
Nonlinear hopping transport in ring systems and open channels

Mario Einax,
a
Martin Körner,

a
Philipp Maass*

b
and Abraham Nitzan

c

Received 14th August 2009, Accepted 8th October 2009

First published as an Advance Article on the web 18th November 2009

DOI: 10.1039/b916827c

We study the nonlinear hopping transport in one-dimensional rings and open channels. Analytical

results are derived for the stationary current response to a constant bias without assuming any

specific coupling of the rates to the external fields. It is shown that anomalous large effective jump

lengths, as observed in recent experiments by taking the ratio of the third-order nonlinear and the

linear conductivity, can occur already in ordered systems. Rectification effects due to site energy

disorder in ring systems are expected to become irrelevant for large system sizes. In open

channels, in contrast, rectification effects occur already for disorder in the jump barriers and do

not vanish in the thermodynamic limit. Numerical solutions for a sinusoidal bias show that the

ring system provides a good description for the transport behavior in the open channel for

intermediate and high frequencies. For low frequencies temporal variations in the mean particle

number have to be taken into account in the open channel, which cannot be captured in the more

simple ring model.

1. Introduction

Particle transport in one-dimensional systems is of vital

interest for many problems in physics and biology. A promi-

nent example is electron or hole transport in the operation of

conducting nanowires, including molecular wires.1 In such

systems transport can be dominated by quantum mechanical

tunneling or band motion (the coherent transport limit) but

many systems belong to the hopping transport limit, where

conduction is a manifestation of a succession of many

incoherent hopping steps.2,3 For example, both conduction

mechanisms were observed in different DNA sequences.4 A

one-dimensional hopping motion is also the decisive transport

mechanism in ion conduction through membrane channels5–7

and in unidirectional motion of motor proteins along

filaments.8,9 Associated with the latter example are recent

extensive discussions of boundary driven phase transitions in

one-dimensional lattice gases with site exclusion and

asymmetric hopping dynamics, commonly referred to as

‘‘asymmetric site exclusion processes’’ (ASEP), or, in case of

unidirectional transport, as ‘‘totally asymmetric site exclusion

processes’’ (TASEP)—for reviews, see ref. 10–12. Related

models were recently applied13 to describe the transport of

single-stranded DNA segments through nanochannels.14

The treatment of one-dimensional systems is moreover

frequently used as a starting point for describing transport

processes in higher dimensions, since it often yields analytical

results. In transferring essential results to higher dimensions

one has, however, to be careful. An example is the tracer

diffusion in one-dimensional hard-core lattice gases, which

exhibits a subdiffusive behavior for long times that originates

from the fact that particles cannot pass each other in one

dimension.15–17

In this work we study thermally activated hopping

conduction in one-dimensional lattices for non-interacting

particles in arbitrary energy landscapes. In particular we

consider nonlinear transport in strong static and periodic

fields. For couplings p exp(�u/2) of the external bias u to

the bare hopping rate, this problem was first studied for ring

systems (periodic boundary conditions) in ref. 18. An exact

result for the stationary current was derived, in generalization

of an analogous treatment for Brownian dynamics.19 As a

particularly interesting feature, rectification effects were

shown to be present for energy landscapes with site energy

disorder.

The problem got renewed interest recently for describing

measurements on thin glassy electrolytes under high

voltages,20–23 which allow one to reach the weak nonlinear

regime, u = qEa/kBT C 1, where q, a, E, and kBT are,

respectively, the charge of the mobile ions, the typical hopping

distance of (B2–3 Å), the applied electric field, and the

thermal energy. Molecular dynamics simulations suggest that

for these field strengths the influence of the applied field can be

applied solely to the mobile ion dynamics, while the effect on

the host network structure is negligible.24 In the experiments

no rectification was observed so far, implying that the current

is an odd function of the applied field. On the other hand,

these measurements can be used to determine an effective

length scale aeff associated with the ratio s3/s1 between the

third order nonlinear conductivity s3 and the linear conduc-

tivity s1 (cf.eqn (17) below). This length aeff appears to be

unphysically large if it is compared to typical jump lengths

a C 2–3 Å. Such comparison is motivated by the result25

jdc p sinh(qEa/2kBT), derived for the simplest situation of

single-particle hopping in an ordered system with the afore-

mentioned coupling, p exp(�u/2), of the bias to the bare
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hopping rates (see below). For different glassy electrolytes aeff
either increases or decreases with T (in the temperature ranges

studied a linear behavior was observed). It was also found that

s3 > 0, while s5 has different sign for different glass composi-

tions. In the frequency-dependent response the real part j03ðoÞ
of the third order harmonics j3̂(o) has a negative sign for low

frequency. With increasing frequency, j03ðoÞ increases and

becomes positive close to the onset frequency of the dispersive

part in the first order harmonics j01ðoÞ (which gives the linear

response conductivity s03ðoÞ).
Taking disorder averages22 of the analytical expression for

the current derived in ref. 18, it was suggested that the large

values of aeff have their origin in the spatial variation of

hopping rates in the glassy material. Moreover, based on a

small u expansion, it was predicted that aeff p M1/2, where

M C L/a is the number of sites of the film sample in field

direction. However, this result followed from the analytical

result for the current by expanding terms such as exp(Mu) in

powers of Mu. However, in the experimental studies on the

nonlinear current response in glassy thin film electrolytes,

values of Mu are always much larger than one and in such

situation one should take the thermodynamic limit M - N

before carrying out the small u expansion of the current.26 This

can lead to non-analyticities in the current response. It

was argued23 that these non-analyticities could spoil the

analysis of nonlinear conductivities based on odd powers

in the field amplitude, as they are commonly employed in

experiments.

An open question is whether the rectification effects occur-

ring in finite systems are present also in the thermodynamic

limit. Intuitively, one would expect that in the absence of long-

range correlations in the energy landscape (i.e. correlations

decaying faster than 1/distance), self-averaging effects will lead

to larger reduction of rectification for larger system size. As a

consequence one would predict rectification effects to disap-

pear in the thermodynamic limit. While this is in agreement

with experimental observations (for sample thicknesses so far

studied), it has not yet been demonstrated by theoretical

analysis. To avoid the problem of possible rectification effects

and to enforce that the current is an odd function of u, energy

landscapes with point symmetry were considered in ref. 22 and

23. However, the constraint of point symmetry implicitly

introduces long-range correlations in the energy landscape

and it is questionable if such procedure is suitable to describe

real experimental situations.

In this work we treat the following open problems:

(1) Analytical results for the stationary current in ring

system with M sites were derived up to now for the coupling

p exp(�u/2) of the external bias u = qEa/kBT to the bare

rates (rates in the absence of the external driving). This rate

emerges naturally when approaching the hopping limit of the

overdamped Brownian dynamics (Smoluchowski equation) of

noninteracting particles. However, in interacting many-particle

systems more complicated couplings of the rates to the

external field can be imagined, when mapping the dynamics

to an effective one-particle hopping process in a renormalized

energy landscape. We therefore derive the stationary current

for arbitrary couplings, and discuss in more detail the behavior

for jump rates obeying the condition of detailed balance. We

find that is then possible to obtain already in an ordered

system effective length scales aeff significantly larger than the

jump length a. Hence it appears that not only the disorder

affects aeff.

(2) As outlined above, for relating the theoretical results to

experiments in the nonlinear regime, one should first perform

the thermodynamic limit M - N before expanding the

current in powers of the field amplitude. By performing this

limit we also clarify the role of rectification effects for largeM.

(3) For ring systems it is unclear how the periodic boundary

conditions affect the stationary current. We therefore study the

analogous problem in an open channel, where particles are

injected and ejected from two particle reservoirs on the left

and right side with electrochemical potentials mL and mR,
respectively. The rates for the local exchange of particles with

the reservoirs fulfil detailed balance with respect to the grand-

canonical ensembles associated with mL and mR. We will treat

the linear limit of the rate equations in this work to avoid

boundary induced phase transitions as occurring in ASEPs or

TASEPs.10–12

(4) Up to now the time-dependent nonlinear current

response has been rarely studied.27 Here we will investigate,

for both the ring systems and open channels, this time-

dependent response to a sinusoidal driving force with a large

field amplitude E0 by numerically solving the corresponding

rate equations for the occupation probabilities. The data are

analyzed by standard Fourier analysis in terms of harmonics

jn̂(o) of nth order. We present results for spatially uncorrelated

barrier energies with uniform distributions and discuss the

relation of the harmonics in the ring and open channel with

respect to different frequency regimes.

2. Transition rates and energetic disorder

For convenient notation, we define kBT as the energy unit in

the following, kBT = 1. In a disordered energy landscape with

site energies ek and energy barriers Uk,k+1 = Uk+1,k between

sites k and k + 1, the rates G+
k (t) and G�k+1(t) are considered

to be functions of ek, ek+1, and Uk,k+1. In addition they

depend on the external bias u, which we assume to be homo-

genous over the ring or channel, corresponding to a linear

decrease of the external potential. If the rates obey detailed

balance at each time instant, their ratio Zk(t) is given by

ZkðtÞ ¼
Gþk ðtÞ
G�kþ1ðtÞ

¼ expð�DEk;kþ1Þ; ð1Þ

where

DEk,k+1 = ek+1 � ek � u. (2)

In the presence of screening effects, the potential gradient is

not constant, i.e. DEk,k+1 depends on k. The analytical

formulae derived in the following sections can be generalized

to this situation.

To illustrate our findings we will consider two types of rates

and two types of energetic disorder. For the rates we use either

the ‘‘exponential rates’’

Gþk ¼
g
2
expð�Uk;kþ1Þ expð�DEk;kþ1=2Þ ð3Þ
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or the Glauber rates28

Gþk ¼
g
2
expð�Uk;kþ1Þ 1þ tanh

DEk;kþ1
2

� �� �

¼g expð�Uk;kþ1Þ
1þ expð�DEk;kþ1Þ

;

ð4Þ

where g is a bare jump rate. For the energetic disorder, we

consider either pure barrier disorder (all ek = 0), or pure site

energy disorder (all barriers Uk,k+1 = 0). The barrier and site

energies are uncorrelated random variables drawn from box

distributions, Uk,k+1 A [0,DU] and ei A [�De/2,De/2] with

widths DU and De, respectively.

3. Conduction in ring systems

We study the nearest neighbor hopping of one particle on a

ring with M sites i = 1,. . .,M. The rates for a jump from site i

backward and forward at time t are denoted as G�i (t) and

G+
i (t), respectively. The probabilities pi(t) for the particle to be

on site i at time t obey the rate equations

_pi = ji�1,i(t) � ji,i+1(t), i = 1,. . .,M, (5)

with the local currents

ji,i+1(t) = G+
i (t)pi(t) � G�i (t)pi+1(t), i = 1,. . .,M. (6)

In writing eqn (5) and (6) and further equations below we

implicitly assume that the periodic boundary conditions are

taken into account if the index i falls out of the range 1,. . .,M,

i.e. pi+M(t) = pi(t), G�i+M(t) = G�i (t), ji+M,i+1+M(t) =

ji,i+1(t), etc. The rate equations preserve the normalizationPM
i=1pi(t) = 1.

Due to the normalization of the occupation probabilities to

one particle, the current j refers to the single particle current.

If we consider a total number N of non-interacting particles

corresponding to a number density n = N/M per lattice site,

the total current is

J = Nj = nMj. (7)

In the case of charged particles the corresponding charge

current per lattice site is qJ and the charge current density

qJ/A, where A is a cross sectional area associated with each

lattice bond.

3.1 DC current

In a static (time-independent) driving field u the system reaches

a stationary state at long times, where the occupation

probabilities become constant, pi = pi
st, and all local currents

in eqn (6) are equal, ji,i+1 = jdc. Setting ki = 1/G�i+1 this leads

to the recursion relation

psti+1 = Zip
st
i � kijdc, (8)

with solution

psti ¼ jdc

PM
k¼1 ki�k

Qk�1
l¼1 Zi�lQM

k¼1 Zi�k � 1
: ð9Þ

The current jdc follows from the normalization,

1

jdc
¼
XM
i¼1

PM
k¼1 ki�k

Qk�1
l¼1 Zi�lQM

k¼1 Zi�k � 1
; ð10Þ

which in turn fixes the occupation probabilities psti . Eqn (9)

and (10) hold true for arbitrary set of rates (as long as they do

not exclude the formation of a unique stationary state).

For detailed balanced rates these expressions can be

simplified. With condition (1) we have

Yk
l¼1

Zi�l ¼ expðei�k � ei þ kuÞ ð11Þ

so that eqn (10) can be written in the form

1

jdc
¼ e�u=2

eMu � 1

XM
l¼1

elu
XM
k¼1

exp½ðek þ ekþ1Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþk ðuÞG�kþ1ðuÞ

q expð�ekþlÞ;

ð12Þ

where we explicitly indicated the dependence of the jump rates

G�k = G�k (u) on the external bias u. For the coupling p

exp(�u/2) of the rates to the external field it can be shown

that this formula agrees with eqn (10) in ref. 18 (or with

eqn (8)–(11) in ref. 22).

In the linear response limit u - 0, eqn (12) reduces to the

result29 qJdc/A = qnMj/A = s1E0 with

s1 ¼
nq2a2

kBT

1

M

XM
k¼1

1

p
eq
k Gþk

 !�1
; ð13Þ

where peqk p exp(�ek) is the equilibrium distribution and

G+
k are the rates in the absence of external driving (u = 0).

This formula can be viewed as resulting from the combination

in series of conductances ppeqk G+
k .

In systems with only barrier disorder (all sites have the same

energy ek = 0), eqn (12) reduces to

1

jdc
¼ 1

2 sinhðu=2Þ
XM
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþk ðuÞG�kþ1ðuÞ

q : ð14Þ

Because G+
k (�u) = G�k+1(u) in this case, we have

G+
k (�u)G�k+1(u) = G�k+1(u)G

+
k (u) = G+

k (u)G�k (u), and it

follows that j(�u) = �j(u) for each disorder configuration.

This is at first sight a surprising result, since one could consider

an asymmetric spatial arrangement of barriers, for example,

Uk,k+1 = kU0 for k = 1,. . .,M and U0 > 0. If a particle was

driven in the direction of increasing k, it would encounter

increasing barriers until a jump from the largest to the smallest

barrier occurred (after passing the barrier UM,M+1 = UM,1

between sites M and 1). When driving the particle in the

reverse direction, the opposite behavior would result, i.e. the

particle would encounter smaller and smaller barriers until a

jump from the smallest barrier to the largest occurs.

Moreover, as long as the barriers for the local transitions

are taken into account by a simple Boltzmann factor, i.e.

G+
k (u) p exp(�Uk,k+1)f+(u) and G�k+1(u) p exp(�Uk,k+1)f�(u)

with functions f�(u) independent of k, one obtains the

same current–voltage curve J(u) = nMj(u) as in an ordered

system up to a rescaling factor. In such ordered system,
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G+
k G�k+1 = G+G� is independent of k, and one obtains an M

independent total current Jdc = nMjdc,

JdcðuÞ ¼ 2n sinh
u

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GþðuÞG�ðuÞ

q
: ð15Þ

Fig. 1 shows the current Jdc(u) in the ordered ring system

(or in the ring systems with barrier disorder) for the expo-

nential rates (3) and the Glauber rates (4). For comparison we

also show the average current Jdc(u) in the case of the box

distribution of site energies with De = 6. The current was

calculated according to eqn (7) and (12) and averaged over 103

different realizations of the site energy disorder in rings with

M = 103 sites. The current–voltage curves in the experi-

mentally relevant regime u t 1 tend to have a more

convex shape in the presence of site energy disorder. For

the Glauber rates the current is smaller and saturates for

u - �N.

In the ordered ring system, for the generic coupling

G�(u) = (g/2)exp(�u/2), one recovers from eqn (15) the

known result for the charge current density25

qJdc

A
¼ gqn

A
sinh

u

2

� �
¼ s1E þ s3E3 þ OðE5Þ ð16Þ

with s1 = (n/aA)gq2a2/2kBT and s3 = (n/aA)gq4a4/48(kBT)
3.

These results motivate to define an effective jump length by

a2eff ¼
24ðkBTÞ2

q2
s3
s1
: ð17Þ

However, even in an ordered system it is possible that this

effective jump length does not yield a reasonable estimate of

the true jump length a. The reason is that, while the linear

response quantity s1 is universal (i.e. independent of the

specific form of the jump rates), this is not the case for the

nonlinear conductivity s3. For example, for the Glauber rates,

we obtain J = gn tanh(u/2) from eqn (15) and accordingly a

negative s3 = �(n/aA)gq4a4/24(kBT)3. If this would be

inserted in eqn (17), aeff became imaginary.

In the general case, we can expand G+(u) in a Taylor series,

G+(u) = (g/2)(1+ a1u + a2u
2 + a3u

3 +� � �). From G�(u) =
G+(�u) = exp(�u)G+(u) it follows that a1 = 1/2 independent

of the specific form. With eqn (15) we find s3/s1 =

(a2 � 1/12)q2a2/(kBT)
2, i.e.

a2eff ¼ 24 a2 �
1

12

� �
a2: ð18Þ

We conclude that depending on a2 different aeff can be

obtained even in an ordered system. For example, we obtain

a2 = 1/8 for the exponential rates, yielding aeff = a, while for

the Glauber rates we obtain a2 = 0, yielding a2eff = �2a2.

3.2 Thermodynamic limit and rectification

In the thermodynamic limit M - N the sum over k in

eqn (12) can be replaced by a disorder average h� � �i if the site
energies and energy barrier do not exhibit very broad distri-

butions or long-range correlations, i.e. if the system is self-

averaging. Accordingly we define

alðuÞ ¼ lim
M!1

1

M

XM
k¼1

exp½ðek þ ekþ1Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþk ðuÞG�kþ1ðuÞ

q expð�ekþlÞ

¼

exp½ðe1 � e2Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþðu;U12; e1; e2ÞG�ðu;U12; e1; e2Þ

p
* +

;

exp½ðe1 þ e2Þ=2� expð�e3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþðu;U12; e1; e2ÞG�ðu;U12; e1; e2Þ

p
* +

;

exp½ðe2 � e1Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþðu;U12; e1; e2ÞG�ðu;U12; e1; e2Þ

p
* +

;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

where the first and third case in the last line refer to l = 1 and

l = M, respectively, and the second case to l = 2,. . .,M � 1;

we took into account the periodic boundary conditions and

have explicitly denoted the dependence of the jump rates

G�k (u) = G�(u;Uk,k+1,ek,ek+1) on the energies.

Keeping the number density n fixed in the limitM-N, we

then obtain from eqn (12) for the total current

JdcðuÞ¼2n sinh
u

2

� �

� ejuj

½yð�uÞa1ðuÞþyðuÞaMðuÞ�ðejuj � 1Þ þ a2ðuÞ
;

ð20Þ

where y(�) is the Heaviside step function [y(x) = 1 for x Z 0,

and zero else]. As discussed in the Introduction, the thermo-

dynamic limit should apply to typical experiments on thin film

electrolytes and there should be no notable dependence of the

current (and the nonlinear conductivities) on the film

thickness, in agreement with the experimental observations.

However, the one-dimensional treatment of two- or three-

dimensional geometries (as, e.g., thin film electrolytes) requires

a mean-field treatment, where the concentrations represent

averages over a larger number of sites belonging to lines or

planes perpendicular to the current direction. Hence, it is

possible that fluctuation effects induced by hops in directions

perpendicular to the field, can destroy the non-analyticities

predicted by eqn (20). The role of such fluctuations is not clear

at present and needs further investigation.

We can further show that the current from eqn (20) is

antisymmetric with respect to the bias u. To this end we have

Fig. 1 Current jdc(u) in the ring system as a function of the bias u for

the exponential rates (solid line) and the Glauber rates (dashed line).

Results are shown for an ordered system and a box distribution of site

energies with De = 6. In the system with site energy disorder the mean

current is shown, obtained after averaging jdc from eqn (10) over 100

realizations. In the case of pure barrier disorder the same curves as in

the ordered system are obtained for each disorder realization up to a

(realization-dependent) rescaling of the current (see text).
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to analyze the symmetry properties of the al(u). Note that

in the averages in eqn (19) there occur configurations with

two or three sites only, having mutually independent

random site energies e1,. . .,e3. As illustrated in Fig. 2, to

each realization of the two energies e1 and e2 there exists a

‘‘mirror configuration’’ with interchanged site energies e1 and
e2, and the same value of e3. Since these mirror configurations

occur with equal statistical weight and exhibit the symmetry

property G+(u;U12,e1,e2) = G�(�u;U12,e2,e1), we can use

G+(u;U12,e1,e2)G
�(u;U12,e1,e2) = G+(�u;U12,e2,e1)G

�(�u;U12,e2,e1)
in the averages of eqn (19). This implies a1(�u) = aM(u) and

a2(�u) = a2(u), leading to J(�u) =�J(u). Let us note that this
does not imply that the expansion of J(u) contains odd powers

of u only. Terms p|u|2n+1u, n = 0,1,. . ., can occur according

to eqn (20) (see also the discussion in ref. 23 for the

consequences of these non-analytic terms with respect to the

analysis of experiments).

In view of the antisymmetric property of the current in the

thermodynamic limit, we expect that, due to self-averaging,

rectification effects for each configuration of the disorder will

become smaller with increasing system size. To check this

expectation, we define the rectification parameter

Rðu;MÞ ¼ JdcðuÞ þ Jdcð�uÞ
JdcðuÞ � Jdcð�uÞ

ð21Þ

for each disordered configuration in a ring with M sites with

Jdc(u) = nMj and jdc from eqn (10). The distribution of

this rectification parameter is, on symmetry reasons, an

even function of u, hence hR(u,M)i = 0. In the case of

self-averaging, the variance hR(u,M)2i should decrease as

B1/M for M - N. As shown in Fig. 3, this behavior is

nicely confirmed by taking disorder averages of R2(u,M).

4. Conduction in open channels

So far we have considered ring systems with periodic boundary

conditions. In many situations the coupling of the system to

particle reservoirs is of importance, as in molecular wires,

membrane ion channels, and thin-film electrolytes in contact

with non-blocking electrodes. In these systems details of the

contact with the reservoir can play a decisive role for the

transport behavior, so that a specific treatment is needed for

the particular system under consideration.

On the other hand, to elucidate the generic features of the

particle transport, it is sufficient to adopt a coarse-grained

description, where only a few external parameters enter, as, for

example, the thermodynamic driving force that brings the

system into equilibrium with itself. Based on such a coarse-

grained description we will, in the following, characterize a

reservoir by its chemical potential (corresponding to a

‘‘site energy level’’ relative to the site energies of the system),

and by the energy barrier for exchanging particles between it

and the system.

To be specific, we consider a one-dimensional channel

consisting of M sites, which is coupled to sites k = 0 and

k = M + 1, belonging to two reservoirs with chemical

potentials m0L = e0 and m0R = eM+1, respectively. Particles

are injected or ejected from the two reservoir sites with rates

that fulfil the condition of detailed balance with respect to the

grand-canonical ensembles associated with m0L and m0R. As for

the ring system, the site energies ek and the barrier energies

Uk,k+1, k = 0,. . .,M, determine the jump rates in the absence

of the external bias u, see section 2 (U0,1 and UM,M+1 specify

the energy barriers for exchange of particles with the left and

right reservoir, respectively). In the presence of a spatially

uniform bias u, the potential drop along the channel leads to

the site energies

Ek = ek � ku, (22)

and the electrochemical potentials

mL = E0 = m0L and mR = EM+1 = m0R � (M + 1)u, (23)

if we locate the point of zero external potential at the left end

of the channel. Note that for k = 0 and k = M, eqn (1),(3),(4)

define the jump rates for entering and leaving the system, in

agreement with detailed balance with respect to the grand-

canonical ensembles associated with m0L = e0 and m0R = eM+1.

In the open channel the particle number is a random

variable and it is not possible to consider a single-particle

approach from the beginning. The rate equations for the local

concentrations pi = hnii follow from a Fermi lattice gas model,

where the occupation numbers ni at each site can have only

two values ni = 0 (vacant site) or ni = 1 (occupied site), and

the set {ni} specifies the microstate in the channel. The average

h. . .i has to be taken with respect to the probability distri-

bution of the microstates at time t, whose time evolution

follows a master equation. Based on the master equation,

the derivation of the currents ji,i+1 in the equations of motions

Fig. 2 Two mirror configurations with interchanged site energies

e1 and e2 (and same e3, not shown), as appearing with equal statistical

weight in the averages in eqn (19). The jump rate G+(u,U12,e1,e2) in the

left configuration is equal to the jump rate G�(�u,U12,e2,e1) in the right

configuration after reversal of the bias u.

Fig. 3 Variance hR2(u,M)i of the distribution of the rectification

parameter R(u,M) for the ring system in dependence of the system size

M at two fixed values of the bias u. The R(u,M) were calculated from

eqn (12),(23) for a box distribution of site energies with De = 6 and

disorder averages were performed over 103–105 realizations.
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(5) is straightforward (for a systematic approach, including

also models with particle–particle interactions going beyond

site exclusion, see ref. 30). The result is

ji,i+1 = G+
i hni(1 � ni+1)i � G�i+1hni+1(1 � ni)i (24)

for , i= 1,. . .,M � 1. For the boundary currents specifying the

exchange of particles with the reservoirs one obtains

j0,1 = G+
0 (1 � p1) � G�1 p1, (25a)

jM,M+1 = G+
MpM � G�M+1(1 � pM). (25b)

In a mean-field approximation, hnini+1i C hniihni+1i =

pipi+1, the currents in eqn (24) can be expressed as

ji,i+1 = G+
i pi(1 � pi+1) � G�i+1pi+1(1 � pi) (26)

for i = 1,. . .,M � 1. In contrast to the ring system, the pk are

no longer normalized (the total population is not conserved),

but the mean number density �p of particles is, for fixed energy

disorder, controlled by the electrochemical potentials mL and

mR. Accordingly, the currents ji,i+1 in eqn (26) and (25) are

particle currents (rather than probability currents) along the

bonds between sites i and i + 1.

The nonlinear dependence on the pi leads, for non-vanishing

bias u>0, to interesting phase transitions of the mean particle

density with respect to variations of mL and mR, even in systems

without energetic disorder.31 Based on exact solutions of the

nonlinear mean-field rate equations, one can show that these

phase diagrams are correctly predicted by the mean-field

approximation.32 The fact that phase transitions can occur

also in the dilute limit is sometimes disregarded. For example,

it has not been considered in treatments of incoherent hopping

transport of electrons in molecular wires, e.g. along DNA

molecules.

A thorough study of the nonlinear eqn (26) in the presence

of energetic disorder goes beyond the scope of this work. In

the special case of pure barrier disorder (all ei = 0) and a

current driven solely by a chemical potential difference Dm0 =
m0L � m0R (bulk bias u = 0), one has G+

i = G�i+1, and the

nonlinear terms p pipi+1 in eqn (26) cancel. Accordingly, an

analytical solution of eqn (25),(26) can be obtained for the

stationary state following the procedure discussed in the

following section 4.1. The result for the corresponding

dc-current reads

Jdc ¼
Gþ0 ðGþM þ G�Mþ1Þ � G�Mþ1ðGþ0 þ G�1 Þ

ðGþ0 þ G�1 Þ þ ðGþM þ G�Mþ1Þ 1þ ðGþ0 þ G�1 Þ
PM�1

l¼1
1
Gþ
l

� � :
ð27Þ

Note that due to the physical meaning of the ji,i+1 discussed

above, the (total) current Jdc appears in eqn (27).

In what follows we will focus on situations where the

consideration of the one-dimensional geometry is an approxi-

mation for a preferred bias direction of a higher-dimensional

system, i.e. the pi in eqn (25),(26) are mean concentrations

(per site) that represent averages over a larger number of sites

belonging to lines or planes perpendicular to the current

direction. In this case we can, without worrying about the

boundary-induced phase transitions in one-dimensional

geometries, consider the dilute limit of eqn (26) with

1 � pi C 1,

ji,i+1 = G+
i pi � G�i+1pi+1, i = 1,. . .,M � 1. (28)

The rate equations for the occupation probabilities pi(t) now

have the same form as in eqn (5) for the single-particle

transport on the ring, but we have to take into account the

boundary currents according to eqn (25). Moreover, one

should keep in mind that the pi, according to the derivation

of eqn (26), should be much smaller than one.33

In total five external parameters control the transport

behavior in our model for the open channel: the chemical

potentials m0L and m0R; the energy barriers U0,1 and UM,M+1 for

particle exchange of the system with the reservoirs; and the

bias u. In the following, we will in most cases consider the

m0L, m
0
R, U0,1, UM,M+1 to be given and discuss the transport

behavior with respect to the bias u.

4.1 DC current

To calculate the stationary current under a static bias we

iterate eqn (8) to obtain

pstk = Ak�1p
st
1 � JdcBk�1, (29)

with

Ak ¼
Yk
l¼1

Zl ¼ exp½ðE1 � Ekþ1Þ�; ð30Þ

Bk ¼
Xk
m¼1

km
Yk

l¼mþ1
Zl ¼

Xk
m¼1

km expðEmþ1 � Ekþ1Þ; ð31Þ

where the expression containing the products hold true in

general, while the second expressions are valid for detailed

balanced rates.

Using eqn (25) together with eqn (29) for k = M one

obtains a closed equation for Jdc with solution

Jdc ¼
1� exp½�ðm0L � m0RÞ � ðM þ 1Þu�

1
Gþ
0

þ exp½�eM�Mu�m0
L
�

Gþ
M

þ
PM�1
k¼1

expðek�m0L�kuÞ
Gþ
k

ð32aÞ

¼ 1� expð�DmÞPM
k¼0
ðGþk Þ

�1 expðEk � mLÞ
; ð32bÞ

where Dm = Dm0 � (M + 1)u. This result in turn determines

the local concentrations pstk in eqn (29) via eqn (30),(31) and

p1
st from eqn (25a) with j0,1 = Jdc.

Eqn (32b) may be interpreted in a similar way as the linear

response in the ring system, cf. eqn (13): The current

follows from a driving force 1 � exp(�Dm) and a

total ‘‘conductance’’ is given by combining elementary

‘‘conductances’’ exp[�(Ek � mL)]G
+
k in serial order.

Eqn (32b) is, however, not a linear response formula, but

describes the full nonlinear response to the bulk driving force u

and the boundary driving force Dm0. Note that these driving

forces do not enter eqn (32b) in the single combination

Dm = Dm0 � (M + 1)u, since G+
0 and G+

M are controlled

independently by m0L and m0R, respectively.
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Due to the factorsp exp(�ku) in eqn (32b), only jump rates

G+
k (G+

M�k), k = 1,2,. . ., from sites close to the left (right)

boundary give a significant contribution for positive (negative)

bias u. This means that for u a 0, Jdc is governed by jump

rates belonging to sites in a region of size p 1/u close to either

boundary. As a consequence, already pure barrier disorder

(with all ek = 0) leads to rectification effects in the open

channel, in marked contrast to the behavior in the ring system.

It may be surprising at first sight that the dominant

contribution to the current comes from regions close to either

boundary (for similar phenomena expected in connection with

electron transport though molecular bridges, see ref. 34). The

effect can be understood when considering, without generality,

u > 0, and a single large barrier Ul,l+1 > U0 in an otherwise

ordered system with smaller barriers Uk,k+1 = U0 for k a l

(and all ek = 0). Let us first look at the density profile in the

region of sites left [k r l] and right [k Z (l + 1)] of the large

barrier. For the current jl,l+1 > 0 across the large barrier

Ul,l+1 to equal all other currents jk,k+1, the concentrations in

the left region ‘‘before the large barrier’’ have to be much

larger than in the right region ‘‘after the large barrier’’. The

higher concentration before the large barrier influences the

value pst1 right of the left boundary with a strength decreasing

with increasing distance from the large barrier (smaller k). The

value pst1 in turn determines the current G+
0 � G�1 p

st
1 = jst.

More generally speaking, we can say that for u> 0 (uo 0) the

energy landscape close to the left (right) boundary controls

the density at the boundary site k = 1 (k = M) and thus the

current Jdc = j0,1 (Jdc = jM,M+1). The effect is demonstrated

in Fig. 4, where we show the solution pstk for a large barrier

close to the left boundary (solid line) and close to the right

boundary (dashed line). As a consequence, when the large

barrier is closer to the left boundary, the density at the

boundary site k = 1 becomes larger, leading to a smaller

current Jdc = j0,1. We note that the dominance of the

boundary regions will no longer apply when considering the

transport with site exclusion in strictly one-dimensional

topologies (ASEPs or TASEPs).

To illustrate typical current behavior, we calculate Jdc
as a function of the driving forces for only barrier disorder

(all ek = 0) and for only site energy disorder (all Uk,k+1 = 0),

using the box distributions introduced in section 2. Fig. 5

shows results for the disorder averaged current (a) as a

function of u for m0L = m0R = �10, and (b) as a function of

Dm0 for �m0 = �10 (m0L,R = �10 � Dm0) and u= 0. Similarly to

the ring system, the current–voltage curves in Fig. 5a have a

more convex shape in the presence of site energy disorder for

small u. One may ask if the current jringdc in the ring system

[eqn (12)] and the current Jchdc in the open channel [eqn (32)] can

be connected by simply taking into account the mean number
�N =

PM
k = 1p

st
k of particles in the channel, i.e. if Jchdc = �NJringdc .

However, the fact that regions close to either boundary govern

the value of Jchdc, already shows that such mapping cannot be

correct. Indeed, based on the analytical results12,35 obtained

for the ring system and open channel, one can show that such

a relation does not hold true. Numerical solutions also show

that the relation does not provide a reasonable approximation

(see also the discussion in section 5).

4.2 Thermodynamic limit and rectification

The dominance of the boundary regions implies that the

thermodynamic limit has to be taken is such a way that for

u> 0 the left boundary has to be fixed and the right boundary

goes to infinity, while for u o 0 one should consider the

reversed situation (fixed right boundary and left boundary

Fig. 4 Stationary density profiles in an open channel with M = 30

sites, a constant bias u = 1 and a single large barrier Ul,l+1 = 5 close

to the left (l = 4, solid line) and close to the right boundary (l = 26,

dashed line); the other barriers are set to one, Uk,k+1 = 1 for k a l

(including the boundary barriers for exchange of particles with the

reservoirs with m0R = m0L =�10) and all ek = 0, k= 0,. . .,M+ 1. As a

consequence of the density profile, the current J = 1.8 � 10�5 for the

large barrier at site l= 4 is smaller than the current J= 4.7� 10�5 for

the larger barrier at site l = 26. In the latter case J has practically the

same value as in the corresponding ordered system (all Uk,k+1 = 1).

Fig. 5 Current Jdc (a) as a function of the bias u at fixed m0L = m0R = �10 and (b) as a function of the chemical potential difference Dm0 for

vanishing bias u = 0. Averages have been performed over 100 realizations of the disorder, for a box distribution of energy barriers with DU = 5

and a box distribution of site energies with De = 6. Solid lines refer to the exponential rates and dashed lines to the Glauber rates. In the case of

barrier disorder and u = 0, the exponential and Glauber jump rates are the same and hence the corresponding currents agree in part (b).
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going to infinity). We focus on the case u > 0 here

(with obvious analogous treatment for the case u o 0). For

M - N, eqn (32b) then becomes

Jdc ¼
1P1

k¼0
ðGþk Þ

�1 expðEk � mLÞ
: ð33Þ

One can prove that in the special case of point-symmetric

energy landscapes (ek = eM+1�k, Uk,k+1 = UM+1�k,M�k) the

current is antisymmetric with respect to a reversal of the

driving forces, i.e. Jdc(�u,mL - mR,mR - mL) = �J(u,mL,mR)
(the reference point of zero external potential has to be shifted

from the left to right boundary also).

On the hand, in general rectification effects occur already for

pure barrier disorder and do not become smaller for increasingM.

Accordingly, the width of the distribution of the rectification

parameter defined in eqn (21) should saturate to a finite

value for M - N. This is confirmed in Fig. 6, where for pure

energy disorder, hR2(u,M)i is shown as a function of M

for two fixed values of u and m0L = m0R = �10. It would be

interesting to check this theoretical prediction in experiments,

e.g. in thin film electrolytes contacted to non-blocking

electrodes. Systematic measurements in dependence of the

system size (film thickness) would allow one to distinguish

between a possible finite size effect and the effects induced by

the open boundaries.

5. Time-dependent nonlinear response

In this section we discuss the time-dependent nonlinear

response to a sinusoidal electric field E(t) = E0 sin(ot) with
large amplitude E0, corresponding to a bias u(t) = u0 sin(ot)
with amplitude u0 = qE0a/kBT \ 1. To this end we solve the

rate eqn (5) supplemented by periodic boundary conditions for

the ring and eqn (25) for the open channel. After a transient

time interval the stationary regime is reached, where

we determine the total current Jst(t) averaged over many

periods. Fourier decomposition of this stationary current

yields the complex first order and higher harmonics

ĴnðoÞ ¼ J 0nðoÞ þ iJ 00n ðoÞ, n = 1,2,. . ..

In the zero and infinite frequency limit, the current Jst(t)

(and hence the harmonics jn̂(o)) can be calculated analytically.

For o - N and barrier disorder, the mean local densities

pi(t) in the stationary state become independent of position

and time, i.e. pi(t) = p,35 and one can show that for each

realization

JstðtÞ ¼
gp
2M

XM
k¼1

expð�Uk;kþ1Þ
" #

½fþðuðtÞÞ � f�ðuðtÞÞ�; ð34Þ

where f�(u) are the factors modifying the transitions due to the

external driving [see discussion above eqn (15)]. Upon

averaging over the disorder (or due to self-averaging),PM
k=1exp(�Uk,k+1)/M can be replaced by the ensemble aver-

age hexp(�U1,2)i.
For o = 0, one can take the quasistatic limit,

Jst(t) = Jdc(u(t)) (35)

with Jdc(.) from eqn (12) for the ring system and eqn (32) for

the open channel. For exploring the intermediate frequency

behavior we have to rely on our numerical solution of the

underlying rate equations.

In the following we will focus on the barrier disorder case,

implying that harmonics of even order vanish in the ring due

to the absence of rectification (see the discussion in

section 3.2). In the open channel, by contrast, rectification

effects are present and the harmonics of even order are

nonzero. However, these harmonics of even order are much

smaller than the harmonics of odd order, and therefore will

not be shown here. For the discussion of the harmonics of odd

order we focus on the real parts J 03ðoÞ.
Fig. 7 shows the harmonics J 01ðoÞ and J 03ðoÞ in the case of

the exponential jump rates for the barrier disorder with

DU = 2 and bias amplitude u0 = 1 (for the channel we have

set m0L= m0R=�1 and boundary barriersU0,1 =UM,M+1= 2.2.

The results were averaged over 5 realization of the disorder.

The circles mark the results for the ring system and the squares

for the open channel.

In the ring system, the first harmonic J 01ðoÞ shows the

typical behavior known for a hopping system in the linear

response limit: In a high frequency regime, J 01ðoÞ shows a

plateau, and then, upon lowering the frequency, it decreases

monotonously within a dispersive regime until approaching

Fig. 6 Variance hR2(u,M)i of the distribution of the rectification

parameter R(u,M) for the open channel in dependence of the system

size M at two fixed values of the bias u. The R(u,M) were calculated

from eqn (32),(21) for a box distribution of site energies with De = 6

and disorder averages were performed over 103–105 realizations.

Fig. 7 First order and third order harmonics of the current in the ring

and open channel for DU = 2, M = 2000 and the exponential jump

rates (mL = mR = �1 and U0,1 = UM,M+1 = 2 for the open channel).

The results have been averaged over the same sets of 5 realizations of

barrier disorder and the single-particle results for the ring are matched

to the mean particle number in the open channel. The dotted lines

mark the limiting behavior for high and low frequency (see text).
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the low-frequency regime, where J 01ðoÞ again becomes

independent of o. The third order harmonics J 03ðoÞ in the

ring also shows a plateau at high and low frequencies, and

passes through a minimum in the dispersive regime. The

plateau values in the limits of high and low frequencies follow

from eqn (34) and (35), respectively, and are marked by dotted

lines in the Figure. With respect to the imaginary parts J 001 ðoÞ
and J 003 ðoÞ, we found peaks appearing in the dispersive regimes

in Fig. 7.

In the open channel the harmonics follow those in the ring

system for higher frequencies. This can be understood from

the fact that at higher frequencies the dynamics in the interior

of the channel is dominant (‘‘bulk behavior’’). At lower

frequencies, however, the coupling to the reservoirs leads

to significant changes in the mean particle number. As a

consequence, an additional dispersive regime36 is seen at low

frequencies, until the limit corresponding to eqn (35) is

reached. Note in particular that J 03ðoÞ changes its sign when

approaching the low-frequency limit.

Let us finally note that we have obtained a similar overall

behavior of the harmonics in the case of the box distribution

of uncorrelated site energies disorder except of one notable

difference: no change of sign in J 03ðoÞ was observed in this

case. It is interesting to note that for a site energy landscape

with point symmetry and a bimodal distribution a change of

sign of J 03ðoÞ was found.
23 Hence, one can conclude that the

occurrence of a change of sign of J 03ðoÞ depends on details of

the energy landscape.

6. Summary and conclusions

The problem of one-dimensional hopping transport has

gained renewed interest, in particular in connection with

biophysical charge carrier transport and with molecular

electronic conduction. In this work we have discussed the

situation for non-interacting particles, focusing on disorder

effects (or regular variations of site and barrier energies) on the

current response to an external bias. For both periodic ring

and open channel systems, analytical results were derived for

the stationary current in response to static external driving

forces, without making specific assumptions on the form of the

jump rates. Representative results were shown for spatially

uncorrelated energy landscapes, characterized by box distri-

butions either in the barrier or site energies.

It was further shown that in the ring system rectification

effects become smaller for increasing system size. In the

thermodynamic limit of infinite system size, the current Jdc(u)

becomes antisymmetric with respect to the bias u and its

expansion in powers of u can exhibit non-analyticities of the

form |u|2n+1u, n = 0,1,. . . In open channels, rectification does

not vanish in the thermodynamic limit due to the fact that the

current is dominated by the variations of the energy landscape

close to either system boundary, in a way that depends on the

bias direction. It would be interesting to check this rectifica-

tion effect in experiments, as, for example, in measurement of

ionic currents in electrolytes in contact with non-blocking

electrodes.

Numerical solutions of the underlying rate equations were

obtained for a sinusoidal external driving force and results

were presented for the first and higher harmonics of the

current. For intermediate and high frequencies the harmonics

in the open channel were shown to equal those in the ring, if

the particle concentration is adapted properly. In the

low-frequency regime the harmonics can be derived from the

quasistatic limit. This implies that the low-frequency limit is

different in open channels and in rings. The origin of this

difference can be attributed to changes in the mean particle

number in the open system, which are absent in the

ring model.

The results presented here provide a basis for further

investigations of interacting particles. As discussed in section

4, in truly one-dimensional geometries hard-core interactions

can already change the general characteristics of the transport

behavior due to boundary induced phase transitions of the

mean particle concentration. Influences of disorder effects on

these phase transitions have been discussed in various works

(see e.g. ref. 37–39), but a thorough general treatment for

arbitrary disorder has yet not been provided. Only a few

studies have been performed for longer range particle–particle

interactions. An example is the treatment of nearest-neighbor

repulsions in TASEPs on the basis of specific rules for the

transition rates.40,41 This can give rise to more complex phase

diagrams compared to the case of hard-core interactions.

A more complete exploration of the effects of disorder and

particle–particle interactions, as required to get a more

detailed description of real systems, still remains an open

challenge.
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