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Particle transport through an open, discrete one-dimensional channel against a mechanical or
chemical bias is analyzed within a master equation approach. The channel, externally driven by
time-dependent site energies, allows multiple occupation due to the coupling to reservoirs.
Performance criteria and optimization of active transport in a two-site channel are discussed as a
function of reservoir chemical potentials, the load potential, interparticle interaction strength,
driving mode, and driving period. Our results, derived from exact rate equations, are used in
addition to test a previously developed time-dependent density functional theory, suggesting a wider
applicability of that method in investigations of many particle systems far from equilibrium.
© 2010 American Institute of Physics. �doi:10.1063/1.3463000�

I. INTRODUCTION

Random motion of a classical particle in a potential that
breaks spatial inversion symmetry and fluctuates in time gen-
erally leads to unidirectional flow. On the molecular level,
many important processes in biology and nanotechnology
rely on this mechanism. Biological motors produce mechani-
cal work from metabolic energy in order to affect intracellu-
lar transport, or self-propulsion of bacteria through rotatory
flagellar motion.1 Another process ubiquitous in any living
organism is active transport of molecules or ions against a
chemical potential gradient. Such molecular or ionic pumps
generally consist of a specific channel across a cell mem-
brane. The internal binding sites of the channel are linked to
conformational fluctuations, stimulated by metabolic energy
or by light.2–5 Similar processes are known for artificial
nanopores, with potential applications in molecule or ion
separating devices.6,7 In the realm of quantum transport, a
net electron drift under an applied ac driving signal can be
generated by various mechanisms, which may become analo-
gous to classical unidirectional transport when dissipation is
included.8,9

Our goals in this paper are twofold. First, we set up a
model that describes unidirectional transport along a finite
open system, represented by a nonsymmetric discrete chain
with time-dependent driving. This model emphasizes �i� cou-
pling of the two chain ends to reservoirs and �ii� interaction
effects between transported particles that occupy the chain.
These combined features distinguish our study from most
works on Brownian ratchets, reviewed in Refs. 10 and 11.
Indeed, both interacting Brownian motors12–16 and ion pump-
ing mechanisms that involve multiple occupation of the as-
sociated channel structure4 have become important subjects
of research in nonequilibrium statistical physics and biophys-

ics. The model we examine allows us to study production of
both mechanical and chemical work. In what follows we
refer to a machine working against a mechanical force as
“motor” and to that working against a chemical load as a
“chemical pump.”1 Accordingly, attention will be focused on
the system performance in both modes of operation and its
dependence on the driving characteristics and on fundamen-
tal input parameters such as chemical potentials of the reser-
voirs, load potential, and interaction strengths. Although our
model is certainly far from describing realistic systems, we
argue below that at a qualitative level, the effects of concen-
tration and interaction evaluated here should have rather gen-
eral validity.

Our second goal is to provide a test of time-dependent
density functional theory17–19 �TDFT� when applied to far
from equilibrium dynamics under time-dependent driving
signals.20 This method can be regarded as a version of dy-
namic mean-field theory, constructed such that it can account
for exact static properties. Its accuracy in predicting transport
properties as envisaged here will be assessed by a compari-
son with numerical solutions of the underlying master equa-
tion for short chains containing four sites. The numerical
effort needed for such solutions increases exponentially with
system size �expressed here by the number of sites between
the left and right reservoirs�. For this reason, establishing the
validity of an approximate solution is important for future
applications.

After defining our model in Sec. II, we present in Sec. III
a minimal description in terms of a four-site model. Section
IV introduces the TDFT method, while Sec. V examines its
accuracy in comparison to “exact” numerical solutions. Also
in Sec. V we present results concerning the performance of
the system studied, focusing on the efficiency of its operation
either as a motor working against a mechanical or electrical
load, or as a chemical pump acting against a chemical bias.
Section VI concludes.
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II. MODEL

Our system is a one-dimensional �1D� “Fermionic”
lattice gas with sites l=1, . . . ,M, time-dependent site ener-
gies �l�t�, nearest neighbor hopping, and a nearest neighbor
interaction V. By considering a Fermionic lattice gas, equiva-
lent to local hard core repulsions, effects of saturation of site
occupations are automatically included. The sites l=1 and M
can exchange particles with left and right reservoirs, L and R,
that are sometimes represented below by indices 0 and
M +1, respectively. We assume that these reservoirs ex-
change particles with the system with characteristic specified
rates, but we disregard interactions between particles in the
systems and those in the reservoirs, i.e., V0,1=VM,M+1=0. By
definition, reservoir particles are always in equilibrium and
have fixed mean occupations,

pJ = �e−��J + 1�−1, J = L,R , �1�

where �L and �R are the respective reservoir chemical po-
tentials, and �=1 /kBT. Rate equations for the averaged site
occupations pl�t� �l=1, . . . ,M� are given by

dpl

dt
= �jl−1,l�t − �jl,l+1�t, �2�

where �jl,l+1�t for l=0, . . . ,M denotes the net average current
from site l to l+1, to be derived from the underlying master
equation. Note that �j0,1�t��jL,1�t and �jM,M+1�t��jM,R�t are
currents from the left and to the right reservoir. In order to
proceed, we need to specify the rates for configurational tran-
sitions consistent with the detailed balance condition. We
adopt here symmetric rates

wi,f � exp���Ei − Ef�/2� , �3�

where Ei and Ef is the total energy in the initial and final
state, respectively. In particular, “bare” transition rates for
elementary hops from l to l�1, which govern the single
particle dynamics in the dilute limit, are given by kl,l�1�t�
=�l,l�1 exp����l�t�−�l�1�t�� /2�. Here �l,l�1 are frequency
factors, which for simplicity are assumed independent of l
for l=1, . . . ,M −1 and represent the bulk frequency �B, while
at the system boundary we distinguish �L=�0,1=�1,0 and �R

=�M,M+1=�M+1,M from �B. Setting ��B�−1=1 and �=1 defines
our units of time and energy.

Certain special cases of this model deserve special atten-
tion. For static site energies �l it describes aspects of passive
transport, for example, through membrane channels.21–23

Very recently, the nonlinear dc response and rectification in a
single particle hopping system coupled to reservoirs were
examined, including disorder effects.24 Assuming pL�pR but
taking �l independent of both time and space, one recovers a
generalized asymmetric simple exclusion process �ASEP�
model25 that contains a nearest neighbor coupling V �for re-
views of the hard core repulsion ASEP as well as the totally
asymmetric simple exclusion process model, see Refs. 26
and 27 and references therein�.

Several driving modes, both stochastic and deterministic,
that lead to unidirectional transport, were proposed in
literature.10,11 In this work we assume for simplicity a sinu-
soidal time dependence with frequency �=2	 /
, which

should allow us to study transport efficiencies as a function
of the typical time scale set by the modulation period 
 that
characterizes the driving forces. With regard to the spatial
asymmetry, common models are as follows:11

�a� peristaltic or traveling wavelike behavior, where poten-
tial minima move in one direction, thereby dragging
particles with them;

�b� sawtoothlike potential with oscillating amplitude
�“flashing ratchet”�. In such systems particles are
driven in the direction against the steeper potential
slope.

�c� Constant �l-independent� ac-force �“rocking ratchet”�
superimposing a nonsymmetric static potential. Unidi-
rectional transport directly results from steady state
rectification properties of the static potential, as can be
seen by considering the adiabatic limit �→0.

The present work focuses on the first two mechanisms,
�a� and �b�. The model introduced above applies to multiply
occupied channels driven by time-dependent mechanical
forces, and working as motors or as chemical pumps. As
specific examples we consider the following situations:

�i� Motor action: A constant load F is applied that
changes the site energies relative to their intrinsic val-
ues ��l�F=0,

�l = ��l�F=0 +
Fl

�M + 1�
, l = 0, . . . ,M + 1. �4�

By this, the left and right reservoirs acquire a poten-
tial energy difference �R−�L=F, while their chemical
potentials are taken equal, pR= pL.

�ii� Chemical pump: In a pure chemical pump the chemi-
cal potentials in the two reservoirs are different, e.g.,
�R��L�pR� pL�, while the mechanical load F van-
ishes. Mathematically this case differs from model �4�
by the fact that unlike the linear potential change in
Eq. �4�, the chemical potential difference �R−�L will,
in general, not give rise to a linear distribution of local
chemical potential changes along the channel.

In both cases we can discuss different measures of ma-
chine performance and optimization schemes. First the out-
put of the machine operation can be obtained from the aver-
age current

Jav =
1



	

0




dt
1

M + 1

l=0

M

�jl,l+1�t, �5�

where, at steady state, the average �over realizations and over
a modulation period 
� currents between neighboring posi-
tions do not depend on position. The useful work output is
then

W̄out = JavF �6�

for the pure motor action, and

054102-2 Einax et al. J. Chem. Phys. 133, 054102 �2010�

Downloaded 03 Aug 2010 to 132.66.153.121. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



W̄out = Jav��R − �L� �7�

for the pure chemical pump. Note that combined effects of
mechanical and chemical biases can be considered, in which

case W̄out=Jav��R
e −�L

e� is the sum of Eqs. �6� and �7�, the
electrochemical potentials �L,R

e being defined according to
Eq. �40�. In all cases the work input can be calculated from

W̄in =
1



	

0




dt

l=1

M
d�l�t�

dt
pl�t� . �8�

This yields the conventional “efficiency”28

� =
W̄out

W̄in

. �9�

Aiming for maximum efficiency is one criterion for optimi-
zation. Alternatively, irrespective of the amount of input en-
ergy, one can ask for the maximum F, where Jav changes
sign �“reversal potential”�, or for the maximum current Jav

�0 against the load F�0, corresponding to the maximum
rate of transfer of particles from L to R.

III. FOUR-SITE MODEL

Setting M =2, we have a four-site system consisting of a
channel with sites l=1,2 in contact with boundary sites L
and R. In this minimal ratchet model open to reservoirs the
system is driven by modulating the site energies �1�t� and
�2�t�. An incipient peristaltic modulation of site energies can
be realized by a phase lag in the oscillation of �2�t� relative
to �1�t�,

�L = 0, �10�

�1�t� = �1
�0� + A�1 + sin��t�� + F/3, �11�

�2�t� = �2
�0� + A�1 + sin��t − 	/2�� + 2F/3, �12�

�R = F . �13�

Here, the energies �l
�0� represent a constant energy shift of the

channel’s interior relative to the reservoirs. On the other
hand, the in-phase oscillation where Eqs. �11� and �12� are
replaced by

�1�t� = �1
�0� + 2A�1 + sin��t�� + F/3, �14�

�2�t� = �2
�0� + A�1 + sin��t�� + 2F/3 �15�

�keeping Eqs. �10� and �13��, corresponds to a “flashing”
ratchet of the type of a discrete “sawtooth” potential. Both of
these driving modes favor a current to the right.

Unidirectional flow induced by such driving schemes
can be most simply investigated in the independent particle
model where the average site occupations p1�t� and p2�t�
evolve according to the linear rate equations

dp1

dt
= kL,1�t�pL − k1,L�t�p1 + k2,1�t�p2 − k1,2�t�p1, �16�

dp2

dt
= kR,2�t�pR − k2,R�t�p2 − k2,1�t�p2 + k1,2�t�p1, �17�

with prescribed populations pL,R at the boundary sites. A
more realistic model should take into account interparticle
interactions. Here we consider both hard core �site exclusion�
and nearest neighbor interactions, denoted by V.

The following section �Sec. IV� describes an approxi-
mate approach to the kinetics of such models based on the
�classical� time-dependent density functional theory. An ex-
act approach, feasible for the present small system, is based
on rate equations written in the system states representation.
A system state �n1 ,n2� is defined in terms of the occupations
of sites l=1 and l=2. Obviously our system is fully charac-
terized by the four states—�0,0�, �1,0�, �0,1�, and �1,1�—with
the following corresponding energies:

E10�t� = �1�t� , �18�

E01�t� = �2�t� , �19�

E11�t� = �1�t� + �2�t� + V . �20�

E00 may conveniently be set to 0. We assume that transitions
between these states proceed only by single particle steps so
that no direct transition takes place between states �0,0� and
�1,1�. It should be emphasized that in using these energies to
determine rates one needs to take into account the change of
energy in the reservoir. Thus, the total energy change E for
the transition �0,0�→ �1,0� is E10−�L=�1−�L and E for
the transition �1,0�→ �1,1� is E11−E10−�R=�2+V−�R. The
kinetic equations for the average population of these system
states are

dP10�t�
dt

= K00,10�t�P00�t� + K01,10�t�P01�t� + K11,10�t�P11�t�

− �K10,00�t� + K10,01�t� + K10,11�t��P10�t� , �21�

dP01�t�
dt

= K00,01�t�P00�t� + K10,01�t�P10�t� + K11,01�t�P11�t�

− �K01,00�t� + K01,10�t� + K01,11�t��P01�t� , �22�

dP11�t�
dt

= K10,11�t�P10�t� + K01,11�t�P01�t�

− �K11,10�t� + K11,01�t��P11�t� , �23�

and normalization implies that

P00 = 1 − �P10 + P01 + P11� . �24�

Using Eq. �24� in Eqs. �21�–�23� yields three inhomogeneous
equations with rates that are readily obtained from Eq. �3�
and Eqs. �18�–�20�. Clearly, K01,10�t�=k2,1�t� and K10,01�t�
=k1,2�t�. The remaining rates involve the bath densities, for
example,

K10,00�t� = �L exp����1�t� − �L�/2��1 − pL� , �25�
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K00,10�t� = �L exp�− ���1�t� − �L�/2�pL. �26�

Once the solutions to Eqs. �21�–�24� have been found, the
average populations of individual sites are obtained from

p1�t� = P10�t� + P11�t� , �27�

p2�t� = P01�t� + P11�t� , �28�

and the currents JL�t���jL,1�t; JR�t���j2,R�t can be calcu-
lated from, e.g.,

JL�t� = K00,10P00 − K10,00P10 + K01,11P01 − K11,01P11,

�29�

JR�t� = K01,00P01 − K00,01P00 + K11,10P11 − K10,11P10.

�30�

Note that results based on Eqs. �21�–�24� differ from
those of the independent particle model, Eqs. �16� and �17�,
even in the limit V=0 because unlike the latter they incorpo-
rate hard core interactions. The behavior based on Eqs. �16�
and �17� is expected only in the highly dilute limit when
particle encounters on the same site are negligible.

IV. TDFT

TDFT is a local equilibrium approximation, in which the
nonequilibrium character of the distribution function is mani-
fested in the space- and time-dependent local fields acting on
the single particle density. Given a distribution function of
this type, density functional theory assumes that correlators
determining the currents �jl,l+1�t in Eq. �2� are functionals of
the single particle density; moreover, this functional depen-
dence is the same as in the equilibrium case. This allows us
to express the mean currents in Eq. �2� in terms of the den-
sities pl�t� and therefore to arrive at a closed system of non-
linear rate equations. In the present problem this latter step
can be carried through exactly because the free energy func-
tional for one-dimensional lattice gases with short range in-
teractions is known.29,30

Rate equation �2� for the averaged site occupations pl�t�
�l=1,2� in the four-site model reduces to

dp1

dt
= �jL,1�t − �j1,2�t, �31�

dp2

dt
= �j1,2�t − �j2,R�t. �32�

From the general formulation given in Appendix for chan-
nels with arbitrary length M in the presence of symmetric
rate �3�, we obtain by specializing to the present model with
M =2,

�jL,1�t = �1 − p1 + Kp2,1
�3���k̃L,1e��L − k̃1,L� p2,1

�2�

p2,1
�4� � , �33�

�j1,2�t = k1,2p2,1
�2� − k2,1p2,1

�3� , �34�

�j2,R�t = �1 − p2 + Kp2,1
�2���k̃2,1� p2,1

�3�

p2,1
�4�  − k̃R,2e��R� , �35�

with K=��−1; �=e−�V �for details, see Appendix�. For the
sake of simplified notation, time arguments on the right hand
side of these and subsequent equations are suppressed. The
nearest neighbor correlators p2,1

�n� in these equations are de-
fined by Eq. �A16� with l=1. Note that they are directly
related to the average occupations of system states. Indeed,
P11= p2,1

�1�, P01= p2,1
�2�, P10= p2,1

�3�, and P00= p2,1
�4�. Following the

Appendix, the two- point correlator p2,1
�1� ��n2n1� is explicitly

found as

p2,1
�1��t� =

1

2�1 − ��
��p1 + p2��1 − �� − 1

+ ���p1 + p2��1 − �� − 1�2 + 4p1p2��1 − ��� .

�36�

Clearly, setting all currents �33�–�35� equal to zero implies
the equilibrium condition �L+�L=�R+�R between both res-
ervoirs. This is seen most directly from the underlying Eq.
�A8�.

In the limit V→0 one recovers p2,1
�2� →p1p2. Then Eqs.

�33�–�35� become

�jL,1�t = kL,1�t�pL�1 − p1�t�� − k1,L�t�p1�t��1 − pL� , �37�

�j1,2�t = k1,2�t�p1�t��1 − p2�t�� − k2,1�t�p2�t��1 − p1�t�� ,

�38�

�j2,R�t = k2,R�t�p2�t��1 − pR� − kR,2�t�pR�1 − p2�t�� , �39�

showing that site blocking effects are incorporated in a
mean-field like manner. For general V, effective blocking
factors for sites l=1,2 can be read directly from Eqs. �33�
and �35�. Considering site 1, the effective blocking factor
that appears in the current �jL,1�t is 1− p1+Kp2,1

�3�, which re-
duces to 1− p1 for V=0 and to 1− �p1+ p2� for V→� because
p2,1

�1� →0 in the latter case. Hence, for V→� the occupation
of the nearest neighbor site, p2, enters into the effective
blocking factor additively with p1. The last conclusion fol-
lows from Eq. �36� provided that p1+ p2�1, which obvi-
ously holds for V→� provided that �R and �L stay finite.31

By this, and based on the identification P11� p2,1
�1�, it is

straightforward to show that for V→� the expressions for
currents �33�–�35� and hence all results from TDFT become
equivalent with those of Sec. III in the same limit �i.e., for
P11→0�. A similar conclusion holds for V→−�, where
K10,11→�. According to Eq. �23� this limit requires that
P10→0. Similarly, P01→0, and P11= p1= p2=1 independent
of time is seen to be a consistent solution. In this limit all
currents are zero as the channel is jammed by the presence of
two particles. On the other hand, Eq. �36� predicts that p2,1

�1�

→max�p1 , p2�, which becomes unity since p1 , p2→1. It fol-
lows that the TDFT correctly yields zero currents in this
limit.

The following section provides a quantitative test of
TDFT against the exact results obtained from Eqs. �21�–�24�.
When applied to the four-site model, this approximate
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method is not simpler than the exact treatment; however, its
advantage lies in the immediate applicability to chains of
arbitrary length M.32

V. RESULTS

A. Peristaltic driving, dilute limit

Now we investigate a 1D open channel under peristaltic
driving by numerically solving Eqs. �21�–�24� in Sec. III and
Eqs. �31�–�36� in Sec. IV with the input Eqs. �10�–�13�. We
first consider the dilute limit, approached by setting �L=�R

=−5, i.e., pL= pR�0.0067. Calculated efficiencies as a func-
tion of the mechanical load F show a maximum before they
drop to zero and to negative values �current reversal�, see
Fig. 1. Clearly, for strong dilution, site blocking effects and
the interaction V become irrelevant. Hence, the efficiency
curves in Fig. 1 become indistinguishable from the predic-
tions of the independent particle model equations �16� and
�17�. Also in this dilute limit, the TDFT results in Sec. IV
perfectly agree with the numerical solutions of the exact
equations �21�–�24�. Indeed, in this limit P11 becomes negli-
gibly small, and, as one can easily verify, both the exact
equations �21�–�24� and the TDFT equations �31�–�35� be-
come fully equivalent to the linear rate equations �16� and
�17�.

Figure 1�a� also reveals a significant enhancement of the
efficiency for a channel which is made more attractive rela-

tive to the reservoirs, by changing the static part of site en-
ergies in Eq. �11� from �1,2

�0� =0 to �1,2
�0� =−2.0. The value �1,2

�0�

=−2.0 is therefore used in all our subsequent calculations
with peristaltic driving. Apparently, attracting more particles
to the channel interior overcompensates for the effect of a
less favorable exit rate k2,R.

Direct insight into the peristaltic mechanism is gained
from Fig. 1�b�. During a time window where �1�t��1 par-
ticles from the left reservoir have access to the channel so
that the left current JL�t� and p1�t� increase with time. �This
happens for 1.5� t�2 in the plot of Fig. 1�b�.� During the
subsequent upward movement of level 1 density from this
level flows both back to the reservoir, rendering JL�t��0,
and in the forward direction to level 2, which is lower in
energy because of the phase lag 	 /2 between both levels.
Therefore p2�t� increases, but as long as �2�t��1 there is
also a flow to level 2 from the right reservoir, reflected by the
negative peak in the right current JR�t�. This influx from the
right is the reason why the p2-peak actually gets higher than
the p1-peak. Upward movement of level 2 in turn causes the
subsequent positive peak in JR�t�, while a decay of p2�t� to
the left is prohibited as long as �2�t���1�t�. The peaks in the
time-dependent densities and currents can be shown to be
more pronounced for �1,2

�0� =−2 in comparison with �1,2
�0� =0,

leading to the increased efficiency displayed in Fig. 1�a� for
the more attractive channel. Since during the upward move-
ment of level 1 its population decays both toward the left and
right, we expect that this mechanism can translocate a par-
ticle with probability not larger than about 0.5 within one
cycle.

B. Peristaltic driving, moderately dense system,
pL=pR

Figure 1�b� shows that at low densities, a large ampli-
tude peristaltic oscillation, Eqs. �10�–�13�, tends to locate
particles on that site which momentarily has lower energy.
This is evident from the figure as the overlap of the two
peaks for p1�t� and p2�t� is small. Figures 2 and 3 show
results obtained at higher densities, imposed by setting pL

= pR=0.5��L=�R=0�, where effects of correlations between
transporting particles are expected. At these densities the
overlap between the p1�t� and p2�t� peaks is larger, as seen in
the case V=0 in Figs. 3�a� and 3�b�, which show slightly
broader peaks and overlap regions than in Fig. 1�b�. Conse-
quently, many-body effects become important, as discussed
below.

It may be intuitively expected that simultaneous pres-
ence of particles on both sites 1 and 2 should cause reduction
of pump efficiency because these particles block each other,
impairing the peristaltic driving. Hence one expects that ef-
ficiency will increase as V changes from attractive �V�0� to
repulsive �V�0�, where double occupation of the channel is
increasingly suppressed. These arguments are supported by
calculations of � and Jav for nondilute systems. Figure 2
shows results for pL,R=0.5, obtained from both the exact
method described in Sec. III, and the TDFT approximation,
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driving period 
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does not depend on V for V=0, 1, and 10, and results from the TDFT
approximation are indistinguishable from the exact ones. Efficiency � as a
function of mechanical bias F=�R−�L ��L=0� �a�. Lower curve: neutral
static site energies, �1,2

�0� =0. Upper curve: attractive static site energies �1,2
�0�

=−2.0. Time-dependent occupation probabilities p1�t�, p2�t�, and currents
JL,R�t� for �1,2

�0� =−2.0 and F=1.5 �b�. Shown is one period of stationary
oscillation, where t=0 corresponds to a minimum in �1�t�, see Eq. �11�.

054102-5 Hopping transport of interacting particles J. Chem. Phys. 133, 054102 �2010�

Downloaded 03 Aug 2010 to 132.66.153.121. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Sec. IV. Before addressing the quality of the TDFT approxi-
mation, let us focus on the main features in Fig. 2 common
to both treatments.

Comparing the V=0 case33 shown in the inset in
Fig. 2�a� with the independent particle results �dilute limit,
Fig. 1�a�� we indeed observe that mere site blocking leads to
a decrease in �. This trend in � is enhanced for increasingly
negative V �attractive interparticle interactions� but is re-
versed with increasingly positive �repulsive� V, again in
agreement with the above expectation. Interestingly, for
V=10, � significantly exceeds the result for the dilute limit
discussed before, see Fig. 1�a�, by about 30%. One should
note that a strong repulsion as in the case V=10 is practically
equivalent to the condition that the two-site channel can only
be singly occupied or vacant. This “single particle limit”
appears to optimize active transport in our model.

Similar conclusions hold with respect to the average cur-
rent Jav, plotted against F in Fig. 2�b�. The current increases
for increasingly repulsive �positive� V and becomes negligi-
bly small for increasingly attractive interaction. For V=10
the reversal potential �the load F for which Jav vanishes� is
larger by about 15% than the corresponding value in the case
V=0. For strong attractive interaction, e.g., V=−5, see Fig. 2,
both current and efficiency are strongly damped.

Regarding the comparison of both methods, it is evident
from Fig. 2 that the TDFT can well account for important
qualitative features in our model of a driven open channel. At
V=0, the TDFT becomes identical to ordinary mean-field
theory because all correlators factorize, leading to Eqs.
�37�–�39�. One should note that quite generally nontrivial
and even long range correlations can be induced in systems
when driven far away from equilibrium.34,35 Such correla-
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tions are ignored in the TDFT approach. From the inset in
Fig. 2, we see that for V=0 TDFT overestimates the maxi-
mum efficiency � by about 14% relative to the exact calcu-
lation. This error shrinks when V increases from zero be-
cause the TDFT accounts for the concomitant suppression of
double occupation of the channel. For strong coupling,
V�1, the TDFT applied to our model asymptotically be-
comes exact because as discussed before in Sec. IV, it cor-
rectly describes the one-particle limit.

For practical applications, attractive interactions are less
interesting than repulsive ones since they tend to immobilize
a pair of particles on sites 1 and 2, thus diminishing the
current. For the sake of comparison of the two methods,
however, we have included in Fig. 2 examples with V�0.
An almost quantitative accuracy of the TDFT is observed
when the attraction becomes as strong as V=−5, again in
accord with the previous analytical arguments in Sec. IV.

The development of correlations inside the channel of
the type discussed above is illustrated in Figs. 3�c� and 3�d�,
which show the difference P11�t�− p1�t�p2�t� within one driv-
ing period. The load is taken as F=1.5, where the corre-
sponding efficiencies are close to their maximum. For V=0,
see Fig. 3�a�, peaks of either sign appear in the exact results
in parallel with the peaks in p1�t� and p2�t�, but they are
narrower than the latter. On average, these current-induced
nonequilibrium correlations are positive, i.e., attractive.
However, already under the mild repulsive interaction, V=1,
the negative peak takes over. For strong repulsion, P11 prac-
tically vanishes so that the curve for V=10 simply reflects
the negative product of the densities p1 and p2. Obviously,
the TDFT reproduces such correlations better for larger V.

The influence of the driving period 
 �in fact 
�B as
discussed above� is displayed in Fig. 4. Unless otherwise
specified, here and in the following we only show the exact
results from Sec. III. In all cases studied, however, we have
verified that the TDFT performs with similar accuracy as for
the foregoing plots. Obviously, except for the driving mode
itself, the driving period is a fundamental parameter that de-
termines the pump performance. For our model both the ef-
ficiency � and the current Jav go through a maximum as a
function of 
. To maximize �, a smaller load requires slower
driving, as seen in Fig. 4�a�. Increasing F, the maxima in �
shift to shorter 
. On the other hand, from the point of view
of maximizing Jav, even shorter 
 are required, e.g., 
�1.2
for F=2 �see Fig. 4�b��. This illustrates that optimization of
pump performance, in general, depends on the optimization
criterion for a particular application. The choice 
=2 in most
of our calculations is found to be a good compromise be-
tween these different optimization criteria. Yet another crite-
rion might be to maximize the number of particles transmit-
ted within one cycle, which is 
Jav. Figure 4�b� suggests that
in our model this number will be limited by about 0.5, as
argued before. It should also be noted that 
-dependent effi-
ciencies and the peak structure in the Jav versus 
 curves
qualitatively agree with Refs. 15 and 16, where a model
based on repulsive on-site interactions and periodic boundary
conditions was considered.

C. Peristaltic pump: Effect of chemical driving,
pLÅpR

It is well-known that passive transport in the linear re-
sponse regime at constant temperature is governed solely by
the gradient in the external electrochemical potential

�e = F + � . �40�

Far from equilibrium, however, the mechanical and chemical
potentials F and � play separate roles in determining the
kinetics. This difference stems from the different ways at
which these imposed biases are expressed inside the channel.
The “mechanical bias” F=�R−�L is assumed to fall linearly
along the channel, as described by Eqs. �10�–�15�, while the
chemical bias �=�R−�L is assumed to affect only the ex-
ternal reservoirs R and L. Therefore, the average current Jav

in our model depends differently on these two external vari-
ables, Jav=Jav�F ,��. This is illustrated in Fig. 5, where the
current is plotted versus the difference �e=�R

e −�L
e in the

electrochemical potentials of the two reservoirs under differ-
ent partitionings of �e with respect to the mechanical and
chemical load. In these calculations pL=0.1 is fixed ��L

�−2.197�, whereas pR� pL is variable upon varying �.
Shown are only the two limiting cases Jav�0,�� and
Jav�F ,0�, labeled as F=0 and �=0, respectively. Note that
in biophysical systems pumping of charged ions across a
membrane will generate a voltage drop so that, in principle,
the full two-variable characteristics Jav�F ,�� will enter. As
seen from Fig. 5�a�, the current Jav�0,�� for small bias is
less sensitive to changes in � in comparison with the

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 2.5 5 7.5 10 12.5 15

η

τ

(a)

V=1.0

F=0
F=1.0
F=2.0
F=3.0

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8
J a

v

τ

(b)
V=1.0

F=0
F=1.0
F=2.0
F=3.0

FIG. 4. Efficiency � �a� and averaged current Jav �b� from exact rate equa-
tions as a function of 
 for pL,R=0.5, V=1, and different F=0, 1, 2, and 3.
Other parameters as in Fig. 2.

054102-7 Hopping transport of interacting particles J. Chem. Phys. 133, 054102 �2010�

Downloaded 03 Aug 2010 to 132.66.153.121. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



F-dependence of Jav�F ,0�. This is because after time averag-
ing, pR enters the net current from site 2 to R mainly through
the blocking factor 1− pR in Eq. �25�, implying only a mild
pR-dependence. However, when pR�0.5 the current
Jav�0,�� drops more steeply toward negative values than
Jav�F ,0�. In contrast, as in Fig. 3, the drop in Jav�F ,0� down
to the reversal potential is not far from linear. The corre-
sponding TDFT results were found to be in excellent agree-
ment with these results. Note that the small concentration
pL=0.1 implies that the interaction V has only a minor influ-
ence on Jav�F ,0�.

The difference in the channel’s response under a chemi-
cal versus mechanical load also becomes apparent when we
compare the respective efficiencies, which are plotted in Fig.
6 against �e=�R

e −�L
e . As for Fig. 5 we have taken pL

=0.1 fixed and pR variable. The chemical efficiency, defined
by Eqs. �9� and �7�, is displayed by the curves labeled F=0.
Their maxima and the corresponding chemical reversal po-
tentials are systematically lower than those referring to the
mechanical efficiency ��=0, F�0�.

D. Flashing ratchet potential

An important question is to what extent the previous
results for peristaltic driving will change when the drive
mode changes. We exemplify this for the flashing ratchet

potential, Eq. �14�. Here we use the parameters A=2.0 and
�1,2

�0� =−1.0 that correspond to a maximum in �2�t� of the same
height relative to the bath levels as for peristaltic driving
with A=5.0 and �1,2

�0� =−2.0. Figure 7 shows F-dependent me-
chanical efficiencies � and currents Jav. The qualitative ap-
pearance of the curves including their dependence on V is
analogous to Fig. 2, but the absolute performance is consid-
erably worse than for peristaltic driving. The efficiency �
and the average current Jav are seen to be lower by about an
order of magnitude and a factor of 5, respectively, in the
flashing driving mode. Thereby we have verified that choos-
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ing 
=2, the efficiency curves ��F� in Fig. 7 are near opti-
mum. We also computed the analog to Fig. 5�a� for the flash-
ing ratchet, see Fig. 5�b�. Currents again are much smaller
than in Fig. 5�a�. A notable feature is the near agreement of
the curves for chemical �F=0� and mechanical ��=0� bias,
presumably because of a fairly regular distribution of in-
duced local chemical potential changes along the channel in
the case of the sawtooth potential.

VI. SUMMARY AND CONCLUSIONS

Active transport was studied within a stochastic model
for an open two-site channel, driven by time-dependent site
energies and coupled to left and right reservoirs. Exact rate
equations for this problem were established and solved nu-
merically. Despite the simplicity of our model, it allowed us
to examine important conditions for efficient transport,
which we expect to be of relevance regarding both the design
of synthetic active channel devices and, potentially, the func-
tioning of biological motors and ion pumps.

The main findings which emerge from our investigations
are summarized as follows.

�i� Because of the coupling to reservoirs with prescribed
chemical potentials, the number of particles inside the
channel fluctuates, allowing multiple channel occupa-
tion. As a consequence, transport depends on interpar-
ticle interactions, described by a local hard core repul-
sion and a nearest neighbor interaction constant V.
V-dependent motor and pump efficiencies are studied
systematically, showing that they become optimized
when multiple occupation of the channel gets sup-
pressed by a large repulsive V. As intuitively ex-
pected, this effect saturates and the efficiencies be-
come independent of interparticle interaction when
V→�. In particular, the V=10 results displayed in
Fig. 2 were found to represent this saturation limit. On
the other hand, choosing an even higher modulation
amplitude �A=10 instead of A=5 used in the forego-
ing calculations for peristaltic driving�, the maximum
efficiency was found to increase only slightly,
whereas the reversal potential increases considerably.
These results, including a decrease of � under attrac-
tive interactions V�0, were derived for a short chan-
nel �M =2�. By contrast, as shown in Ref. 13, for at-
tracting particles high efficiencies can arise in long
channels in the presence of a long-wavelength ratchet-
type potential, an effect connected with condensation
of particles around the potential minima.

�ii� Different performance criteria can be formulated,
based, for example, on an economical use of the input
energy in producing mechanical or chemical work �ef-
ficiencies ��, or on maximizing the output “power,”
i.e., the current. These measures of efficiency, as de-
fined in this paper, are not intrinsic properties of the
system, but obviously depend on the imposed load. It
is also possible to define an intrinsic measure, �s, of
an “ideal” efficiency by �for a mechanical bias; a
similar definition can be used in the chemical bias
case�

�s =
Jav�F = 0�F�J = 0�

W̄in�F = 0�
, �41�

where Jav�F=0� is the flux at zero bias while F�J
=0� is the mechanical bias for which the current van-
ishes. The product Jav�F=0�F�J=0� is the analog of
the product of the short-circuit current and the open-
circuit voltage that provides an upper bound to the
useful work that can be extracted from a given voltage

source. The choice of W̄in�F=0� as the denominator in
Eq. �41� is to some extent arbitrary since the input
work in our model is defined through the energy ab-
sorbed by the system �in contrast to situations encoun-
tered, e.g., in photovoltaic devices, where the input
work is defined by the incident rather than the ab-

sorbed energy�. Other choices, e.g., using W̄in�J=0� as
denominator in Eq. �41� could be made. As shown in
Fig. 8 these different definitions yield different results
for what may be regarded as the ideal machine per-
formance. In either case, the performance is sensitive
to the interparticle coupling and to the driving period

, and different efficiency criteria require different 

for optimization.

�iii� In the far from equilibrium processes considered here,
generated currents depend on the partitioning of the
electrochemical potential difference ��e�=F+�
between the reservoirs in terms of the mechanical and
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chemical loads F and �. In other words, these bias-
ing attributes play different roles in the kinetics.

�iv� Peristaltic driving reflected by a phase shift in the
oscillating site energies yields much better perfor-
mances than an oscillating sawtoothlike potential
�flashing ratchet�.

Some of these findings, in particular, the possibility of
efficiency enhancement by repulsive interactions and the
above-mentioned dependencies on the driving period, agree
on a qualitative level with earlier work,15,16 despite consid-
erable differences in the model design and in details of the
results. We take this as an indication that the corresponding
conclusions formulated above should hold rather generally.

It would certainly be interesting to extend these investi-
gations to longer channels, with the aim to analyze collective
effects in overdamped systems under time-dependent driv-
ing. The full problem based on the master equation, however,
soon becomes intractable as the length M increases. Results
based on the TDFT nicely agree with the exact solutions for
M =2, suggesting that this approximation could yield reliable
results also for arbitrary channel lengths. The underlying
equations of motion for arbitrary M are presented in the Ap-
pendix and will be evaluated in forthcoming work.

It should be emphasized that unlike equilibrium proper-
ties, the behavior of the system in nonequilibrium steady
states depends, sometimes sensitively, on the assumed ki-
netic model. We have repeated some of the calculations for
two more kinetic models, a normalized kinetic model, where
the rates between two levels with energy separation E�0
are taken to be

k� up

down
 =

e���/2�E

e��/2�E + e−��/2�E �42�

and an asymmetric model where

k�up� =
e−��/2�E

1 + e−��/2�E , k�down� =
1

1 + e−��/2�E . �43�

Because rates based on Eq. �42� or Eq. �43� are smaller than
those from Eq. �3�, longer modulation periods are needed in
order to get similar behavior. Apart from this rescaling of 

the qualitative behavior of these models remains as with our
original model, Eq. �3�.

Some other important questions are deferred to future
work. In addition to the average currents studied in the
present paper, current fluctuations are observed in experi-
mental studies of channel transport, and their theoretical
evaluation is of interest. In particular, generalizing available
methodologies for carrier counting statistics to models with
time-dependent driving provides an interesting direction for
future investigation. A more ambitious task would be to gen-
eralize the concept advanced in the paper to the quantum
regime. Indeed, ratchet action inducing driving in quantum
transport has been discussed, so far for systems of noninter-
acting carriers.11,36 Consideration of quantum effects in more
general setups—see, e.g., Ref. 37—may be proven useful in
the discussion of novel energy transfer systems.
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APPENDIX: CURRENTS FROM THE TDFT APPROACH

In this appendix we recall the main steps of the TDFT
for Fermionic lattice gases.17–19 At the same time we gener-
alize the derivation to systems with arbitrary time-dependent
site energies �i and kinetic properties governed by a class of
transition rates, where

wi→k�n� = �i,knivkg�Hi,Hk� �A1�

represents the rate for a particle hop from site i to a nearest
neighbor site k. Occupation numbers are denoted by nl with
nl=0 or 1, vl=1−nl and n��nl�. �i,k are frequency factors.
The function g depends on the energies Hi and Hk of the
particle before and after the hop, respectively. Focusing on
this transition between sites i and k, the total lattice gas
Hamiltonian is decomposed as

H�n� = Hi,k + niHi + nkHk + ninkVi,k, �A2�

where Vi,k’s are pair interaction parameters. Hi,k denotes the
total energy omitting contributions from sites i and k, while

Hi = �i − �tot + 

l��i,k�

Vi,lnl. �A3�

Here �tot is some reference chemical potential.
Clearly, Hi,k, Hi, and Hk depend only on occupational

configurations n̂ excluding sites i and k. For the following it
is convenient to introduce the quantity

Gi,k�n̂� = g�Hi,Hk�exp�− �Hi� , �A4�

which, by the detailed balance condition, is required to be
symmetric in its indices,

Gi,k�n̂� = Gk,i�n̂� . �A5�

If transition rates depend only on the particle’s initial
energy,18 then Gik�n̂��1. On the other hand, calculations in
this work are based on the symmetric choice g�Hi ,Hk�
=exp���Hi−Hk� /2� or
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Gi,k�n̂� = exp�− ��Hi + Hk�/2� . �A6�

The TDFT is based on a local equilibrium approximation for
the distribution function,

Ploc�n,t� =
1

Z�t�
exp�− �Heff�n,t��;

�A7�
Heff�n,t� = H�n� + 


l

hl�t�nl.

Its nonequilibrium character is represented in terms of time-
dependent single particle fields hl�t� that are associated with
the time-dependent local chemical potential, see Eq. �A11�.
In view of Eqs. �A1�–�A5� and using ni

2=ni �nivi=0�, the
average current from i to k can be expressed as

�ji,k�t = �i,k

n

�nivkg�Hi,Hk� − vinkg�Hk,Hi��Ploc�n,t�

= �i,k

n

Gi,k�n̂��nivk − vink�exp�− ��hini + hknk��

�exp�− �Hi,k
eff�n̂�� ,

where Hi,k
eff is the first term in �A2� when applied to the cor-

responding decomposition of Heff. Summation over ni and nk

yields

�ji,k�t = Mi,k�t��Ai�t� − Ak�t�� �A8�

where

Ai�t� = exp�− ��hi�t� − �tot�� �A9�

and

Mi,k�t� =
�i,k

Z�t�
n̂

Gi,k�n̂�e−�Hi,k
eff�n̂�e−��tot.

The summation over n̂ can be continued to a summation over
all n after including vacancy occupation numbers for sites i
and k. Thus

Mi,k�t� = �i,k�vivkGi,k�n̂��te
−��tot, �A10�

which is symmetric, Mi,k�t�=Mk,i�t�, in view of Eq. �A4�.
Note that �tot cancels in Eq. �A10�. Density functional theory
is employed when computing average densities pi�t���ni�t

from Eq. �A7�. The result is the “structure equation”

�i + hi + �i�p� = �tot, �A11�

which allows us to eliminate hi in favor of the local chemical
potential �i�p�=�F /�pi; F�p� being the free energy func-
tional associated with H�n�, with p= �pl� �for details, see Ref.
18�. It follows that

Ai�t� = exp����i + �i�� , �A12�

which can be interpreted as local activity. The essence of Eq.
�A8� now becomes obvious, namely, a factorization of the
average current into a thermodynamic factor �difference of
local activities� and the kinetic coefficient �A10�. A closed
system of equations determining pi�t� is obtained by combin-
ing Eqs. �A8�–�A12� with the equation of continuity

dpi�t�
dt

+ 

k

�ji,k�t = 0. �A13�

Now we apply that method to the model of Sec. II, which is
a finite one-dimensional channel of M sites with nearest
neighbor interactions, coupled to reservoirs L and R. From
Eqs. �A6� and �A10� we obtain

Ml,l+1�t� = �l,l+1 exp�− ���l + �l+1�/2�

��vlvl+1 exp�− ��Vl−1,lnl−1 + Vl+1,l+2nl+2�/2��t,

�A14�

where Vl−1,l=V for l=2, . . . ,M. Note that the reservoirs were
taken to have no interaction with the channel, V0,1�VL,1=0
and VM,M+1�VM,R=0. Moreover, it exactly holds that18

��l�p� = ln
pl

1 − pl
+ ln

�1 − pl�pl+1,l
�2�

plpl+1,l
�4� + ln

�1 − pl�pl,l−1
�3�

plpl,l−1
�4� .

�A15�

The correlators pl+1,l
�n� are defined by

pl+1,l
�2� � �vl+1nl� = pl − pl+1,l

�1� , �A16�

pl+1,l
�3� � �nl+1vl� = pl+1 − pl+1,l

�1� , �A17�

pl+1,l
�4� � �vl+1vl� = 1 − pl − pl+1 + pl+1,l

�1� , �A18�

where vl=1−nl is the vacancy occupation number. These
quantities pl+1,l

�n� can be determined18 from the “quasichemical
condition” pl+1,l

�1� pl+1,l
�4� = pl+1,l

�2� pl+1,l
�3� e−�V by solving a quadratic

for, e.g., pl+1,l
�1� = �nl+1nl�. Equation �A15� is written as a sum

of three terms such that the first term corresponds to a non-
interacting lattice gas, while the second �third� term is the
contribution of the right �left� neighbor to the chemical po-
tential at site i.

Equations �A14� and �A15� together with Eq. �A12� de-
termine the currents �A8� in the interior of the system. Evi-
dently, Eq. �A14� involves higher order correlators, actually
up to four-point correlators because of exp��n�=1
+n�exp �−1� for n=0 or 1. Knowing F�p�, these correlators
can be expressed38 as functionals of p.

The average currents from and to the reservoirs require
special attention. First, because interactions between the sys-
tem and reservoirs are disregarded, the chemical potentials
for the outermost sites l=1 and l=M of the channel satisfy

��1�p� = ln
p2,1

�2�

p2,1
�4� , ��M�p� = ln

pM,M−1
�3�

pM,M−1
�4� . �A19�

This follows from the fact that all correlators in Eq. �A15�
involving reservoir sites factorize so that in Eq. �A15� con-
tributions of the interactions between sites l=1,M and the
reservoirs vanish. Second, the kinetic coefficients that enter
the currents between the system and the reservoirs are ob-
tained from �using Eq. �A14��
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ML,1�t� = �L exp�− ���L + �1

2
��vL��v1 exp�− �

Vn2

2
�

t
.

�A20�

Using again exp��n�=1+n�exp �−1�, the last factor in
Eq. �A20� simplifies

�v1 exp�− �
Vn2

2
� = 1 − p1 + Kp2,1

�3� , �A21�

with K=exp�−�V /2�−1. An expression analogous to
Eq. �A20� is obtained for MM,R�t�.

After insertion of Eqs. �A19�–�A21� into Eqs. �A12� and
�A8� we obtain

�jL,1�t = �1 − p1 + Kp2,1
�3���k̃L,1e��L − k̃1,L� p2,1

�2�

p2,1
�4� � , �A22�

where �vL� has been absorbed in the attempt frequency en-

tering k̃L,1 and k̃1,L by setting �̃L= �vL��L.
Similarly,

�jM,R�t = �1 − pM + KpM,M−1
�2� �

��k̃M,R� pM,M−1
�3�

pM,M−1
�4�  − k̃R,M exp���R�� , �A23�

with �̃R= �vR��R in the definition of k̃R,M and k̃M,R. Note that
apart from modified attempt frequencies �̃L,R, the only reser-
voir properties entering the theory are the chemical poten-
tials �L,R. In this way and by using Eq. �A13�, we end up
with a closed system of equations for an open channel of
arbitrary length, coupled to reservoirs.

Specializing to the four-site model �M =2� of Sec. III,
the above expressions for the reservoir currents coincide with
Eqs. �33� and �35� in the main text. Moreover, to get the
current �j1,2�t inside the two-site channel, we use Eq. �A14�
to obtain

M1,2�t� = � exp�− �� ��1 + �2�
2

��v1v2�t, �A24�

with �v1v2�t� p2,1
�4�. Together with Eq. �A19�, this leads to Eq.

�34�.
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