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The influence of molecular vibration on the Seebeck coefficient is studied within a simple
model. Results of a scattering theory approach are compared with those of a full self-
consistent non-equilibrium Green’s function scheme. We show, for a reasonable choice of
parameters, that inelastic effects have a non-negligible influence on the resulting Seebeck
coefficient for the junction. We note that the scattering theory approach may fail both
quantitatively and qualitatively. The results of calculations with reasonable parameters are
in good agreement with recent measurements [Science 315, 1568 (2007)].
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1. Introduction

The development of experimental techniques for
constructing and exploring molecular devices has
inspired extensive theoretical study of charge transport
in molecules, with potential application in molecular
electronics [1–4]. One important issue related to the
stability of potential molecular devices involves heating
and heat transport in molecular junctions. This topic
has attracted attention both experimentally [5–10] and
theoretically [11–21]. Another closely related issue
involves the thermoelectric properties of such devices.
While thermoelectricity in the bulk is well studied,
corresponding measurements in molecular junctions
were reported only recently [22,23].

Electron–vibration interactions in the junction
(leading to inelastic effects in charge transport [24])
may cause junction heating and affect its heat
transport properties [21]. Theoretical considerations
of thermoelectric properties so far either completely
disregard such effects (in treatments based on the
Landauer theory [23,25,26]) or include it within a
scattering theory framework [27,28]. The latter treats
the effect of vibrations as an inelastic electron
scattering process, and changes in the non-equilibrium
distributions of electrons and vibrations are not
described in a self-consistent manner. It has been
shown that such changes may have qualitative effects

on the transport [29,30]. Note also that scattering

theory approaches may lead to erroneous predictions

due to the neglect of the effects of the contacts’ Fermi

seas on the junction electronic structure [31].
This paper was motivated by recent measurements

of the Seebeck coefficient in molecular junctions [23].
Considerations based on the Landauer formula
were employed there to interpret the experimental
data. Our goals here are: (1) to show the importance
of vibrations for the Seebeck coefficient; and
(2) to include vibrations in a fully self-consistent way
within the non-equilibrium Green’s function approach
for calculating the Seebeck coefficient.

The structure of the paper is as follows. Section 2
introduces the model, discusses the methods used in the
calculations, and presents a simple (approximate)
analytical derivation to illustrate the change in the
Seebeck coefficient expression (as compared with the
Landauer-based expression) when vibrations are taken
into account. Section 4 presents the numerical results
obtained in a fully self-consistent way.

2. Model

We consider a simple resonant-level model with the
electronic level j0i coupled to two electrodes left (L)
and right (R) (each a free electron reservoir at its
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 own equilibrium). The electron on the resonant level

(electronic energy "0) is linearly coupled to a single
vibrational mode (referred to below as the primary
phonon) with frequency !0. The latter is coupled to a
phonon bath represented as a set of independent
harmonic oscillators (secondary phonons). The system
Hamiltonian is (here and below we use �h¼ 1 and e¼ 1)

Ĥ ¼ "0ĉ
yĉþ

X
k2fL,Rg

"kĉ
y

kĉk þ
X

k2fL,Rg

ðVkĉ
y

kĉþ h:c:Þ

þ !0â
yâþ

X
�

!�b̂
y

�b̂� þMaQ̂aĉ
yĉþ

X
�

U�Q̂aQ̂�,

ð1Þ

where ĉy (ĉ) are creation (destruction) operators for
electrons on the bridge level, ĉyk (ĉk) are the correspond-
ing operators for electronic states in the contacts, ây (â)
are creation (destruction) operators for the primary
phonon, and b̂y� (b̂�) are the corresponding operators
for phonon states in the thermal (phonon) bath. Q̂a and
Q̂� are phonon displacement operators

Q̂a ¼ âþ ây, Q̂� ¼ b̂� þ b̂y�: ð2Þ

The energy parameters Ma and U� correspond to the
vibronic and the vibrational coupling, respectively.
Equation (1) is often used as a generic model for
describing the effects of vibrational motion on electro-
nic conduction in molecular junctions [24].

After a small polaron (canonical or Lang–Firsov)
transformation [32,33] the Hamiltonian (1) takes the
form [29]

�̂H ¼ �"0ĉ
yĉþ

X
k2fL,Rg

"kĉ
y

kĉk þ
X

k2fL,Rg

ðVkĉ
y

kĉX̂a þ h:c:Þ

þ !0â
yâþ

X
�

!�b̂
y

�b̂� þ
X
�

U�Q̂aQ̂�, ð3Þ

where

�"0 ¼ "0 ��, � �
M2

a

!0
, ð4Þ

X̂a ¼ exp½i�aP̂a�, �a ¼
Ma

!0
: ð5Þ

� is the electron level shift due to coupling to the
primary phonon and X̂a is the primary phonon shift
generator. P̂a ¼ �iðâ� âyÞ is the phonon momentum
operator.

The mathematical quantity of interest is the single
electron Green function (GF) on the Keldysh contour

Gð�1, �2Þ � �ihTcĉð�1Þĉ
yð�2ÞiH: ð6Þ

We approximate it by [29]

Gð�1, �2Þ � �
i

�h
hTcĉð�1Þĉ

yð�2Þi �H � hX̂að�1ÞX̂
y
að�2Þi �H

� Gcð�1, �2ÞKð�1, �2Þ, ð7Þ

where Gcð�1, �2Þ is the pure electronic GF and Kð�1, �2Þ
corresponds to the Franck–Condon factor. We have
developed [29] a self-consistent scheme for evaluating
this function, leading to the coupled set of equations

Kð�1, �2Þ ¼ expf�2a½iDPaPa
ð�1, �2Þ � hP̂

2
ai�g, ð8Þ

DPaPa
ð�, �0Þ ¼ D

ð0Þ
PaPa
ð�, �0Þ þ

Z
c

d�1

Z
c

d�2D
ð0Þ
PaPa
ð�, �1Þ

��PaPa
ð�1, �2ÞDPaPa

ð�2, �
0Þ, ð9Þ

Gcð�, �
0Þ ¼ Gð0Þc ð�, �

0Þ þ
X

K¼fL,Rg

Z
c

d�1

Z
c

d�2G
ð0Þ
c ð�, �1Þ

��c,Kð�1, �2ÞGcð�2, �
0Þ, ð10Þ

where DPaPa
ð�, �0Þ � �ihTcP̂að�ÞP̂að�

0Þi is the phonon
GF, and D

ð0Þ
PaPa

and Gð0Þc are the phonon and
electron Green functions when the two sub-systems
are uncoupled (Ma¼ 0). The functions �PaPa

and �c,K

in Equations (9) and (10) are given by

�PaPa
ð�1, �2Þ ¼

X
�

jU�j
2DP�P� ð�1, �2Þ � i�2a

�
X

k2fL,Rg

jVkj
2½�hgkð�2, �1ÞGcð�1, �2Þ

Kð�1, �2Þ þ ð�1 $ �2Þ�, ð11Þ

�c,Kð�1, �2Þ ¼
X
k2K

jVkj
2gkð�1, �2ÞhTcX̂að�2ÞX̂

y
að�1Þi: ð12Þ

Here, these functions play a role similar to self-energies
in standard many-particle theory. Here, K ¼ L,R and
gk is the free electron Green function for state k in the
contacts. Details of the derivation have been published
by Galperin et al. [29]. A self-consistent solution
scheme implies solving Equations (8)–(12) iteratively
until convergence. As a convergence parameter we
used the population of the level n0 ¼ hĉ

yĉi. When n0 for
subsequent steps of the iterative cycle differed by less
than a predefined tolerance (taken in the calculations
below to be 10�6), convergence was assumed to be
achieved.

Once the electron GF (7) is obtained, its lesser and
greater projections are used to obtain the steady-state
current through the junction [34,35],

IK ¼ hÎKi ¼

Z
dE

2p
½�<

KðE ÞG
>ðE Þ ��>

KðE Þ G
<ðE Þ�,

ð13Þ
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 at interface K ¼ L,R. Here,

�<
KðE Þ ¼ ifKðE Þ�KðE Þ, ð14Þ

�>
KðE Þ ¼ �i½1� fKðE Þ��KðE Þ, ð15Þ

with fKðE Þ ¼ ½expð�ðE� �KÞÞ þ 1��1 being the Fermi
distribution in the contact K ¼ L,R and

�KðE Þ ¼ 2p
X
k2K

jVkj
2�ðE� "kÞ: ð16Þ

The Seebeck coefficient is defined by

SðI Þ ¼
VðI Þ

�TðI Þ
, ð17Þ

where V(I ) is the voltage bias that yields current I at
�T ¼ 0, and �TðI Þ is the temperature difference
between the contacts that yields the same current at
V¼ 0. The linear regime corresponds to the I! 0 limit
of Equation (17).

Below we present calculations of the Seebeck
coefficient using different levels of approximation. In
particular, we compare the results of a simple
scattering theory-like approach and a full self-
consistent calculation based on the procedure
described above. The simple approach is essentially a
first step of the full self-consistent iterative solution
with the additional assumption of no coupling to the
thermal bath for the molecular vibration (U� ! 0 in
Equation (3)).

Generally speaking, both the self-consistent and
the scattering theory-like approaches are approximate,
and more sophisticated schemes will be developed
in the future to deal with electron–phonon interaction
in transport. Note, however, that for simple model
used (single level coupled to single vibration), the
approach employed is essentially exact from the single-
electron tunneling (i.e. scattering theory) point of view,
since the canonical transformation solves exactly
the electron–phonon coupling problem in the case
of an isolated molecule. Note also that the main
drawback of all scattering theory approaches is the
fact that they disregard Fermi populations in the
contacts. These populations have the effect of blocking
one channel and distorting others, as was first reported
by Mitra et al. [31]. It is this issue that leads
to the (sometimes qualitative) failure of the scatter-
ing-theory-based results for transport, as is
shown below, and is also true for the case of the
Seebeck coefficient. Detailed discussions of different
approximation schemes have been published by
Galperin et al. [24].

3. Transport coefficients

Before presenting the results of the numerical
calculations, we describe how the transport coefficients
are introduced. In the Landauer regime of transport
(electron–phonon interaction disregarded, both
carriers scatter ballistically), the electric and thermal
fluxes, I and J, are given by [21,25,36]

I ¼
2jej

�h

Z þ1
�1

dE

2p
T el, 0ðE Þ½fLðE Þ � fRðE Þ�,

J ¼
2

�h

Z þ1
�1

dE

2p
ðE� EFÞT el, 0ðE Þ½fLðE Þ � fRðE Þ�

þ
1

�h

Z 1
0

d!

2p
!T ph, 0ð!Þ½NLð!Þ �NRð!Þ�, ð18Þ

where EF is a common Fermi energy in the absence
of bias,

T el, 0ðE Þ ¼ Tr½�LðE ÞG
rðE Þ�RðE ÞG

aðE Þ�,

T ph, 0ð!Þ ¼ Tr½�Lð! ÞD
rð! Þ�Rð! ÞD

að! Þ� ð19Þ

are the electron and phonon transmission coefficients
in the absence of electron–phonon coupling, and where

�ph
K ð!Þ � 2p

X
�2K

jU�j
2�ð!� !�Þ, K ¼ L,R ð20Þ

is the broadening of the molecular vibration due to
coupling to its thermal environment. In the linear
response regime, the currents are linear in the applied
driving forces – the bias V and the temperature
difference �T,

I ¼ G � Vþ L ��T,

J ¼ R � Vþ F ��T: ð21Þ

Here, G and F are the electrical and thermal conduc-
tion, respectively, and L is known as the thermoelectric
coefficient. The coefficients are given by [25,36]

G ¼ �
e2

p�h

Z þ1
�1

dE ½��f 0ðE Þ�T el, 0ðE Þ, ð22Þ

L ¼ �
jej

p�h

Z þ1
�1

dE ½��f 0ðE Þ�T el, 0ðE Þ
E� EF

T
, ð23Þ

R ¼ �
jej

p�h

Z þ1
�1

dE ½��f 0ðE Þ�T el, 0ðE Þ

� ðE� EFÞ ¼ L � T, ð24Þ

F ¼
1

p�h

Z þ1
�1

dE ½��f 0ðE Þ�T el, 0ðE Þ
ðE� EFÞ

2

T

þ
1

2p�h

Z 1
0

d! ½��N0ðE Þ�T ph, 0ð!Þ
!2

T
, ð25Þ
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 where f 0ðE Þ is the derivative of the Fermi–Dirac

distribution, N0ð!Þ is the derivative of the Bose–
Einstein distribution, T is the temperature (� ¼ 1=T ),
and EF is the Fermi energy in the leads. Note
the existence of the Onsager relation, L � T ¼ R,
between the cross coefficients. Note also that the
coefficient F in (25) contains two contributions,
one corresponding to energy transfer by electrons,
and the other to that by phonons. A discussion of
the additive form of F and the relative importance of
these contributions has been published by Galperin
et al. [21]. The Seebeck coefficient is given in terms of
these transport coefficients by

S ¼
L

G
: ð26Þ

Below we focus on these two coefficients – G and L –
only. Making the approximation ½��f 0ðE Þ�
� �ðE� EFÞ in (22), and utilising the Sommerfield
expansion [37] in (23), Equation (26) leads to

S ¼
p2k2bT
3jej

@ ln T el, 0ðE Þ

@E
, ð27Þ

which is Equation (4) of Paulsson and Datta [25].

4. Calculation of the Seebeck coefficient

As discussed in Section 2, the simplest calculation that
takes into account the electron–vibration
interaction term (the Ma term in Equation (1))
corresponds to inelastic scattering of the transmitted
electron from the phonon at the given initial
temperature. Within the self-consistent scheme pre-
sented in Section 2 this result is obtained after the
first iteration step, where the influence of the (free)
vibration on the electronic GF is taken into account,
but not vice versa. For this reason the coupling U�
to the thermal bath can be disregarded. For model (3)
this calculation yieldsy

I ¼
jej

p�h

Xþ1
n,m¼�1

Inð2�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
ÞImð2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
Þ

� e�ðnþmÞ!0=2�2�
2ð2N0þ1Þ

Z þ1
�1

dE T el, 0ðE Þ

� ffLðEþ n!0Þ½1� fRðE�m!0Þ�

� fRðEþm!0Þ½1� fLðE� n!0Þ�g, ð28Þ

where N0 ¼ ½e
�!0 � 1��1 and In is the modified Bessel

function of order n [38]. For Ma¼ 0, Equation (28)
reduces back to (18). Linearisation in the bias potential
V ¼ VL � VR and in the temperature difference
�T ¼ TL � TR leads to the phonon-renormalised
transport coefficients

G ¼ �
e2

p�h

Xþ1
n,m¼�1

Inð2�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
ÞImð2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
Þ

� e�ðnþmÞ!0=2�2�
2ð2N0þ1Þ

Z þ1
�1

dET el, 0ðE Þ

� f½��f 0ðE�m!0Þ� fðEþ n!0Þ

þ ½��f 0ðEþm!0Þ� ½1� fðE� n!0Þ�g, ð29Þ

L ¼ �
jej

p�h

Xþ1
n,m¼�1

Inð2�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
ÞImð2�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðN0 þ 1Þ

p
Þ

� e�ðnþmÞ!0=2�2�
2ð2N0þ1Þ

Z þ1
�1

dE T el, 0ðE Þ

�

(
½��f 0ðE�m!0Þ� fðEþ n!0Þ

E�m!0 � EF

T

þ ½��f 0ðEþm!0Þ�½1� fðE� n!0Þ�

�
Eþm!0 � EF

T

)
: ð30Þ

Using Equations (29) and (30), the Seebeck coefficient
is calculated from Equation (26). To this end we first
calculate the currents IðV,�T ¼ 0Þ and IðV ¼ 0,�TÞ
as functions of V and �T. The inverted functions
VðI,�T ¼ 0Þ and �TðI,V ¼ 0Þ are then used in (17) to

yTo obtain Equation (28) from Equation (13) the ‘first iterative step’ of the self-consistent procedure [29] has to be taken. This
leads to (see Equation (7))

G>;<ðtÞ ¼ G>;<c ; ðtÞK>;<:

In order to keep the L$R symmetry for the current expression, one has to introduce the second FC factor in the Keldysh
equation for Gc

G>;<c ðtÞ ¼
X

K¼L;R

Z þ1
�1

dt1

Z þ1
�1

dt2G
r
cðt� t1Þ�

>;<
K ðt1 � t2ÞK

<;>
ðt2 � t1ÞG

aðt2Þ:

Subsitituing these expreeesions into Equation (13) and expanding the FC factors in term of Bessel functions leads to
Equation (28).

400 M. Galperin et al.
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yield S(I) (expressed below as S(V) with
V ¼ VðI,�T ¼ 0Þ). In the calculations presented
below, we have used symmetric bias and temperature
differences across the junction: �L,R ¼ EF � V=2,
TL,R ¼ T��T=2.

Figure 1(a) shows the Seebeck coefficient S as a
function of the bias potential, calculated at T¼ 300K
using the energetic parameters EF ¼ 0, "0 ¼ 0:2 eV,
�L ¼ �R ¼ 0:005 eV, !0 ¼ 0:05 eV, Ma ¼ 0:1 eV, and
�ph

L ¼ �ph
R ¼ 0:005 eV. The latter is a wide-band

approximation for molecular vibration broadening
(20) due to coupling to thermal baths (for a detailed
discussion, see the report of Galperin et al. [39].
Figure 1(b) and (c) show similar results for a smaller
"0 � EF gap and a weaker electron–phonon coupling
Ma, respectively. To show the effect of electron–
phonon coupling on the Seebeck coefficient we
compare the results obtained from the full self-
consistent calculation and the scattering theory
approximation to the elastic Ma¼ 0 limit. One can
see that, closer to resonance, the discrepancy between
the scattering theory and the self-consistent approach

becomes more pronounced, whereas for weak elec-
tron–phonon coupling they almost coincide.

In the following figures, we consider the inelastic
effects only within the scattering theory approximation
(which requires far less numerical effort). The
dependence of S on the energy gap "0 � EF is shown
in Figure 2, and its variation as a function of !0 is
displayed in Figure 3. In these figures, V is kept at the
value 0.05V and all unvaried parameters are the same
as in Figure 1. Finally, in Figure 4 we compare the self-
consistent results (some of them already shown in
Figure 1) obtained for different choices of electron–
phonon coupling Ma and vibrational broadening �ph.

The following observations can be made regarding
these results.

1. In contrast to the inelastic tunneling features
usually observed in the second derivative
d2I=dV2 of the current–voltage characteristic
near jeVj ¼ �h!0, no such threshold behaviour is
seen in Figure 1. This lack of threshold behaviour
in the inelastic contribution to the Seebeck
coefficient results from the fact that thermoelectric
conduction is associated with the tails of the lead
Fermi–Dirac distributions, and these tails wash
away any threshold structure.

2. Inelastic contributions can have a substantial
effect on the Seebeck coefficient and its voltage
dependence, however the assessment of these
contributions is sensitive to the approximation
used and cannot generally be based on the
scattering theory level of calculation. Indeed, as
seen in Figure 1 the behaviour of S(V) may change
qualitatively upon going from the scattering to the
self-consistent calculation.

22

26

10
−5

S 
(V

/K
)

20

30

10
−5

S 
(V

/K
)

0.0 0.02 0.04 0.06 0.08 0.1
V(V)

25

28

10
−5

S 
(V

/K
)

(a)

(b)

(c)

Figure 1. Seebeck coefficient versus applied bias. Shown
are the results of the full self-consistent calculation (solid line,
red), the scattering theory approach based on model (28)
(dashed line, blue), and the elastic scattering case (dotted line,
black) calculated using (a) the ‘standard’ set of parameters
(see text for parameters), (b) a smaller "0 � EF gap, and (c) a
weaker electron–phonon coupling Ma.

0.0 0.1 0.2 0.3 0.4 0.5

0−EF (eV)

15

25

35

10
−5

S 
(V

/K
)

Figure 2. Seebeck coefficient versus energy position of the
molecular level for the model of Equation (28). Shown are
the results with (dashed line, blue) and without (dotted line,
black) the electron–phonon interaction. The calculation was
performed at V¼ 0.05V. The other parameters are the same
as in Figure 1.
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 3. Focusing on the self-consistent results, Figures 1

and 4 show that the inelastic effect on the Seebeck
coefficient can be positive or negative, depending
on the other energetic parameters in the system.
A change of sign as a function of "0 is seen also in
the scattering theory results of Figure 2. The
existence of a similar crossover in the self-
consistent results can be inferred by comparing
Figures 1(a) and (b).

4. A smaller value of the electron–phonon coupling
Ma naturally leads to a smaller difference
between the self-consistent and scattering theory
calculations (compare Figures 1(a) and (c)). The
coupling chosen in Figure 1(c) is still strong
enough to result in an appreciable difference
between the inelastic and elastic results.

5. In Figure 2, the Seebeck coefficient is seen to go
through a maximum as a function of the gap
"0 � EF, with the inelastic contribution affecting
the position and height of the observed peak. The
behaviour seen in Figure 2 can be rationalised by
noting that for, say, TL > TR, electrons with
energies E > EF contribute most to the left-to-
right current, whereas those with E < EF

dominate the right-to-left current. This gives no
thermoelectric current when "0 ¼ EF, hence as
"0! EF, one needs a higher temperature differ-
ence in order to compensate for the same bias. As
a result, the Seebeck coefficient decreases at
"0 � EF! 0. On the other hand, when
"0 � EF 	 �, kBT the two contributions cancel
each other out, and hence the Seebeck coefficient
decreases once more.

6. The dependence of S on !0 (Figure 3 demonstrates
this within a scattering theory level calculation)
is in line with the expectation that S should attain
its classical limit as the vibration becomes
more rigid.

7. We have found (not shown) that the effects on S of
varying the electronic (�) or vibrational (O) width
show a similar trend as varying the gap "0 � EF or
the vibrational frequency !0, respectively.

5. Conclusion

We have studied the influence of molecular vibration
(inelastic effects) on the Seebeck coefficient for
molecular junction transport using a simple model
of one molecular level (representing the participating
molecular state) coupled to two contacts and to one
molecular vibration. Two approaches to the model

were considered: a simplified scattering model repre-
sented by Equation (28) and the full self-consistent
approach described in Section 2. The simplified
approach ignores the mutual influence of the electro-
nic and vibrational subsystems. Note that the
structure of the expression for the current
(Equation (28)) is just the difference between two
scattering fluxes (left-to-right minus right-to-left). The
results of the simplified model calculation were

0.0 0.02 0.04 0.06 0.08 0.1

V (V)

22

26

10
−5

S 
(V

/K
)

Figure 4. Seebeck coefficient versus applied bias for the
model described in Section 2. The solid line (red) and the
dash-dotted line (magenta) are identical to the solid lines
(red) in Figures 1(a) and (c), respectively. Also shown are the
results for �ph

L ¼ �ph
R ¼ 0:002 eV (dash-double dotted line,

black). The elastic case (dotted line, black) is shown for
comparison.
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Figure 3. Seebeck coefficient versus vibrational mode
frequency for the model of Equation (28). Shown are the
result with (dashed line, blue) and without (dotted line,
black) the electron–phonon interaction. The calculation was
performed at V¼ 0.05V. The other parameters are the same
as in Figure 1.
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 compared with the full self-consistent approach where

both the mutual electron–vibration influence and
vibration coupling to thermal baths are taken into
account (for a detailed description of the approach,
see the paper of Galperin et al. [29]). We show that
inelastic effects have a non-negligible influence on the
resulting Seebeck coefficient for the junction, for a
reasonable choice of parameters. The electron–vibra-
tion interaction can either increase or decrease the
Seebeck coefficient depending on the physical situa-
tion. We have studied the dependence of this influence
on different parameters of the model (applied bias,
the gap between the molecular level and the Fermi
energy, the strengths of the coupling between
the molecule and the contacts, between the tunneling
electron and the molecular vibration, between
the molecular vibration coupling and the thermal
baths, and the frequency of the vibration). Comparing
the results of the two approaches we show that the
scattering-theory-based approach may fail both quan-
titatively and qualitatively. The experimental data
presented by Reddy et al. [23] do not provide
conclusive evidence for the relative importance of
inelastic processes. More extensive measurements
showing the dependence of the Seebeck coefficient
on the junction parameters are needed in order to
come to a definite conclusion. In particular, isotopic
effects should influence the vibration-related part of
the Seebeck coefficient (see Figures 3 and 4). A
change in the electron–phonon coupling would also
reveal the inelastic part of the Seebeck coefficient (see
Figure 4). Finally, the results of our model calcula-
tions performed with a reasonable set of parameters
show that the Seebeck coefficient is of the order of

10�4 VK�1. The results reported by Reddy et al.
[23] yield S 
 10�5 VK�1. Since the molecules used in
the experiment [23] are characterized by a relatively
large gap "0 � EF, our results are in good agreement
with the measured data. Indeed, for "0 � EF 
 1 eV
the calculated Seebeck coefficient (see Figure 2) is
of the same magnitude as the experimentally observed
value.
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