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Current transfer is defined as a charge-transfer process where the transferred charge carries information about
its original motion. We have recently suggested that such transfer causes the asymmetry observed in electron
transfer induced by circularly polarized light through helical wires. This paper presents the steady-state theory
of current transfer within a tight binding model of coupled wires systems. The asymmetry in the system
response to a steady current imposed in a particular direction on one of the wires is used to define the efficiency
of current transfer.

1. Introduction

Current transfer is defined as the transfer of a charge carrier
while preserving characteristics of its momentum. In a recent
paper,1 we presented a tight-binding charge transfer model for
experimental observations2,3 that indicate that photoelectron
transfer induced by circularly polarized light through helical
molecular bridges depends on the relative handedness of the
bridge helicity and on the optical circular polarization. Another
recent example of current transfer in photoemission is provided
by ref 4, where the signature of a biased linear momentum
distribution created on a Cu (100) surface is observed in the
angular distribution of the photoemitted current. Our rationaliza-
tion of the experimental results of refs 2, 3 was based on the
assumption that excitation by circularly polarized light can create
a circular electronic current in the absorbing molecule or surface
(this assumption is supported by theoretical analysis5-8), and
that chirality may control the transmission of these currents as
a consequence of atoms’ proximity. Figure 1 illustrates this idea.

Figure 1 shows how the current transfer phenomenon may
originate from the coupling scheme, which results here from
proximity of circular/helical molecular structures, and the
preparation of the donor state. Other molecular structures that
may show the same physical behavior are displayed in Figure
2. Figure 2a represents an electron transmission structure studied
by Lin et al.,9 in which a noncovalent contact bridges between
oligo(phenylene ethynylene) units. Figure 2b shows a designed
π-σ-π motif with a saturated spirocyclic linkage between
oligothiophenes chains that was suggested by Aviram10 as a
possible component in a molecular memory device. In this
structure, the spirocyclic linkage inserts 4 σ bonds between the
unsaturated chains. Both systems could enable current transfer
to be observed if current were driven in one of the linked chains
and the induced current were monitored in the other chain.

Figure 3 shows simple theoretical models for current transfer.
Each model corresponds to a tight-binding Hamiltonian with
nearest-neighbor couplings indicated by the bonds connecting
different sites. In the model in Figure 3a, we consider a wire D

(the “driver”) carrying a current JD and investigate the possibility
of current transfer to wire A through a coupling region defined
by coupling matrix elements Vij between NDA pairs of neighbor-
ing atoms i and j on different wires. This coupling will appear
in the system Hamiltonian written in the site representation. In
Figure 3a, where NDA ) 3, this coupling region includes atoms
1, 2, and 3 on wire D; 5, 6, and 7 on A; and the couplings V1,5,
V2,6, and V3,7 between them. Any charge transferred from D to
A will flow to the right of site 7 and to the left of site 5. We
denote these currents JAR and JAL, respectively. A signature of
current transfer may be taken as JAR * JAL or, in the case of a
transient (pulse) current, ∫-∞

∞ dt JAR(t) * ∫-∞
∞ dt JAL(t); the

integrals expressing the total charge transferred rightwards and
leftwards through wire A. The model in Figure 3b is similar,
except that the transfer D f A is mediated through a bridging
wire B. Here NDB, NBA, and NB (2, 2, and 1 in this example)
denote respectively the number of site pairs connecting the wires
D and B, the corresponding number between wires B and A,
and the number of B sites between these coupling regions. In
the case represented by Figure 3b, the signature of current
transfer is similar, except that JAR and JAL now express charge

Figure 1. Circular current in the donor (D) ring is transferred to an
acceptor A through a helical bridge. The dominant intermolecular
coupling, illustrated by dotted lines connecting nearest atoms belonging
to neighboring molecules can coherently transmit directional informa-
tion. The clockwise circular current indicated by the arrow on the donor
will be transmitted through the helical bridge shown more readily than
a circular current in the opposite direction.
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transfer rates through the “acceptor” A for a rightward or
leftward going driving current JD. The model of Figure 3c is a
version of the model in Figure 3b, in which the driving current
originates from a circular current on the donor (D) ring. In
particular, the current direction between sites 1 and 2 that couple
to the rest of the system reflects the circular polarization of the
ring current. Also in Figure 3c, we emphasize that the nature
of the accepting system A is not very important in this case.
The only requirement is that some signal proportional to the
population in A is induced in the detector. The signature of
current transfer is then an asymmetry in this signal under
direction reversal of the driving current. Note that current
transfer as defined here arises in these tight-binding models only
if the driver wire D is coupled to the wires A in Figure 3a or B
in Figures 3b,c by more than a single interaction. Indeed, the
directional information associated with the transfer is conveyed

through interference among different transfer paths. This implies
that thermal interactions and dephasing processes may have
strong effects on current transfer processes.

In ref 1, we described a time dependent approach to current
transfer, where a transient current JD is initially generated by a
pulse excitation. There are situations, e.g., those pertaining to
molecular conduction phenomena, where the complementary
steady-state description is advantageous. The present paper
presents the steady-state approach to this problem. Here we
obtain the steady-state of the system when driven by a constant
current on wire D and evaluate the currents induced in other
parts of the system subject to this driving. The current transfer
efficiency may be quantified by the asymmetry factor

A )
JAR - JAL

JAR + JAL
(1)

that measures the transfer of directionality information from the
driving current. Our objective is to examine the dependence of
this asymmetry on the molecular structure expressed by the
coupling scheme, the intrachain and interchain site energies and
the coupling strengths and the dephasing caused by thermal
interactions.

2. Model Hamiltonian and the Steady-State Analysis

For definiteness, we focus on the model of Figure 3b, which
describes the driving wire D, the bridging wire B and the
accepting wire A as linear tight-binding chains. The corre-
sponding Hamiltonian is Ĥ ) ĤD + ĤA + ĤB + V̂BA + V̂BD,
where

HK ) ∑
jK∈K

EjK

(K)|jK〉〈jK| + ∑
jK∈K

VjK,jK+1
(K) |jK〉〈jK + 1| + h.c.

K ) D, A, B (2)

and

VK,K′ ) ∑
jK∈K,

∑
jK′∈K′

VjK,jK′

K,K′ |jK〉〈jK′| ; (K, K′) ) (D, B) or (B, A)

(3)

Here ĤD, ĤB, and ĤA are the Hamiltonians for the D, B, and
A moieties, respectively, and V̂(DB) (V̂(BA)) are the D-B (A-B)
interactions. When the driving wire is an ND-member cyclic
molecule as in Figure 3c, this cyclic periodicity is reflected by
the additional condition Ψ(jD + ND) ) Ψ(jD). The values of
the interchain coupling elements VjK,jK′

(K,K′) in eq 3 reflect the
geometry of the molecular structures, e.g., the proximity of
atoms belonging to different molecules. Here too we assume
nonzero coupling only between sites on different wires that are
nearest to each other, e.g, the site pairs (1,5), (2,6), and (3,7) in
Figure 3a or (1,3) and (2,4) in Figure 3, panels b and c. Below,
we consider the specific case where each wire is a sequence of
similar sites and all intersite couplings are the same for similar
pairs of sites. Accordingly, we denote

RK ) EjK

(K); �K ) VjK,jK+1
(K) ; VKK′ ) VjK,jK′

(K,K′) (4)

In ref 1, we studied the time evolution that follows the
excitation of ring current in the driving wire (e.g., Figure 3c).
If the ring has ND equivalent sites this initial state is described
by the Bloch wave function

Ψ(t ) 0) ) �a
L ∑

jD)1

ND

ei(jD-1)ka|jD〉 (5a)

with

Figure 2. (a) Through-space linked oligo(phenylene ethynylene)
structures.9 (b) Saturated spirocyclopentane linked thiophenes.10 In both
cases, the effective electronic interaction across the chain-to-chain
contacts is estimated to be about 100-fold weaker than the nearest-
neighbor interactions within the chains.

Figure 3. Simple models of current transfer. In these models a current
in wire D is transferred to wire A. In (a) the transfer is direct while in
(b) it is mediated by a “bridge” wire B. Model (c) is a variant of (b),
where the driving current JD arises from a circular current on the donor
ring D. The arrow represents an irreversible transition out of A.
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k ) 2πM
aND

; M ) 0,(1, ...,(ND - 1; L ) NDa

(5b)

where R is the intersite distance. Here, the driving wire is
restricted to remain in this state, and we require the steady state
assumed by the rest of the system under this restriction. The
most relevant sites on the driver are those that are directly
coupled to wire B, e.g., sites 1 and 2 in Figure 3b,c. The driving
restriction in this case is

ψD(t) ) c1(t)|1〉 + c2(t)|2〉 ) (cj1|1〉 + cj2|2〉) e-(i/p)E(k)t

(6a)

cj2 ) cj1e
ika (6b)

where E and k are related by the characteristic 1-d tight binding
dispersion relation

E(k) ) RK + 2�K cos(ka) (here K ) D) (7)

Note that in steady-state situations the injection energy is not
determined by the energy of a donor or acceptor state. The
steady state essentially describes a scattering process at an
energy (or energy regime) determined by the driving process.

For the system to reach steady state, the acceptor wire A must
be infinite, as in Figure 3b. Alternatively, the population in the
acceptor site A must be assumed to be depleted by coupling to
an external sink as in Figure 3c. This depletion is not part of
the Hamiltonian of eqs 2 and 3 and must be added as
phenomenological terms in the time dependent Schrödinger
equation. In either case, the ensuing currents in the acceptor
are the detected outcome of the driving process.

For the model Hamiltonian of eqs 2 and 3 the time-dependent
Schrödinger equation in the site representation is

p
dcn

dt
) -iEncn - i ∑

R
Vn,RcR (8)

where R sums over all sites that couple (with coupling elements
Vn,R) to site n. At steady state, driven as described by eq 6a (or
its equivalent for the system of Figure 3a), we expect a solution
of the form

cn(t) ) cjne
-iEt/p (9)

Using 9 in 8 gives

0 ) -i(En - E)cjn - i ∑
R

Vn,RcjR (10)

Equations 10 are linear algebraic equations for the coefficients
{cjn,n ∈ B,A} that define the steady-state wave function, Ψ(t) )
∑n∈B,A cn(t)|n〉, on the B and A wires. Terms involving {cjn,n ∈ D}
appear as inhomogeneous source terms in these equations.

The driving current on the D wire provides a source of charge
carriers in the system. For eq 8 to yield the steady-state form at
long time, eqs 9 and 10, it has to be supplemented by terms
describing population absorption. In ref 1, this was achieved
by assigning (real and positive) decay rates γj to some sites by
replacing Ej by Ej -((1/2)γj) for these sites in eqs 8 and 10.
The outgoing rate from the acceptor site A in Figure 3c may be
described in this way. In the present case, the infinite extent of
the B and A wires of Figures 3 provide effective sinks for
damping population in the relevant (observed) part of the system
that can be represented rigorously. Indeed, eqs 8 and 10
represent an infinite set of equations that can be made finite by
the usual technique of separating the overall system into an

interior “relevant” part and a remaining exterior part, and
accounting for the effect of the latter on the dynamics of the
former using an appropriate “self-energy” term. In particular,
in Figure 3a, the effect of an exterior part defined as the infinite
linear chain extending beyond the cutoff site 7 on A is
manifested by modifying eq 10 for this site according to

0 ) -i(EA + ΣA(E) - E)cj7 - i�Acj6 - iVADcj3

(11)

ΣA(E) is the self-energy of a 1-dimensional tight-binding wire, with
real and imaginary parts ΛA(E) and -i(ΓA(E)/2), respectively

ΣK(E) )
E - EK - √(E - EK)2 - 4�K

2

2

≡ ΛK(E) - i
2

ΓK(E) K ) B, A (12)

A full finite set of steady-state equations, for example, the
model in Figure 3b may be written as

0 ) -i(EB + ΣB(E) - E)cj3 - i�Bcj4 - iVBDcj1

0 ) -i(EB - E)cj4 - i�Bcj3 - i�Bcj5 - iVBDcj2

0 ) -i(EB - E)cj5 - i�Bcj4 - i�Bcj6

0 ) -i(EB - E)cj6 - i�Bcj5 - i�Bcj7 - iVBAcj8

0 ) -i(EB + ΣB(E) - E)cj7 - i�Bcj6 - iVBAcj9

0 ) -i(EA + ΣA(E) - E)cj8 - i�Acj9 - iVABcj6

0 ) -i(EA + ΣA(E) - E)cj9 - i�Acj8 - iVABcj7

(13)

or

Mc ) d (14)

where c is the column vector trans(cj3,cj4,cj5,cj6,cj7,cj8,cj9), M is the
matrix multiplying this vector in eq 13, and d is the driving
vector trans(iVBDcj1,iVBDcj2,0,0,0,0,0) (“trans” denotes the trans-
pose). Note that in the phenomenological approach discussed
above and in ref 1, ΣK(E), K ) B,A, are replaced by constant
damping terms -(1/2)iγj (for site j) representing couplings to
some arbitrary broad-band dissipation channels. Using the self-
energies associated with infinite 1-dimensional chains has the
advantage of providing reflectionless interfaces, making it easier
to identify and quantify current transfer processes in steady-
state situations.

Inverting eq 14 and using eq 6b yields all coefficients in terms
of cj1. This makes it possible to evaluate all currents in the system
in terms of the driving current on wire D as described in the
next section.

3. Steady-State Currents and Current Asymmetry
Factors

Using eqs 8-10 with En replaced by En + Σn(E) when n is
an edge site produces the steady state (SS) equation for the
population on site n

0 ) (d|cn(t)|
2

dt )
SS

) ∑
R

2Vn,R

p
Im(cRcn*) -

Γn(E)

p
|cn|2δn,edge

(15)

where, as in eq 8, the sum runs over all sites that couple to site
n with coupling elements Vn,R(Vn,R ) �K if both n and R belong
to wire K; Vn,R ) VK,K′ if these sites are nearest neighbors
belonging to different wires K and K′). The term containing
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Γn(E) ) -2Im Σn(E) contributes only if site n is an edge site
on the bridge (Γn ) ΓB), or on the acceptor wire (Γn ) ΓA).

Equation 15 is a continuity law that describes conservation
of probability; it can be used to identify the current between
any two sites as well as the current entering and leaving a given
system. In particular, eq 15 implies that the current from site
n-1 to site n on a given wire K is

JK(n-1fn) )
2�K

p
Im(cn-1cn*) (16)

and the current out of the system at the edge site n on wire K
is

JK(nfout) )
Γn(E)

p
|cn|2 (17)

In the following analysis, unless otherwise stated, we assign
positive signs to currents from left to right, from D to B, from
D to A, and from B to A.

It is useful to consider the application of eqs 16 and 17 to
the special case of current on a linear tight-binding chain. With
cn ) cn-1eika, we find

JK(n-1fn) ) -
2�K

p
|cn|2 sin(ka) (18)

[Near the bottom of the band, kf 0 (see eq 7) and JK(n-1fn) )
-(2�K/p)|cn|2ka. The fact that for positive k a positive (left to
right) current is associated with negative �K is related to the
fact that the kinetic energy operator on a grid of spacing h is
given by -f′′(x) ≈ -h-2[f(x + h) - 2f(x) + f(x - h)].] For a
current in the direction n - 1 f n f out, eq 16 indicates that
�K sin(ka) needs to be negative. Current conservation implies
that

ΓK(E) ) 2|�K sin(ka)| (19)

and using (cf. eq 7) cos(ka) ) (E - RK)/2�K gives

ΓK(E) ) 2|�K|�1 - (E - RK

2�K
)2

(20)

which is consistent with eq 12. Furthermore, eqs 7 and 12 imply

ΛK(E) ) �K cos(ka) )
E - RK

2
(21)

Equations 20 and 21 hold for E inside the K-wire energy
band.

We now consider the steady-state currents induced in the
system by a driving current on the D wire, defined by eqs 6a
and 7 with k ) kD and E ) E(|kD|). In particular, for the DA
model of Figure 3a, we focus on the current out of the A wire
to the right and to the left. It is convenient to define both currents
as positive quantities

JA
right )

2�A

p
Im(ceright-1ceright* ) )

ΓA(E)

p
|ceright|

2 (22)

JA
left )

2�A

p
Im(celeft+1celeft* ) )

ΓA(E)

p
|celeft|

2 (23)

where eright and eleft denote the right and left edge sites on
the A wire, respectively. Symmetry requires that J[right,A,kD]
) J[left,A,-kD]. A nonzero current asymmetry factor

A1 )
JA

left - JA
right

JA
left + JA

right
(24)

is a signature of current transfer; that is, it indicates that a
signature of momentum, i.e., directional information, is trans-
ferred together with the charge.

We now consider similar asymmetry factors for the B and A
wires in the DBA model of Figure 3b. A better measure of
current transfer in this case is the dependence of the total current,
J A

total, transmitted to the A wire on the direction of the driving
current on the D wire, characterized by the asymmetry factor

A2 )
JA

total(-kD) - JA
total(kD)

JA
total(-kD) + JA

total(kD)
(25)

A2 is directly related to the observations in refs 2 and 3, and it
quantifies the effect of the current-transfer information mediated
through the bridge B on the D f A charge transfer. This
asymmetry can be studied as a function of the energy level
positioning of wire B relative to the D and A wires, and as a
function of the B-wire length. Measures of different normaliza-
tion are also useful

A¯
1 )

JA
left - JA

right

|JD|
(26)

A¯
2 ≡

JA
total(-kD) - JA

total(kD)

|JD|
(27)

where JD is the donor (driving) current.
Figure 4 shows the current distribution in the A wire of the

DA system illustrated in the inset. Here and below, all energy
units are relative; and the reader may assign them as convenient,
e.g., take all of the numbers given for energies in electron volts.
The driving current induces left and right going currents at the
left and right sides, respectively, of the A wire. The current is
position independent in all parts of A that are not coupled to
the driving wire, and changes in the coupling region. The larger
leftward current on A reflects the directionality transfer, i.e. the
current transfer character of the process. This asymmetry, and
its counterpart in the DBA system are expressed in the figures
below using the current asymmetry factors A1 and A2.

We next show numerical results for these asymmetry factors
that indicate their dependence on system parameters and
structure. The structure is expressed in terms of the number of
links (coupled site-pairs), NDA, connecting the D and A wires
in the DA system, the corresponding numbers NDB and NBA in
the DBA system and the length NB of the bridge segment
separating the DB and BA coupling regions in the DBA system
(see Figure 5). For the structure displayed in Figure 1, NDA and
NDB are the number of dashed lines connecting the ring to the
helical bridge on the left and right, respectively, while NB

Figure 4. Current distribution on wire A of the DA system shown in
the inset, characterized by 5-site coupling between the D and A wires.
Parameters are |JD| ) 1, ED ) EA ) 0, �D ) �A ) 0.1, VDA ) 0.01 and
the injection energy is E ) -0.15. The phase kDa ) arccos[(E - ED)/
2�D] is taken positive, implying that the driving current is leftward.
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corresponds to the length of the helical bridge. Another
characteristic parameter is the ratio V/� between the interchain
and intrachain coupling parameters. In the systems shown in
Figure 2, the tunneling gap is ∼3.5 Å for Figure 2a, and ∼5 Å
for Figure 2b. Assuming a typical through sigma-bond decay
parameter of 0.6,11 and a through-space distance decay exponent
of 1.1 Å-1 (computed for an electron binding energy of ∼5
eV), the tunneling amplitude attenuation across both interfaces
is expected to be ∼10-2. In the simple models of Figures 3 and
5 this would imply VDA ∼ 10-2 × �. We have found that the
calculated asymmetry factors A1 and A2 are not sensitive to
VDA/� although the absolute current in the A wire and
consequently the asymmetry factors Aj1 and Aj2 are sensitive
to this ratio.

Figure 6 shows the current asymmetry factor A1 for the DA
system of Figure 5 as a function of the number of links (coupled
site-pairs), NDA, connecting the D and A wires (A1 ) 0 for
NDA ) 1). Figure 7 shows the corresponding A2 value for the
DBA system of Figure 5. In both cases, asymmetry increases
and then saturates near 1 (when the response current becomes
nearly unidirectional) as NDA increases.

The large asymmetries in the above results indicate the
substantial current transfer character that may arise for both the
direct transfer (the DA model) and the bridge assisted process
(the DBA model). The infinite bridge length is particularly
important in this steady-state process. For a short bridge, the
selective directionality underlying the current transfer may be
diminished or eliminated by wave function reflection at the edge
of the B wire. In this respect, the steady-state situation is
different from the transient process described in ref 1, where,
for short pulses, reflection does not set in appreciably during
the time-scale of the process.

Another important factor discussed in ref 1 is the energy
dependence of the current transfer, namely the resonant or
nonrsonant nature of the process. The results in Figures 4, 6,
and 7 correspond to resonance transmission, where site energies
in all wires are equal. Superexchange-mediated current transfer
may arise in DBA systems where the bridge energy EB is
different from the site energies ED ) EA of the “donor” and
“acceptor” wires. Because of the finite bandwidths, the onset
of the superexchange mechanism depends on the band structure
of the wires and on the injection energy E. In the calculation
below, we take ED ) EA ) 0, �D ) �A ) �B ) 0.1, and an
injection energy E ) -0.15, and vary the bridge energy EB.
Since energy bands in these tight-binding wires are in the range
EK ( 2�K (K ) D, B, A), nonresonant transfer occurs when EB

> 0.05 or EB < -0.35 (Figure 8). Figure 9 shows the current
transfer behavior for this system in the off-resonance regime,
EB > 0.05. We find a strong exponential damping of the current
transfer property expressed by the asymmetry factor A2. It
should be emphasized that, as defined, the behavior of A2

reflects the erasure of the current transfer, i.e., the momentum
transfer property and not the damping of the charge transfer
itself.

Figure 9 shows that the current transfer property decays
quickly as transport enters the off-resonance (superexchange)
transfer regime. One might expect that a similar drop in
asymmetry will also be seen as we approach the edge of the
resonance transfer regime from the resonance side, e.g., -0.35
< EB < 0.05 for the parameters used in Figure 9. Figure 10 shows
that the behavior approaching the band edges from within the
band is more complicated, although A2 indeed goes smoothly

Figure 5. Structural parameters in the DA and DBA systems. NDA, NDB, and NBA are the number of links connecting the wires D, B, and A. NB

is the length of the bridge segment between the D-B and the B-A coupling regions in the DBA system.

Figure 6. Current asymmetry factor A1 as a function of the number
of links (NDA) connecting the D and A wires in the DA system (Figure
5). The inset shows the same data, presented in terms of Aj

1 vs NDA.
Parameters are the same as in Figure 4.

Figure 7. Current asymmetry factor A2 displayed vs the number of
links NDB connecting the D and B wires in the DBA system of Figure
5. Parameters are similar to Figure 4: ED ) EB ) EA ) 0; �D ) �B )
�A ) 0.1, VDB ) VBA ) 0.01, NBA ) 1 and the injection energy E )
-0.15. The inset shows the same data, presented as Aj

2 vs NDB.

Figure 8. Schematic illustration of the band structures in the three
wire DBA system. The horizontal (red) dashed lines correspond to the
bands of the D, B, and A wires as indicated. E is the injection energy
(here -0.15) which, in the example shown, coincides with lower band
edge of the B wire.
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to a very small value as we approach the band edge. It is notable
that the charge transfer itself, expressed by the absolute current
in the A wire, is singular at the band edge. This is seen in Figure
11 which shows Aj2 in analogy with Figure 10. Similar behavior
is obtained for the individual components, JA

total((kD)/JD of Aj2),
shown in the inset. Remarkably, the individual right and left
currents on wire A can be larger than the driving current JD.

The origin of the band-edge singularities seen in Figure 11
are explained by considering the simpler model shown in Figure

12 (left). Here, a single link connects the D and A wires, and
directionality information cannot be transferred. Indeed, the only
property of the D wire that affects the A wire is the amplitude
oscillation at site 2 determined by the injection energy E, c2(t)
) cj2e-(i/p)Et. At steady state, the amplitude c3(t) behaves
similarly, c3(t) ) cj3e-(i/p)Et, where cj3 satisfies

0 ) -i(EA + 2ΣA(E) - E)cj3 - iVADcj2 or

cj3 )
VAD

E - EA - 2ΣA(E)
cj2 (28)

and ΣA(E) is given by eq 12 with K ) A. The factor 2
multiplying ΣA(E) in eq 28 results from the fact that site 3, as
part of the infinite A wire, is coupled to two identical
seminifinite parts of this wire. Using eq 12 in eq 28 gives

cj3 )
VAD

iΓA(E)
cj2 (29)

and from 17 it follows that the current (left or right) out of site
3 is

J(3fright) )
|VAD|2

pΓA(E)
|cj2|2 (30)

This current diverges as ΓA(E) approaches zero at the band
edge. It is this singular behavior that manifests itself also in
the more complex phenomena described above, but it is
important to note that its manifestation is not universal. For
example, if wire A is replaced by a system of n identical wires
coupled to the driver site 2 via node 3 (Figure 12, right, shows
the n ) 4 case), eq 28 is replaced by cj3 ) V32cj2(E - EA -
nΣA(E))-1. As such, the singularity at the band edge is specific
to the n ) 2 case.

We conclude this section with remarks on this singularity
that shed some light on the current transfer formalism and its
relationship to scattering theory. The results displayed in Figures
4 and 6-10 give information on different currents in a steady
state system with given uniform and unidirectional current flows
in the driving wire. It is important to realize that these currents
need not satisfy any continuity conditions with respect to the
driving current. As such, there is no contradiction in the
observation that, under some conditions, a current in wire A
that is consistent with a given current in wire D is larger than
the latter current. In the equivalent scattering problem, the
system is driven by an incoming current in one channel (e.g.,
the left side of wire D), and the transmitted currents in other
channels, together with the reflected current in the original
channel (which, by definition, is missing in the present formula-
tion) satisfy the usual continuity relationship that implies current
conservation. In the scattering theory analog of the current

Figure 9. Current asymmetry factor A2 vs bridge site energy EB for
the DBA system in the off-resonance (superexchange) regime for ED

) EA ) 0, �D ) �B ) �A ) 0.1, VDB ) VBA ) 0.01, E ) -0.15, NDB

) 2, NB ) 1, NBA ) 1. Shown is the current transfer behavior of the
system in the superexchange regime, EB > 0.05. Coarse-grained
averaging was applied to reduce numerical errors that result from
computing small differences among relatively large numbers.

Figure 10. Current asymmetry factor A2 vs the site energy EB of the
B wire in the DBA system. Parameters are the same as in Figure 9.

Figure 11. Same data as in Figure 10, now represented in terms of
Aj

2, eq 27, shown vs EB in the resonance transmission regime.
Parameters are the same as in Figure 9. The inset shows the individual
contributions, JA

total((kD)/JD.

Figure 12. Simple models that demonstrate the origin of band-edge
effects in current transfer dynamics. The model on the right is the n )
4 analog of the (n ) 2) model on the left which in turn is a single DA
link analog of the model of Figure 3a. The singularity at the band edge
is specific to the n ) 2 case.
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transfer problem of Figures 9 and 10, we find12 that when EB

approaches the band edge from inside the band, the reflection
coefficient approaches 1. That is, the net current on wire D
becomes essentially zero. The implication for the current transfer
calculation, in which the driving current is restricted to remain
constant, is that the current in other channels may diverge. While
this result is mathematically sound, its physical implication is
that moving EB toward the singularity cannot be accomplished
while sustaining a constant current in the driving wire.
Consequently, in such situations, the current transfer formalism
fails as an approximation to the corresponding scattering theory
(see ref 12 for more details).

4. Steady-State Current Transfer in the Density Matrix
Formalism: The Effect of Dephasing

In the tight-binding model and in the local site representation,
current transfer (the transfer of directional information in the
course of a charge transfer process) arises from interferences
among different transfer pathways. Therefore at least two
interchain links between wires are needed for current transfer
to arise. It is therefore of considerable interest to examine the
effects of dephasing (decoherence) on the efficiency of these
processes. We assume that motion on the driving wire D remains
coherent (i.e., a Bloch wave persists), and study the effect of
dephasing on the wire B. For this purpose, we recast the steady-
state approach to current transfer in the density matrix language
and examine the ensuing Liouville space dynamics. In this
framework, we can examine relaxation effects, especially the
effect of “pure” dephasing (see below), the process that damps
nondiagonal elements of the density matrix without affecting
the population (diagonal elements) dynamics.

For a closed quantum system described by the time-dependent
Schrödinger equation, the transition to a Liouville space
description, ip dF̂/dt ) [Ĥ,F̂] follows directly. For our tight-
binding model in the site representation, the density matrix
elements Fnm ) cncm* are obtained from eq 8

dFnm/dt ) (dcn/dt)cm* + cn(dcm*/dt) (31)

.
Our goal is to extend these equations to steady-state situations

involving driving and damping as described above. To this end,
we note that eq 9 gives dFnm/dt ) 0 at steady state. Furthermore,
population damping enters in the time evolution of diagonal
density matrix elements as dFnn/dt ) ... - γnFnn and in the
corresponding equations for nondiagonal elements as dFnm/dt
) ... - (1/2)(γn + γm)Fnm. This remains true also in steady state
situations involving infinite wire systems, where apparent
damping results from the imaginary part of the self-energy of
edge sites (see section 3), i.e. dFnm/dt ) 0 ) ... - (1/2)(Γn(E)
+ Γm(E))Fnm. In addition, pure dephasing is affected by assigning
additional damping to the non-diagonal elements of the density
matrix (see Appendix A).

The remaining task is then to apply the current driving
conditions to these steady-state Liouville equations. We follow
the procedure of Segal and Nitzan13,14 to accomplish this task.
In the appendix we outline this procedure for the 2-link version
of the model in Figure 3a (see Figure 13). The analysis leads
to eqs 32a-34 that provide a solution to the problem by
expressing Fij, i,j ∈ D,A, and the associated currents in the D
and A wires, J[n - 1fn] ≡ 2(�n,n-1/p) Im F̂n-1,n, in terms of
properties of the driving current. A generalization of this
procedure can be used in more complex situations.15 It should
be noted that this calculation involves an approximation. Since
damping of nondiagonal matrix elements is introduced in the

site representation and not in the eigenstates basis, it does not
correspond to an entirely pure dephasing, that is, the approach
induces a small inelastic component in the outgoing electron
energy, in the range δE ∼ γ around the injection energy E.
Nonetheless, the electron self-energy ΣK (K ) B, A) is evaluated
at E. By computing electron transmission with values of ΣK(E′)
with E′ ) E ( (1/2)γ, we have found that the error associated
with this approximation is small for the range of dephasing rates
used in the present study.

We next describe examples that show the effect of dephasing,
introduced as described above, on current transfer. In these
calculations we have assigned dephasing rates γ to the NDA sites
on the A wire that are linked to the D wire in the DA system
and to the NDB + NB + NBA sites on the B wire that connect
between the D and A wires in the DBA system (Figure 5).
Results are shown in Figures 14 and 15, respectively. Interest-
ingly, while the current transfer efficiency drops with increasing
γ, the effect persists up to relatively large values of the
dephasing rate, of the order of the other tight binding energy
parameters in the system. A similar observation was made in
the time domain study of ref 1.

Figure 13. Tight-binding model used to analyze current transfer in
the density matrix (Liouville space) formalism.

Figure 14. Current asymmetry factor A1 plotted vs dephasing rate γ
for a DA system (Figure 5) characterized by the parameters NDA ) 5,
ED ) EA ) 0, �D ) �A ) 0.1, VDA ) 0.01 and E ) -0.15. The phase
kDa ) arccos((E - ED)/2�D) was taken positive, implying leftward
driving current. Also shown are results obtained from using ΣA(E +
γ/2) (dashed line, red) and ΣA(E - γ/2) (dash-dotted line, green), instead
of ΣA(E) in this calculation.

Figure 15. Current asymmetry factor A2 plotted vs the dephasing rate
γ for a DBA system (Figure 5) characterized by the parameters NDB )
5, NB ) 3, NBA ) 1, ED ) EB ) EA ) 0, �D ) �B ) �A ) 0.1, VDB )
VBA ) 0.01.
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5. Conclusions

We use the term current transfer to describe a combined process of charge and momentum transfer. Within the tight-binding
models used here, current transfer is described as a coherent phenomenon resulting from the interference among transition and/or
tunneling paths. We have investigated the dependence of this phenomenon on several key systems parameters focusing on two
simple models. One focuses on charge transfer in two wires (donor and acceptor, or driving and driven wires) and the other has a
bridge wire between these donor and acceptor.

This study advances a steady-state theory of current transfer, complementing a previous analysis in the time domain. On the
experimental side, the present analysis corresponds to the analogue of the optical experiments in refs 2 and 3 if illumination were
continuous. Another possible realization of the models presented here would be to attach a ring shaped molecule to a current carrying
molecular wire, mimicking a setup similar to the model in Figure 3c, but without the A site. In such a setup, the current in the linear
wire would drive a circular current in the ring (the reverse of the operation described in the discussion of Figure 3c), which may
perhaps be detected by its magnetic field.16

The current transfer theory presented here is based on an independent electron model. Electron-electron interactions can lead to
current transfer phenomena also in diffusive transport.17 Such interactions are believed to dominate charge fractionalization in the
momentum conserving current transfer observed between parallel mesoscopic wires by Steinberg et al.18 In our analysis, current
transfer originates from interference between different transmission or tunneling paths. Such interference phenomena in molecular
wires and nanodots have received considerable recent attention19-25 We have also formulated the current transfer theory in the
density matrix representation, emphasizing the difference between the resulting steady-state equations and those that could be inferred
from using the Liouville equation. This density matrix formulation enables investigations of decoherence effects on the current
transfer phenomenon, demonstrating the expected reduction in current transfer efficiency in the presence of dephasing.

The current transfer models considered here are formulated in terms of quantum dynamical equations with well-defined “driving
boundary conditions”. Such boundary conditions differ from the more familiar scattering boundary conditions. In the scattering
case, the wave function in the D wire consists of incoming and scattering components, with the latter containing reflected and
transmitted parts. In contrast, in the driving problem considered here, the D wire is restricted to carry a steady Bloch-wave function,
imposed by an external driving condition (e.g., the continuous wave analogs of the experiments of refs 4, and 2, 3 as discussed
above), that is assumed to be insensitive to the dynamical processes in the rest of the system. The relationship between the two
problems will be considered elsewhere.12
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Appendix

Here we implement the driving conditions described in sections 1 and 2 in the steady-state Liouville eq 31 for the model of
Figure 13, following the procedure of Segal and Nitzan.13,14 Using eq 31 with eqs 8 and 9 (supplemented by the self-energy terms
imposed on site 3 and 4 that are taken as edge sites of wire A) leads to the steady state equations

where Ẽnm ) Ẽn - Ẽm, Σn(E) ) Λn(E) - (i/2)Γn(E), and Ẽn ) En + Λn(E). As before, we take E3 ) E4 ≡ EA and Σ3(E) ) Σ4(E) ≡
ΣA(E); however, we retain the specific site designations here for ease of presentation. Equation 32a is the standard steady-state
Liouville equation for the density matrix elements of the A wire, and shows explicitly their dependence on density matrix elements
that mix A and D sites. For the latter, we again employ again eqs 8, 9, and 31 supplemented by the self-energy contributions. We
find

Equation 33a describes the mixed DA density matrix elements, Fnm ) Fmn* , n ∈ D, m ∈ A, in terms of elements associated with the
D wire only. As noted in ref 13, these equations deviate from the standard Liouville equations. In evaluating eq 31, the time derivatives
associated with the driver coefficients are taken as p dcn/dt ) -iEcn, n ) 1,2 (which expresses the driving condition), rather then
being derived from the system Hamiltonian. Further information about the driving enters through the explicit identification of Fnm

) cncm* for n,m ∈ D which implies that

(-iΓ3 0 -�A �A

0 -iΓ4 �A -�A

-�A �A -(i/2)(Γ3 + Γ4) + Ẽ34 0
�A -�A 0 -(i/2)(Γ3 + Γ4) + Ẽ43

)(F33

F44

F34

F43

) ) V(F31 - F13

F42 - F24

F32 - F14

F23 - F41

) (32a)

(E - Ẽ3 - (i/2)Γ3 0 0 -�A

0 E - Ẽ4 - (i/2)Γ4 -�A 0

0 -�A E - Ẽ3 - (i/2)Γ3 0
-�A 0 0 E - Ẽ4 - (i/2)Γ4

)(F13

F24

F23

F14

) ) V(F11

F22

F21

F12

) (33a)
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The effect of pure dephasing may now be included in this dynamics using the standard phenomenological approach in which
additional damping is assigned to nondiagonal elements of the density matrix: dFij/dt ) -γijFij. In the calculations below we assume
that different local levels are affected independently by the thermal environment, whereupon γij )(1/2)(γi + γj), and we furthermore
take γj ) γ for all levels on the A and B wires (when applicable). Also, by definition, the driving dynamics is assumed unaffected
by the thermal environment. This implies that zero dephasing should be assigned to levels in the D wire, i.e., γj ) 0 for j ∈ D.
Equations 32a and 33a become

Finally, the solutions to eq 33a

F13 )
F11 + �AF12

X3 + �A
2/X4

; F23 )
F21 + �AF22

X3 + �A
2/X4

(35)

where Xn ) E - Ẽn -(i/2)Γn, n ∈ A, satisfy

F13

F23
)

F11 + �AF12

F21 + �AF22
) e-ikDa (36)

This clearly remains true also for eq 33b, where Γn is replaced by Γn + γ. In systems with more interconnnections between the
D and A wires we find similarly

Fj′n

Fjn
) e-ikD(j-j′)a; n ∈ A; j, j′ ∈ D (37)

That is, these ratios behave as if Fjn ) cjcn* also in the general case involving damping. These relationships can be used, in more
complex models, to reduce the number of equations that needs to be solved, i.e., the size of the matrices that need to be inverted.
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F22 ) F11; F21 ) F12* ) eikDaF11 (34)

(-iΓ3 0 -�A �A

0 -iΓ4 �A -�A

-�A �A -(i/2)(Γ3 + Γ4 + 2γ) + Ẽ34 0
�A -�A 0 -(i/2)(Γ3 + Γ4 + 2γ) + Ẽ43

)(F33

F44

F34

F43

) ) V(F31 - F13

F42 - F24

F32 - F14

F23 - F41

) (32b)

(E - Ẽ3 - i
2

(Γ3 + γ) 0 0 -�A

0 E - Ẽ4 - i
2

(Γ4 + γ) -�A 0

0 -�A E - Ẽ3 - i
2

(Γ3 + γ) 0

-�A 0 0 E - Ẽ4 - i
2

(Γ4 + γ)
)(F13

F24

F23

F14

) ) V(F11
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F12

)
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