coupling-strength. Both the geometrical and the
dephasing effects on conduction reflect the fact that in the model
benzene molecule the molecular orbitals manifested in the
observed transport are doubly degenerate; their amplitudes
combine differently for different connection schemes and
different dephasing rates. An observation that to our knowledge
has not been made before is related to the fact that in the ortho-
and meta-connected benzenes the degenerate levels split.
Provided that the temperature and the molecule-lead coupling
are low enough, this can give rise to a double peak structure in
the transmission (see Figure 5c below) and a corresponding
ledge in the current-voltage relationship as seen in Figure 3c.

Figures 4 and 5 demonstrate the consequences of these
geometric and dephasing effects on the circular current. Figure
4 shows how the directions of the circular current and the
associated magnetic field in meta- and ortho-connected benzene
change in different voltage regimes. Figure 5 shows the
magnitude of the circular current and the associated magnetic

Figure 3. (a) I-V characteristics of para, meta and ortho-connected benzene. (b) I-V characteristics of para-connected benzene at different dephasing
rates (γ). (c) A closeup view of the I-V characteristics of meta-connected benzene near V ) 2 V, showing the ledge (erased by dephasing) discussed
in the text. Similar results (not shown) are obtained for the ortho structure.

Figure 4. Internal current distribution in (a) meta- and (b) ortho-
connected benzene rings for applied bias in the range 0-4 V. The blue-
green circle depicts circular currents, showing their direction. The
direction of the corresponding magnetic fields at the ring centers are
shown by encircled dots and crosses representing upward (out of page)
and downward (into page) directions, respectively. The arrow sizes
indicate the magnitude of the bond currents.
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field at the molecular center as functions of energy, voltage,
and dephasing rate for these molecules. It is tempting to interpret
the sharp resonance features observed as reflecting the fact that
in a relatively narrow voltage regime only one of the two levels
associated with opposite orbital angular momenta is in the Fermi
window, whereas in most voltage regimes, both contribute, albeit
slightly differently, because of their split energies. Such an
interpretation is however oversimplified, as may be realized by
observing that the eigenfunctions of the isolated ring, split by
static impurities (the molecule-lead coupling may be regarded
as such an impurity), are linear combinations that by themselves
do not carry current. Instead, one should look for the current
carrying resonance scattering states to quantify this behavior.
This is seen in Figure 5c, which shows, for the meta-connected
benzene, the split transmission T(E) in the vicinity of the 1 eV

eigenvalue (for our parameters) of the meta-connected benzene
molecule, as well as the circular current “transmission coef-
ficient”, eq 11, in the molecular ring, as a function of incoming
electron energy E. The current, given by eq 12, at a given bias
voltage corresponds to the integral of the transmission as a
function of energy in the bias window, and the circular current
is large only when one of the transmission peaks is inside this
window. It should be noted that for para-connected benzene
the transmission peak does not split and the circular transmission
coefficient is zero in the absence of an external magnetic field.

Focusing on the behaviors shown in Figures 3 and 5, three
observations are noteworthy. First, the circular current can be
much larger than the total net current carried by the molecule.
At resonance, near V ∼ 2 V, Ic ≈ 18Itot, and Ic ≈ 12Itot in the
meta- and ortho-connected geometries, respectively. Second, the

Figure 6. Circular current defined by eq 2 (full line; black) and
according to ref 43 (dotted line; red) plotted as a function of applied
bias for the meta-connected structure. Junction parameters are taken
as above, except that �LM ) �RM ) 2 eV.

Figure 7. Variation of current ratio Ic/Itot with metal-molecule coupling
strength for the meta-connected benzene structure at 2 V applied bias.
The insert shows the same ratio for bias of 1 V.

Figure 5. (a) Variation of the circular current (Ic, left axis), and the magnetic field B )(0,0,Bz) (right axis) at the center of the meta-connected
(panel a) and ortho-connected (panel b) ring, with applied bias V for different dephasing rates (γ). A positive circular current corresponds to the
counter clockwise direction. Panel c shows, for the meta-connected benzene, the transmission probability T(E) (full black line; left axis) and the
circular transmission probability, eq 11 (dashed red line; right axis) as functions of the incoming electron energy E in the vicinity of the transmission
resonance at 1 eV.
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corresponding induced magnetic field at the ring center is
considerable, reaching a maximum of 0.23 T in meta-connected
benzene and 0.25 T in the ortho-connected configuration.
Finally, both the net current (Figure 3b) and the circular current
(Figure 5a,b) decrease with increasing dephasing rate on the
ring, however the effect of dephasing on the resonance feature
of the circular current and the associated magnetic field is
considerably stronger than its effect otherwise. Remarkably, the
circular current feature is maintained also in the presence of
fairly fast dephasing processes. In some regions (Figure 5b) it
even grows with the dephasing parameter.

As was noted in section 2, our definition of circular current
differs from another definition, e.g. ref 43, where the existence
of such current component is marked by a reverse (relative to
the total) current in one of the ring branches. The circular current
is defined as the smaller (in magnitude) of the branch currents
and taken to be zero if such reverse current does not exist. A
comparison of the two definitions is shown in Figure 6, where
the zero circular current associated with the latter definition is
evident in the voltage range 2.5 e V e 2.8.

The strong (relative to the total transverse current) circular
current that may develop in molecular rings has been noted by
several previous authors.15,16,19 We have noted above that the
ratio |Ic/Itot| is affected by the dephasing rate. Interestingly, we
find that near resonance the most important parameter affecting
this ratio is the molecule-electrode coupling. Figure 7 shows
this trend for the meta-connected benzene structure at bias
voltages 2 V (near resonance) and 1 V (off resonance). We note
in passing that a circular current is observed also for asymmetric
metal-molecule couplings, i.e., �LM * �RM, although in our

calculation the largest circular current was obtained in the
symmetric coupling case.

Observations with other ring structures as bridging molecules
are qualitatively similar to those with the benzene structure.
Results for the biphenyl structures are shown in Figure 8. Here,
the coupling between the two benzene rings is taken to be same
as that between ring sites (2.5 eV). Again, results depend on
the connection geometry and no circular current exists in the
para (1, 10)-connecting case. A new interesting observation is
the fact that in some voltage regime the circular currents on
the two rings can be opposite to each other in orientation. Figure
8 shows such results obtained for the (2, 11) connection
geometry (in a sense, a series of two meta connected benzenes).
Here, the circular currents on the two rings are equal in
magnitude and opposite in direction. This effect is also found
in other multiring molecules, as presented below.

Similar results for azulene, naphthalene and anthracene
structures are shown in Figures 9-13. Figure 9 shows the
behavior of the azulene model. We note that current in both
rings are in the same direction, that the circular current in the
five-member ring is larger than that of the seven-member one
and that inversion of the circular current direction is not observed
in the voltage range 0-4 V. Obviously, in the symmetrically
connected azulene ((1,6) connection, not shown) circular
currents do not exist. Symmetry implies that in this case the
current on the (4, 8) bond also vanishes for all voltages, a
situation reminiscent of balanced Wheatstone’s bridge encoun-
tered in elementary electrical circuits.

For naphthalene in the (1,6) connection geometry (Figure 10),
the two ring currents are equal and in opposite directions that

Figure 8. (a) Internal current distribution pattern in diagonally connected biphenyl. (b) Net current Itot and circular currents (Ic1,Ic2) as a function
of applied bias voltage, V.

Figure 9. (a) Circular currents in asymmetrically connected azulene for applied bias in the range 0 to 4 V. (b) Variation of net current Itot and
circular currents (Ic1,Ic2) with the applied bias.
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switch sign at 1.8 V. When compared to the net current, the
calculated circular components are relatively small. We attribute
this to the fact that the naphthalene molecule does not give rise
to the split degeneracy spectrum found in benzene and an-
thracene. In the (1,7) connection geometry (Figure 11) the
circular currents on the two rings are in the same directions in
the voltage range studied, however bond currents can change
directions in different voltage regimes as shown. Similar
qualitative behaviors are found in the case of anthracene
structures (Figures 12 and 13). Note that in the diagonally
connected (1,8) anthracene, Figure 13, the sharp resonance seen
in the individual ring circular current at 2 V, corresponds to a
doubly degenerate eigenvalue of the isolated anthracene at 1
eV, however, an interpretation in terms of Bloch-type eigen-
functions cannot be readily made. Interestingly, the qualitative
behavior could be expected if we regard each side benzene ring
as driven by asymmetrically connected (albeit not identical)
contacts. The absence of circular current in the central benzene
ring could be expected from symmetry considerations.

5. Concluding Remarks

We have investigated the phenomenon of circular currents
in driven molecular wires characterized by loop structures,
focusing on three issues. First, we have addressed the quantita-
tive definition of a circular current and have suggested that a
consistent and meaningful definition can be made by identifying
this current as the source of the loop-induced magnetic field.
Second, noticing that circular currents may be viewed as
resulting from interference between carrier wave functions
propagating along different pathways, we have studied their
behavior under imposed decoherence and the implications of
dephasing processes on the resulting magnetic fields. Finally,
we have studied the circular current and the associated magnetic
fields in simple tight binding models of several small molecular
wire structures with loopssbenzene, biphenyl, naphthalene,
anthracene, and azulene. Circular currents are found to be
pervasive in driven molecular wires of this type, depending on
junction geometry and voltage. As noted in previous studies
we have found that for some structures and in certain ranges of

Figure 10. (a) Current distributions and ring currents in the diagonally (1,6) connected naphthalene. (b) Variation of net current Itot and circular
currents (Ic1,Ic2) with the applied bias. The directions of the ring currents result from the detailed numerical values of the bond currents (not shown).
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Figure 12. (a) Current distributions and circular currents in (1,7) connected anthracene. (b) Variation of the total current Itot and circular currents
(Ic1,Ic2,Ic3) with applied voltage, V.

Figure 11. (a) Current distributions and circular currents in asymmetrically (1,7) connected naphthalene. (b) Current-voltage character-
istics.
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imposed voltage circular currents can be much larger than the
net current through the molecule, and the resulting magnetic
fields can be considerable, e.g., ∼0.23 T at 2 V bias voltage in
the model studied for meta-connected benzene. Furthermore,
in multiring molecules the circular currents associated with
different rings may have opposite orientations in some voltage
ranges.

It is both interesting and important to consider the way such
phenomena, so prominent in theoretical calculations, can be
detected experimentally. Two routes to such observations may
be considered. First is the spectral response of magnetic ions,
placed on or near the ring, to the magnetic field which forms in
their neighborhood. Indeed, such an observation would be
analogous to the observation of magnetic shielding and deshield-
ing in NMR spectra of aromatic molecules.33 Second, the
response of the magnetic moment developed on the molecule
to an external magnetic field. These issues will be considered
in a forthcoming paper.
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Appendix A

In a current carrying steady state of a molecular ring driven by
a voltage bias, different segments {j} of the ring usually carry
different currents {Ij}. Obviously, one can always redefine the
segmental currents to be {Ij - Ic} and assign to the ring a circular
current Ic that (a) does not affect the net current flowing into
and out of the ring and (b) adds to all bond currents. An
additional criterion is needed to define Ic uniquely. Here we
suggest three alternative definitions based on the magnetic field
induced by the current, and show that they all lead to the same
assignment of Ic.

The circular current may be defined as the current component
that induces (a) the magnetic flux threading the molecular ring,
(b) the magnetic field at the center of the ring, or (c) the
magnetic moment at the center of the ring.

Flux-Based Definition

We start by calculating the magnetic flux threading an inner
circle of radius a (marked red in the online Figure 14) due to
a current carrying arc j of length lj (thicker line, marked blue in
the online figure). The flux is given by the following expression:

Here, Bb is the induced magnetic field, n̂ ) (0,0,1) is a unit vector
normal to the surface of the ring, ds is a surface element, Ab is the
induced vector potential, and dlba ) (dx,dy,0) ) d(a cos(φ),a

Figure 13. (a) Internal current distribution in diagonally (1,8) connected anthracene. (b) Variation of the total current, Itot, and circular currents
Ic1,Ic3 with the applied voltage V.

ΦB ) ∫s
Bb · n̂ ds ) ∫s

(∇b × Ab) · n̂ ds ) Ic Ab · dlba

(A1)
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sin(φ),0) ) a(d cos(φ),d sin(φ),0) ) a(-sin(φ),cos(φ),0)dφ is an
infinitesimal line segment along the inner circle circumference. The
surface integrals are taken over the full surface area of the inner
circle and the line integral is taken along the circumference of this
circle.

The vector potential at a point a(cos(φ),sin(φ),0) on the
circumference of the inner circle induced by an infinitesimal
segment of the current carrying arc at point R(cos(θ),sin(θ),0)
can be calculated using the following expression that may be
thought of as the vector potential representation of the
Biot-Savart Law:

Here, as before, µ0 ) 4π × 10-7NA-2(Tm/A) is the magnetic
constant, Ij is the current flowing through the arc, dlbR )
R(-sin(θ),cos(θ),0) dθ is an infinitesimal line segment along
the current carrying arc, and

is the distance between the current carrying segment and the
point at which the vector potential is evaluated. Note that we
use the standard convention by which a counter-clockwise
current is taken to be positive.

Integrating over the full length of the arc we obtain:

and the magnetic flux is now given by

Since the integrand is a periodic function of the angles
difference, the double integral can be replaced by a single
integral. To show this we change variables to η ≡ φ - θ to
obtain

This leads to

Here the second equality results from the fact that the
integration is taken over a full period of the periodic integrand,
k ≡ a/R and we have used the fact that lj ) R(θ2 - θ1). The
remaining integral can be expressed in terms of elliptic integrals
in the following form:

Here, F(φ,k) ) ∫0
φ [dθ/(1 - k2 sin2 θ)1/2] is the incomplete

elliptic integral of the first kind, E(φ,k) ) ∫0
φ(1 - k2 sin2 θ)1/2

dθ is the incomplete elliptic integral of the second kind, K(k)
) ∫0

π/2 [dθ/(1 - k2 sin2θ)1/2] is the complete elliptic integral of
the first kind, and E(k) ) ∫0

π/2(1 - k2 sin2 θ)1/2 dθ is the complete
elliptic integral of the second kind. Equations A6-A7 then lead
to the following result for the magnetic flux induced by the
current carrying arc

Figure 14. Geometry used in the discussion of the magnetic properties
of a ring current.

dAb )
µ0Ij

4π
dlbR

r
(A2)

r ) √(R cos(θ) - a cos(φ))2 + (R sin(θ) - a sin(φ))2 )

√R2 + a2 - 2aR cos(φ - θ)

Ab )
µ0IjR

4π ∫θ1

θ2 (-sin(θ), cos(θ), 0)

√R2 + a2 - 2aR cos(φ - θ)
dθ

(A3)

ΦB ) Ic Ab · d lba )
µ0IjaR

4π
×

∫0

2π
dφ∫θ1

θ2
dθ(-sin(θ), cos(θ), 0) · (-sin(φ), cos(φ), 0)

√R2 + a2 - 2aR cos(φ - θ)
)

µ0IjaR

4π ∫0

2π
dφ∫θ1

θ2
dθsin(θ) sin(φ) + cos(θ) cos(φ)

√R2 + a2 - 2aR cos(φ - θ)
)

µ0IjaR

4π ∫θ1

θ2
dθ∫0

2π
dφ

cos(φ - θ)

√R2 + a2 - 2aR cos(φ - θ)
(A4)

∫0

2π
dφ

cos(φ - θ)

√R2 + a2 - 2aR cos(φ - θ)
)

∫-θ

2π-θ
dη cos(η)

√R2 + a2 - 2aR cos(η)
(A5)

Φ )
µ0IjaR

4π ∫θ1

θ2 dθ∫-θ

2π-θ
dη cos(η)

√R2 + a2 - 2aR cos(η)
)

µ0IjaR(θ2 - θ1)

4π ∫0

2π
dη cos(η)

√R2 + a2 - 2aR cos(η)
)

µ0Ijklj

4π ∫0

2π
dη cos(η)

√1 + k2 - 2k cos(η)
(A6)

∫0

2π
dη cos(η)

√1 + k2 - 2k cos(η)
)

[(k - 1)
k

E(η
2

,- 4k

(k - 1)2) + k2 + 1
k(1 - k)

F(η
2

,- 4k

(k - 1)2)]
0

2π

)

(k - 1)
k

E(π,- 4k

(k - 1)2) + k2 + 1
k(1 - k)

F(π,- 4k

(k - 1)2) )

2(k - 1)
k

E(- 4k

(k - 1)2) + 2
k2 + 1

k(1 - k)
K(- 4k

(k - 1)2)
(A7)
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The magnetic flux induced by both arms in the inner circle
of radius a (Figure 13) is thus given by

Note that this expression diverges when k ) 1; that is, a )
R, as is well-known for a loop current of zero width. However
the form (A9) is sufficient to define the transverse and circular
current components associated with the current distribution in
Figure 1. Defining Ij

tr ) Ij - Ic, j ) 1,2, we require that the
transverse current components Ij

tr satisfy that the magnetic flux
vanishes for any choice of inner radius a. Using eq A9 this
translates to

In addition, since the circular current does not contribute to
the total current, the sum of the transverse current components
on both arms should produce the total current, i.e.

Equations A10 and A11 now lead to

where L ) l1 + l2 ) 2πR, and

Magnetic Field and Magnetic Moment Based Definitions

Obviously, any quantity whose dependence on the current
distribution on the loop enters through proportionality to I1l1 +
I2l2 will vanish together with the magnetic flux. Consider for
example the magnetic field at the center of the ring. The
magnetic field produced by a current carrying arc j, of length
lj, at the center of the ring can be calculated from the
Biot-Savart expression

Taking, as before, the ring to be in the xy plane with its center
at the origin, we have rb) (0 - x ,0 - y ,0) ) (-R cos(θ) ,-R
sin(θ),0) and r ≡ |rb| ) R. Thus

And from A14, the corresponding contribution to the
magnetic field at the ring center is

Integrating over the angle θ that defined the arc gives the
arc contribution in the form

with, as before, lj ) R(θ1 - θ2) being the length of the arc.
Summing over all arcs with their corresponding currents (Figure
1) yields the field at the ring center

Defining the transverse current as that component of the
current that nulls this field obviously leads the same result as
before.

Next consider the magnetic moment at the center of the ring.
The contribution to this moment from a given arc element is

Using as before, rb ) -R(cos(θ),sin(θ),0) and dlbR )
R(-sin(θ),cos(θ),0) dθ leads to

Integrating over the arc yields

Summing over the two arcs in Figure 1 then yields

with the same implications as before on the definition of the
transverse and circular current components.

The above considerations can be generalized further in two
important ways. First, if the circular rings includes several

ΦB )
µ0Ijklj

4π ∫0

2π
dη cos(η)

√1 + k2 - 2k cos(η)
)

µ0Ijlj

2π [(k - 1)E(- 4k

(k - 1)2) - k2 + 1
(k - 1)

K(- 4k

(k - 1)2)] (A8)

ΦB )
µ0

2π[(k - 1)E(- 4k

(1 - k)2) - (1 + k2

k - 1 ) ×

K(- 4k

(1 - k)2)](I1l1 + I2l2) (A9)

I1
trl1 + I2

trl2 ) 0 (A10)

I2
tr - I1

tr ) Itot (A11)

I1
tr ) -Itot

l2

L
; I2

tr ) Itot

l1

L
(A12)

Ic ) I1 - I1
tr ) I2 - I2

tr )
I1l1 + I2l2

L
(A13)

dBbc )
µ0Ij

4π
dlbR × rb

r3
(A14)

dlbR × rb ) | x̂ ŷ ẑ
-R sin(θ) dθ R cos(θ) dθ 0
-R cos(θ) -R sin(θ) 0 | )

(0, 0, R2 sin2(θ) dθ + R2 cos2(θ) dθ) ) (0, 0, R2 dθ)
(A15)

dBbc )
µ0Ij

4π
(0, 0, 1)R2 dθ

R3
)

µ0Ij

4πR
(0, 0, 1) dθ

(A16)

Bbc )
µ0Ij

4πR
(0, 0, 1)(θ2 - θ1) )

µ0Ijlj

4πR2
(0, 0, 1)

(A17)

Bbc )
πµ0(I1l1 + I2l2)

L2
(0, 0, 1) (A18)

dmbc )
Ij

2
( rb d lbR) (A19)

dmbc ) -
IjR

2

2
(0, 0, 1) dθ (A20)

mbc ) -
IjR

2

2
(θ2 - θ1)(0, 0, 1) ) -1

2
RIjlj(0, 0, 1)

(A21)

mbc ) -(R/2)(I1l1 + I2l2)(0, 0, 1) (A22)
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segments of lengths and currents lj and Ij, respectively, the
magnetic flux expression, eq A9 becomes

Similarly, the magnetic field at the ring center and the
magnetic moment also become proportional to ∑jIjlj. The
transverse currents, Ij - Ic, should null these magnetic effects,
i.e.

implying that

and

These results have made it possible for us to uniquely define
the circular and transverse currents on different rings of
polycyclic molecules (section 4).

Second, if instead of a perfect circle we have a polygon of N
equal sides of length b, the contribution of segment of nj sides
carrying a current Ij (∑jnj ) N) to the magnetic property under
consideration is proportional to bnjIj, so the total magnetic
property is proportional to ∑jnjIj. This leads to
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ΦB )
µ0

2π[(k - 1)E(- 4k

(1 - k)2) - (1 + k2

k - 1 ) ×

K(- 4k

(1 - k)2)] ∑
j

Ijlj (A23)
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j
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∑
j′
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