
Inelastic effects in molecular junctions in the Coulomb and Kondo regimes:
Nonequilibrium equation-of-motion approach

Michael Galperin,1 Abraham Nitzan,2 and Mark A. Ratner1

1Department of Chemistry and Nanotechnology Center, Northwestern University, Evanston, Illinois 60208, USA
2School of Chemistry, The Sackler Faculty of Science, Tel Aviv University, Tel Aviv 69978, Israel
�Received 20 February 2007; revised manuscript received 23 April 2007; published 2 July 2007�

Inelastic effects in the Coulomb blockade and Kondo regimes of electron transport through molecular
junctions are considered within a simple nonequilibrium equation-of-motion �EOM� approach. The scheme is
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�Phys. Rev. Lett. 66, 3048 �1991�; 70, 2601 �1993�� are used on the Keldysh contour to account for the
nonequilibrium nature of the junction, and dressing by appropriate Franck-Condon factors is used to account
for vibrational features. Results of the equilibrium EOM scheme by Meir et al. are reproduced in the appro-
priate limit.
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I. INTRODUCTION

Fast development of experimental techniques in the area
of molecular electronics makes it possible to observe the
response of molecular conduction junctions in a wide range
of external parameters, such as source-drain and gate
voltages.1 Coulomb blockade �that characterizes the weak
molecule-lead coupling limit�, where transport through the
molecular junction is suppressed due to high charging en-
ergy, and Kondo effect �encountered at sufficiently low tem-
perature and strong molecule-lead coupling�, when a corre-
lation between localized �molecular� and band �contacts�
electrons manifests itself in molecular junctions as a maxi-
mum in electrical conductance near Vsd�0, were observed
in the I /Vsd characteristics of such junctions.2–7 These are
often accompanied by vibrational features that result from
coupling between electronic and vibrational degrees of free-
dom. The latter can be associated with molecular center-of-
mass motion8 or with intramolecular vibrations.2,4,6

Early theoretical approaches to transport in the Coulomb
blockade regime were either based on linear-response theory
for near-equilibrium situations9–13 or by treating transport at
the level of quasiclassical rate equations.14,15 While the sec-
ond approach to nonequilibrium transport is justified in the
case of pure Coulomb blockade �where hopping between
molecule and contacts is rare�, the intermediate regime, e.g.,
the case of stronger molecule-lead coupling relevant for ob-
servation of nonequilibrium Kondo resonance, should be
treated at a more sophisticated level. Recent approaches
dealing with nonequilibrium Coulomb blockade and/or
Kondo effect are based on either the slave-boson
technique,16–19 the equation-of-motion method,18,20–22 the
Fock-space rate equation scheme,15 or the contour perturba-
tion theory.11,23–29 Inelastic effects were not considered in the
references above.

Here, we present a simple generalization of the equilib-
rium equation-of-motion approach used in the Coulomb10,30

regime �also later applied to the Kondo31 situation� to the
case of nonequilibrium transport. The main difference be-

tween our approach and earlier nonequilibrium EOM
studies18,21,22 is the simple appealing structure of the Green
function, the evaluation of which �in the absence of electron-
phonon coupling� does not require a time-consuming self-
consistent procedure. As was indicated earlier,30 this Green
function expression reduces to the exact solution both for an
isolated molecule and in the limit of noninteracting electrons.
We also generalize this basic scheme to include inelastic ef-
fects approximately, within an approach based on the Born-
Oppenheimer approximation that is commonly used in the
Marcus theory of electron transfer.32 Numerical calculations
are performed and qualitative correspondence to experimen-
tal data is demonstrated.

Our model and theoretical procedure are presented in Sec.
II. Numerical results for the Coulomb blockade regime are
given and discussed in Sec. III. The Kondo regime is dis-
cussed in Sec. IV. Section V concludes.

II. MODEL AND METHOD

We describe the molecular junction within a single reso-
nant level �molecular electronic orbital� model, with
electron-electron on-site repulsion �Hubbard term� and po-
laronic coupling to a local vibrational mode. The latter is
coupled to a bosonic thermal bath. The electronic orbital is
coupled to two �L and R� free-electron reservoirs represent-
ing the leads, each at its own equilibrium.

The corresponding Hamiltonian is

Ĥ = �
K=L,R

�
k�K,�

�k�ĉk�
† ĉk� + �

�

��d̂�
† d̂� + �0â†â

+ �
�

��b̂�
† b̂� + �

K=L,R
�

k�K,�
�Vk�ĉk�

† d̂� + H.c.�

+ Un̂↑n̂↓ + MQ̂a�
�

n̂� + �
�

U�Q̂aQ̂�, �1�

where �= ↑ ,↓ is the electron spin index, ĉk� �ĉk�
† � are de-

struction �creation� operators for electronic state k� in the
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contacts, d̂� �d̂�
†� destroys �creates� electron in the molecular

orbital, â �â†� are second quantization operators for the local

vibrational mode, and b̂� �b̂�
†� are the corresponding boson

operators for thermal bath modes. Also,

Q̂a = â + â†, Q̂� = b̂� + b̂�
† �2�

are displacement operators for the corresponding modes and

n̂�= d̂�
† d̂�. Here and below, we use �=1 and e=1. After small

polaron �canonical or Lang-Firsov� transformation,33 the
Hamiltonian takes the form �for details, see Ref. 34�

H̄
ˆ

= �
K=L,R

�
k�K,�

�k�ĉk�
† ĉk� + �

�

�̄�d̂�
† d̂� + �0â†â + �

�

��b̂�
† b̂�

+ �
K=L,R

�
k�K,�

�V̄k�ĉk�
† d̂� + H.c.� + Ūn̂↑n̂↓ + �

�

U�Q̂aQ̂�,

�3�

where

�̄� = �� − M2/�0, �4�

Ū = U − 2M2/�0, �5�

V̄k� = Vk�X̂a, �6�

and where

X̂a = exp�i�aP̂a�, �a =
M

�0
�7�

is the phonon shift generator operator with

P̂a = − i�â − â†� . �8�

P̂a �Eq. �8�� is the phonon momentum operator; we use the
term phonon to characterize both molecular and bath vibra-
tions.

The Hamiltonian in Eq. �3� is our starting point for the
calculation of the steady-state current across the junction,
using the nonequilibrium Green function �NEGF� expression
derived in Refs. 30 and 35,

IK =
e

�
�
�
� dE

2	
�
K,�

� �E�G�
��E� − 
K,�

� �E�G�
��E�� . �9�

Here 
K,�
�,	 are lesser and greater projections of the self-

energy due to coupling to the contact K �K=L ,R�,


K,�
� �E� = ifK�E�K,��E� , �10�


K,�
� �E� = − i�1 − fK�E��K,��E� , �11�

with fK�E� the Fermi distribution in the contact K and

K,��E� = 2	 �
k�K


Vk�
2��E − �k� . �12�

The lesser and greater Green functions in Eq. �9� are
Fourier transforms to energy space of projections onto the
real time axis of the electron Green function on the Keldysh
contour,

G���1,�2� = − i�Tcd̂���1�d̂�
†��2�	H

= − i�Tcd̂���1�X̂a��1�d̂�
†��2�X̂a

†��2�	H̄, �13�

where the subscripts H and H̄ indicate which Hamiltonian,
Eq. �1� or �3�, respectively, determines evolution of the sys-
tem, and Tc is the contour ordering operator. In what follows,

we use the second form and will drop the subscript H̄ while
keeping in mind that time evolution is determined by the
Hamiltonian in Eq. �3�. We next decouple electron and pho-
non dynamics in the spirit of the Born-Oppenheimer theory
within the Condon approximation,

G���1,�2� � G�
�e���1,�2�K��1,�2� , �14�

where

G�
�e���1,�2� = − i�Tcd̂���1�d̂�

†��2�	 , �15�

K��1,�2� = �TcX̂a��1�X̂a
†��2�	 . �16�

The shift generator correlation function K can be ex-
pressed within the second-order cumulant expansion in terms
of the phonon Green function �for derivation, see Ref. 34�,

K��1,�2� = exp��a
2�iDPaPa

��1,�2� − �P̂a
2	� , �17�

DPaPa
��1,�2� = − i�TcP̂a��1�P̂a��2�	 , �18�

while the phonon Green function D obeys approximately an
equation which resembles the usual Dyson equation,

DPaPa
��,��� = DPaPa

�0� ��,��� + �
c

d�1�
c

d�2DPaPa

�0� ��,�1�

��PaPa
��1,�2�DPaPa

��2,��� , �19�

with

�PaPa
��1,�2� = �

�


U�
2DP�P�
��1,�2�

− i�a
2 �

k��L,R,�

Vk�
2�gk,���2,�1�

�G�
�e���1,�2�K��1,�2� + ��1 ↔ �2�� �20�

the analog of a self-energy. gk,� is the free-electron GF in the
contact, defined in Eq. �31� below.

To obtain an expression for the Green function G�
�e�, we

follow the equation-of-motion �EOM� method of Meir et
al.10,30 where it was applied for a near-equilibrium situation,
except that we consider the EOMs on the Keldysh contour in
order to take into account the nonequilibrium condition. In
the spirit of the Born-Oppenheimer approximation, we re-

gard the shift generator operators X̂a as parameters incorpo-

rated into transfer-matrix elements V̄k�. The solution of the
electronic problem is thus carried out as in the absence of
electron-phonon coupling10,30 with renormalized parameters

U �→Ū� and V �→V̄�. The result is then averaged over the
phonon subspace. This average is obviously not needed in
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the absence of electron-phonon coupling, M =0, in which
case G�=G�

�e�. This leads to �for derivation, see Appendix A�

G�
�e���1,�2� = �1 − �n̂�̄	�G2,�

�e� ��1,�2� + �n̂�̄	G3,�
�e� ��1,�2� ,

�21�

where the GFs Gi,�
�e� �i= �1,2 ,3 ,4� obey

�
c

d�Ĝi,�
−1��1,��Gi,�

�e���,�2� = ���1,�2� , �22�

with

Ĝ1,�
−1 ��,��� = ����,����i

�

��
− �� − U�

− 
�0��,��� − 
�3��,���� , �23�

Ĝ2,�
−1 ��,��� = ����,����i

�

��
− ��� − 
�0��,���

+ U�
c

d��G1,�
�e� ��,���
�1���,���� , �24�

Ĝ3,�
−1 ��,��� = ����,����i

�

��
− �� − U� − 
�0��,���

− U�
c

d��G4,�
�e� ��,���
�2���,���� , �25�

Ĝ4,�
−1 ��,��� = ����,����i

�

��
− ��� − 
�0��,��� − 
�3��,���� .

�26�

Expressions for “self-energies” 
�i �i= �0,1 ,2 ,3� are given
by


�0��,��� = �
k


Vk�
2gk,���,����TcX̂a
†���X̂a����	 , �27�


�1��,��� = �
k

�n̂k�̄	�
Vk�̄
2gk,�̄
�1� ��,����TcX̂a���X̂a

†����	

+ 
Vk�̄
2gk,�̄
�2� ��,����TcX̂a

†���X̂a����	� , �28�


�2��,��� = 
�3��,��� − 
�1��,��� , �29�


�3��,��� = �
k

�
Vk�̄
2gk,�̄
�1� ��,����TcX̂a���X̂a

†����	

+ 
Vk�̄
2gk,�̄
�2� ��,����TcX̂a

†���X̂a����	� , �30�

with �̄ denoting the spin opposite to �. The free-electron
propagators gk,� and gk,�̄

�j� , j=1,2 are defined by

�i
�

��
− �k��gk,���,��� = ���,��� , �31�

�i
�

��
+ �k�̄ − �� − ��̄ − U�gk,�̄

�1� ��,��� = ���,��� , �32�

�i
�

��
− �k�̄ − �� + ��̄�gk,�̄

�2� ��,��� = ���,��� . �33�

For M =0, V̄ Franck-Condon �FC� factors �i.e., shift genera-
tor correlation functions �XX†	 and �X†X	� should be taken as
1 in Eqs. �27�–�30�. Below the SEs in this case will be de-
noted 
�j

�e� �j=0,1 ,2 ,3�. Note that the retarded projections of
these are equivalent to the SEs introduced in Ref. 10. For
example, taking the retarded projection of Eq. �30� and Fou-
rier transforming to energy space leads to


�3
�e�r�E� = �

k�L,R

Vk�̄
2� 1

E + �k�̄ − �� − ��̄ − U

+
1

E − �k�̄ − �� + ��̄
� , �34�

which is identical to Eq. �9� in Ref. 10 for i=3. Other ex-
pressions are obtained in a similar way.

Consider first the case with no electron-phonon coupling.
The structure of expression �21� for the nonequilibrium GF
G�

�e� is appealingly simple and has two important implica-
tions. First, it provides a convenient way for handling the
Hubbard repulsion term U. While the case of weak electron-
electron interaction can be handled by taking this term as a
perturbation,26 the case of strong interaction cannot be
handled in this way, but including U in H0 makes standard
diagrammatic techniques unusable.36 This difficulty is cir-
cumvented by Eq. �21�, which expresses the system GF as a
superposition �with the level population n defining weight
parameters� of simpler GFs associated with Hamiltonians
that do not depend on U �apart from a parametric energy
shift� for which Wick’s theorem is applicable. Secondly, by
using the EOM method on the Keldysh contour, we are able
to derive not only the retarded GF as in Ref. 10 but also the
other projections, in particular, the lesser GF that can be used
to evaluate the level populations,

�n̂�	 = − i/2	� dEG�
�e���E� . �35�

This, together with Eq. �21�, leads to an explicit expression
for �n̂�	. Denoting

Ii,� = − i/2	� dEGi,�
�e���E� , �36�

one gets from Eq. �21�

�n̂�	 = �1 − �n̂�̄	�I2,� + �n̂�̄	I3,�, �37�

and hence

�n̂�	 =
I2,� − I2,�̄�I2,� − I3,��

1 − �I2,�̄ − I3,�̄��I2,� − I3,��
. �38�

Gi,�
�e�� can be calculated from the Keldysh equation,
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Gi,�
�e���E� = Gi,�

�e�r�E�
i,�
�e���E�Gi,�

�e�a�E� , �39�

with 
i,�
�e�� �i=1,2 ,3 ,4� being lesser projections of the cor-

responding self-energies presented in Eqs. �23�–�26�, i.e.,


1,�
�e� ��,��� = 
�0��,��� + 
�3��,��� , �40�


2,�
�e� ��,��� = 
�0��,��� − U�

c

d��G1,�
�e� ��,���
�1���,��� ,

�41�


3,�
�e� ��,��� = 
�0��,��� + U�

c

d��G4,�
�e� ��,���
�2���,��� ,

�42�


4,�
�e� ��,��� = 
�0��,��� + 
�3��,��� , �43�

and expressions for 
�i �i= �0,1 ,2 ,3� given by Eqs.
�27�–�30�.

Since Gi,�
�e�� �i=1,2 ,3 ,4�, and therefore Ii,� do not depend

on �n̂�	, Eq. �38� is an explicit expression for �n̂�	 and not, as
might have expected, an equation that needs to be solved
self-consistently. Equation �21� therefore constitutes an ex-
plicit expression for G�

�e� that can be evaluated directly once
the Gi,�

�e�� are known. Thus, the Keldysh contour based con-
sideration provides full information on the nonequilibrium
system, and no separate considerations �as noncrossing ap-
proximation used in Ref. 32� are needed in order to estimate
the level population. Note that both Ref. 32 and our consid-
eration give only qualitative description of the Kondo effect,
since correlation between localized spin at the level and op-
posite spin cloud in the contacts is treated perturbatively.

When electron-phonon interaction is present, Eq. �35� re-
mains valid. This results from the fact that K��t , t�=1, so
that G�

��t , t�=G�
�e���t , t�; still, one has to deal with a self-

consistent procedure. Indeed, the phonon GF DPaPa
�and

hence shift generator correlation function K, see Eq. �17��
depends on the electronic GF G�

�e� through its self-energy
�PaPa

, Eq. �20�. On the other hand, the electron GF G�
�e�

depends on the shift generator correlation function K through
its self-energies 
�i �i= �0,1 ,2 ,3�, Eqs. �27�–�30�. The re-
sulting procedure is described in detail in Ref. 34. The only
difference that enters here is the need to obtain the different
self-energies defined in Eqs. �27�–�30�.

As discussed in Ref. 34, the calculations involving
electron-phonon interaction, when multiplication by the FC
factor is necessary, are facilitated by repeatedly moving be-
tween the time and energy domains. This is done using fast
Fourier transform. In the calculations, we use �following Ref.
17� for the retarded projection of 
K,�0,


K,�0
�e�r �E� =

1

2

K,�
�0� WK,�

�0�

E − EK,�
�0� + iWK,�

�0� , �44�

while its lesser projection is given by Eq. �10�, where

K,�0�E� = − 2 Im�
K,�0
�e�r �E�� . �45�

We take WK,�
�0� =10U and EK,�

�0� taken at the Fermi level, de-
fined to be the zero of energy �EF=0�. This form will ensure
convergence of the integrals. A bandwidth ten times the Cou-
lomb repulsion is enough to get essentially constant density
of contact states in the relevant energy region �wide band�.
K,�

�0� is taken to be much smaller than U to simulate the
Coulomb blockade regime; exact numbers are indicated in
the calculation parameters below.

The biased junction was characterized by the choice

�L = EF + �eVsd, �R = EF − �1 − ��eVsd, �46�

with voltage division factor �=0.5. In calculations with M
�0, where an iterative procedure was used, convergence was
assumed when population differences �electronic population
for both spins and vibrational population� between consecu-
tive iteration steps were less than the predefined tolerance,
taken to be 10−4. The application of a gate potential was
represented by taking

�̄��Vg� = �̄��Vg = 0� + eVg. �47�

Note that Vg in Eq. �47� is the effective potential at the mol-
ecule, which is usually considerably smaller than the bare
potential applied to the gate.

In what follows, we apply the procedure outlined above in
two situations. In Sec. III, we focus on Coulomb blockade
phenomena. In Sec. IV, we describe the application to Kondo
physics by keeping the temperature low enough and by as-
signing finite lifetimes to the metal electrons.

III. NUMERICAL RESULTS IN THE COULOMB
BLOCKADE REGIME

When dealing with the Coulomb-blockade-type calcula-
tions, the electronic part �without the FC factors� of the
lesser and greater projections of 
�j �j=1,2 ,3� are obtained
from Eqs. �28�–�30� and given by


�1
�e���E� = i �

K=L,R
�K,�̄�E1��fK

2 �E1�� + K,�̄�E2��fK
2 �E2��� ,

�48�


�1
�e���E� = − i �

K=L,R
�K,�̄�E1��fK�E1���1 − fK�E1���

+ K,�̄�E2��fK�E2���1 − fK�E2��� , �49�


�2
�e��,��E� = 
�3

�e��,��E� − 
�1
�e��,��E� , �50�


�3
�e���E� = i �

K=L,R
�K,�̄�E1��fK�E1�� + K,�̄�E2��fK�E2��� ,

�51�


�3
�e���E� = − i �

K=L,R
�K,�̄�E1���1 − fK�E1���

+ K,�̄�E2���1 − fK�E2��� , �52�
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where E1�= �̄�+ �̄�̄+U−E and E2�=E− �̄�+ �̄�̄. Retarded
projection of the full SEs �after dressing by FC factors� are
obtained using Lehmann representation.33

Consider first the situation where no electron-phonon cou-
pling is present, M =0. Figure 1�c� shows a conductance con-
tour plot as a function of the gate and source-drain voltages
for a system characterized by ��=−0.5, K,�

�0� =0.01, and T
=10−4 �all parameters are in units of U�. Figure 1�a� presents
average level population �solid line� and current �dotted line�
plotted as a function of Vsd at fixed Vg=−U /4. I /Vsd curve
shows two Coulomb addition plateaus, as is expected for a
doubly degenerate single level. Figure 1�b� is a similar graph
as a function of Vg at fixed Vsd=U /2. The usual Coulomb
blockade diamond structure is observed in the bottom graph.
Naturally, at high positive Vg, the level is unpopulated, while
at high negative Vg, it is fully populated ��n̂	=2�. Within the
conduction diamond, the average population is 1, indicating
the Coulomb blockade situation. Intermediate regions pro-
vide fractional average populations due to partial occupation
of the levels.

The case �����̄, which may correspond to magnetic-field
removal of spin degeneracy, is shown in Fig. 2. We take the
split levels to be �↓=−0.6 and �↑=−0.4, other parameters are
identical to those of Fig. 1. This split results in splitting of
the conductance lines, as is shown in the bottom graph. Note
the different intensity of the lines outside the diamond, The
difference becomes even more drastic inside the diamond.
This result is in agreement with experimental observation.2

The calculated average population of the two spin levels �top
graph�, where again the source-drain voltage is fixed at Vsd
=U /2, shows their complex dependence on gate voltage.
This behavior can be understood within a simple argument.
The molecule in the junction can be in either of the two
states sketched in the inset of the top graph by solid and
dashed lines. The observed average is the sum of the two
contributions with weights representing probability for the
system to be in the state. A qualitative explanation is based
on the assumption that the system strives to be in a
minimum-energy situation �note that this explanation is only
qualitative, since an energy minimum is not required in the
nonequilibrium transport case, however, it might work to
some extent in the blockade regime�. Thus, the probability to
be in the state indicated by solid lines in the inset is much
higher than in the other. So, the most pronounced lines in
conductance appear when chemical potentials cross the en-
ergy levels of this �solid line levels in the inset� state. Aver-
age population behavior can be explained with this consid-
eration as well.

0 0.5 1 1.5 2
Vsd/U

0.5

1.0

1.5

2.0

<
n>

1

2

3

( 10
-3

)

I
(eU

/h)

-1 -0.5 0 0.5 1
Vg/U

0.5

1.0

1.5

2.0

<
n>

5

15

( 10
-5

)

I
(eU

/h)

FIG. 1. �Color online� Elastic resonant tunneling. Average popu-
lation �solid line, left axis� and current �dotted line, right axis� as
function of �a� Vsd at fixed Vg=−U /4 and �b� Vg at fixed Vsd

=U /2. �c� Contour plot of dI /dVsd vs Vg and Vsd. See text for
parameters. Note that Vsd axis range in �a� goes beyond that in �c�.

-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1
Vg/U

0.25

0.5

0.75

1.0

<
n>

FIG. 2. �Color online� Elastic resonant tunneling under applied
magnetic field. Average populations of spin-up �solid line� and spin-
down �dashed line� levels vs Vg at fixed Vsd=U /2 �top�. Contour
plot of dI /dVsd �bottom� vs Vg and Vsd. Inset shows two possible
states �solid and dashed lines� of the molecule. See text for
parameters.
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In the presence of vibrational degrees of freedom, inelas-
tic cotunneling �vibrational inelasticity� can be observed in
conductance.6,7,37 The situation is illustrated within a zero-

order calculation38 using the parameters �in units of Ū� T
=10−3, �̄�=−0.5, K,�

�0� =0.01, �0=0.2, and M =0.4. The fol-
lowing points should be noted:

�1� Figure 3�a� shows the main Coulomb steps in the con-
ductance map. In addition to elastic, vibrational sidebands
corresponding to phonon creation by the tunneling electron
are observed. Peaks corresponding to phonon absorption are
not seen due to the low temperature employed in the calcu-
lation.

�2� Figure 3�b� represents the second derivative of current
vs source-drain voltage map. In addition to resonant vibra-
tional sidebands �lines along main Coulomb steps� observed
in Fig. 3�a�, here, one sees also inelastic electron tunneling
spectroscopy �IETS� vibrational features �gate-voltage-

independent off-resonant vibrational features�, as well as
weak lines corresponding to phonon annihilation.

�3� The absence of vibrational sidebands or variable Vg
for Vsd��0 is clearly seen from Fig. 3�a�. This issue was
first addressed in Ref. 39 and later confirmed by us.34

�4� Suppression of the conduction signal at low source-
drain voltage �the so-called Franck-Condon blockade40� is
seen from Fig. 3�a� as well. At even stronger electron-
phonon coupling �Fig. 3�c�; a zero-order calculation with the
same parameters as in Fig. 3�a� except that M =0.6�, the low-
voltage signal is suppressed completely.

�5� Note that while experimentally the scales in Vg and
Vsd where Coulomb blockade diamonds are observed are
very different �Vsd is of order of Coulomb repulsion energy,
100 mV, while Vg spans �1 V�, in our calculations, they are
comparable. The reason for this is that experimentally, only
part of the applied gate voltage affects the position of the
molecular level relative to contact Fermi energy. This is due
to two reasons: first, capacitance factors �charging of the
junction� play a role, and second, gate voltage cannot be
tuned to strongly affect the molecule because of small sizes
of the junction.41 In our calculations, however, a rigid shift of
molecular level is assumed.

IV. THE KONDO REGIME

The Kondo effect,42 a crossover from weak to strong cou-
pling between localized �molecular� and band �contacts�
electrons, manifests itself in molecular junctions as a maxi-
mum in electrical conductance near Vsd�0 at low tempera-
tures. Conduction in this regime was described by Meir et
al.31 within an EOM scheme. The treatment has focused on
the retarded GFs, making it necessary to get level popula-
tions from a separate calculation using the noncrossing ap-
proximation. In contrast, the NEGF EOM approach yields
both the retarded and lesser GFs, and the needed level popu-
lations are obtained from the latter. This provides a single
consistent theoretical framework that, as we show below, re-
produces the results of Ref. 31. It should be noted, however,
that this approach is still an approximation, since truncating
the EOM hierarchy, Eqs. �A12�–�A17�, implies neglect of
correlations that may become important in the mixed valence
situation when the level �� �shifted by Vg� is close to the
Fermi energy. Therefore, our nonequilibrium treatment of the
Kondo regime is questionable beyond the low bias regime
EF−���eVsd, similar to the mean-field slave-boson
approach19,42–44 where charge correlations are neglected by
the mean-field approximation. In both approaches though,
the needed correlations in spin fluctuations are maintained;
in the present approach, this is done by keeping the correla-
tion functions in Eqs. �A6�–�A8� as essential ingredients of
the calculation.

Consider first the purely electronic case, M =0. Following
Ref. 31, we limit our consideration to the U→� limit. This
leads to significant simplification while at the same time
limiting the site to at most single occupancy, as required
for observation of the Kondo effect.45 From Eqs. �22�–�26�,
it follows that G3,�

�e� �1/U→0 in this limit, while
G2,�

�e� →G2,�
�e,�� satisfies the following Dyson equation:

FIG. 3. �Color online� Inelastic tunneling. �a� Contour plot of
dI /dVsd vs Vg and Vsd. �b� Contour plot of d2I /dVsd

2 vs Vg and Vsd.
White regions correspond to values outside the scale; �c� Franck-
Condon blockade. See text for parameters.
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�
c

d���i
�

��
− ������1,�� − 
�0��1,�� − 
�1

�����1,���
� G2,�

�e,����,�2� = ���1,�2� , �53�

with 
�0 defined in Eq. �27� and from Eq. �28� �because
gk,�̄

�1� →0 in the U→� limit; cf. Eq. �32��,


�1
�����,��� = �

K=L,R
�
k�K


Vk�̄
2�n̂k�̄	gk,�̄
�2� ��,��� . �54�

Thus from Eq. �21�, it follows that the total GF in the
U→� limit is

G�
�e,�� = �1 − �n̂�̄	�G2,�

�e,����1,�2� . �55�

The Kondo peak diverges unless the finite lifetime of metal
electrons is taken into account. We incorporate this lifetime
in the form introduced in Eq. �5� of Ref. 32 �which associates
lifetime with scattering off the molecular state�. Note that the
Lorentzian form adopted following Ref. 17 for the coupling
between molecule and contacts, Eq. �44�, prevents ultraviolet
divergence of integrals such as Eq. �B1� and allows analytic
evaluation of 
�1

��� projections �see Appendix B, Eqs. �B10�
and �B11��.

Equations �53�–�55� lead to the following form for the
retarded projection of G�

�e,��:

G2,�
�e,��r�E� =

1 − �n̂�̄	

E − �� − 
�0�E� − 
�1
����E�

, �56�

where 
�0�E� and 
�1
����E� are defined in Eqs. �44� and �B10�,

respectively. These expressions are identical to Eqs. �3� and
�4� of Ref. 32. Note, however, that �n̂�̄	 is now calculated
from the lesser projection,

G�̄
�e,����E� = �1 − �n̂�̄	�G2,�

�e,����E� . �57�

Figure 4 presents the bridge density of states in equilibrium
�dashed line� and nonequilibrium �solid line� situations. Pa-
rameters of the calculation are �in units of �

�0�=L,�
�0� +R,�

�0� �
T=0.005, �↑=�↓=−2, and WK,�

�0� =100. As before, the equilib-
rium Fermi energy defines the energy origin, and the non-
equilibrium situation is characterized by �L=EF+ 
eV
 and
�R=EF. In equilibrium, a Kondo peak at the Fermi energy is

seen. It splits into two �at each of the electrode Fermi ener-
gies� when finite bias is applied. Comparing to Figs. 1�a� and
1�b� of Ref. 32, we see that the present formalism essentially
reproduces these results.

Inelastic effects are introduced into the picture as before,
by dressing transfer-matrix elements by the shift operators,
see Eqs. �14�, �27�, and �28�. Figure 5 shows the result,
obtained from such calculation for the second derivative of
the current with respect to the source-drain voltage, for three
choices of the electron-vibration coupling strength. Pa-
rameters of the calculation are �in units of �

�0�� T=0.025,
��=−2, WK,�

�0� =100, and �0=0.5. The solid, dashed, and dot-
ted lines correspond to M =0.5, 0.75, and 1, respectively. As
is expected, increase in electron-vibration interaction de-
stroys the Kondo effect. The reasons for this are �a� dephas-
ing due to electron-vibration interaction and �b� shift of the
energy level due to phonon reorganization. Electronic level
shift downward decreases the Kondo temperature �TK
�exp−	
��
 /�, see Ref. 42�, thus destroying the Kondo
peak.

It should be emphasized that the vibrational structure seen
in Fig. 5 is a normal inelastic tunneling feature that is seen to
persist also in the Kondo regime. This feature appears both
in the Kondo and normal blockade regimes �see Figs. 3�b�
and 5�, as indeed was recently observed in the molecular
junction experiment of Yu et al.6 The transition between
these regimes �when a molecular orbital crosses the Fermi
energy� cannot be described by our approach for reasons
outlined above. Also, Paaske and Flensberg48 have recently
applied a perturbative renormalization group to a limiting
form of the same model in which the molecular electronic
level is always in equilibrium with one side of the junction
�the substrate in a scanning tunnelling microscopy configu-
ration� and have shown that maintaining quantum coherence
of vibrons, the effect disregarded in our treatment due to the
approximation in Eq. �14�, may lead to enhancement of the
exchange coupling, and hence the Kondo temperature.

V. CONCLUSION

We study inelastic effects in electron transport through a
model molecular junction in the Coulomb blockade and
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0.1
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/
)

Vsd=0
Vsd=0.3

FIG. 4. �Color online� Bridge density of states in the Kondo
regime for equilibrium �dashed line� and nonequilibrium �solid line�
situations. See text for parameters.
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FIG. 5. �Color online� d2I /dVsd
2 for molecular junction in the

Kondo regime. Shown are results for three choices of strength in
coupling to vibration: M = /2 �solid line�, M =2 /3 �dashed line�,
and M = �dotted line�. See text for other parameters.
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Kondo regimes. The approach is based on nonequilibrium
generalization of the equation-of-motion scheme introduced
by Meir et al.10,31 and is appealingly simple. Inelastic effects
are treated within a diabatic Born-Oppenheimer scheme. Im-
portant features of this approach are correct analytical results
for both isolated molecule �no contacts� and noninteracting
�U=0� cases, ability to reproduce results by Meir et al.31

without necessity of additional considerations to get the level
population, no necessity for self-consistency to get exact
�within the scheme� results when the electron-vibration inter-
action is switched off, and unified treatment of both Cou-
lomb and �to some extent� Kondo at nonequilibrium. The
approach is able to reproduce experimental features qualita-
tively.

Inelastic effects obtained within the model are resonant
vibrational sidebands in the allowed part and IETS signal in
the blockaded part of the conductance map in Vg−Vsd coor-
dinates, Franck-Condon blockade of transport for relatively
strong electron-vibration interaction in the Coulomb block-
ade regime, and vibrational sidebands of the Kondo peak, as
well as its quenching for strong vibronic coupling.

Generalization of these considerations to the case of a
two-site molecular bridge in the junction is straightforward.
The only problem is the large number of equations needed to
be taken into account in this case. We postpone such gener-
alization for future study.
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APPENDIX A: DERIVATION OF EQUATION (21)

Here, we derive Eq. �21�. Note that the derivation does

not depend on whether V or V̄ �and similarly U or Ū� is used
for the system-lead coupling as long as the shift generator
operator X is regarded as a scalar. We follow the procedure
invented by Meir et al.10,30 for the equilibrium situation and
generalize it to the Keldysh contour case, in order to take
into account the nonequilibrium nature of molecular junction
transport. During the derivation, we will treat transfer-matrix

elements V̄k�, Eq. �6�, as numbers with the shift generator

operators X̂a, Eq. �7�, incorporated into them as scalar param-
eters �a Born-Oppenheimer-type approximation�. However,
we will have to keep track of their dependence on time �or
more precisely contour variable� in order to get the phonon
correlation functions K correctly at the end.

We start from EOM for GF G�
�e��� ,���, Eq. �15�, on the

Keldysh contour,

�i
�

��
− �̄��G�

�e���,��� = ���,��� + ŪG�
�2e���,���

+ �
k��L,R

V̄k�
† ���k,�

�1e���,��� .

�A1�

New GFs on the right-hand side have the forms

k,�
�1e���,��� = − i�Tcĉk����d̂�

†����	 , �A2�

G�
�2e���,��� = − i�Tcd̂����n̂�̄���d̂�

†����	 . �A3�

Now we write EOMs for these GFs,

�i
�

��
− �k��k,�

�1e���,��� = V̄k����G�
�e���,��� , �A4�

�i
�

��
− �̄� − Ū�G�

�2e���,���

= ���,����n̂�̄	 + �
k

�V̄k�
† ���1,k,�

�2e� ��,���

+ V̄k�̄���2,k,�
�2e� ��,��� − V̄k�̄

† ���3,k,�
�2e� ��,���� . �A5�

While the EOM in Eq. �A4� closes the chain of equations �its
right-hand side contains only G�

�e��, the EOM for G�
�2e� yields

new correlations in its right-hand side defined by

1,k,�
�2e� ��,��� = − i�Tcĉk����n̂�̄���d̂�

†����	 , �A6�

2,k,�
�2e� ��,��� = − i�Tcĉk�̄

† ���d̂����d̂�̄���d̂�
†����	 , �A7�

3,k,�
�2e� ��,��� = − i�Tcĉk�̄���d̂�̄

†���d̂����d̂�
†����	 . �A8�

As a last step in the chain of EOMs, we follow Refs. 10 and
30 by writing equations for the GFs, in Eqs. �A6�–�A8�,

�i
�

��
− �k��1,k,�

�2e� ��,���

= V̄k����G�
�2e���,��� + �

k�

�V̄k��̄���1,k�k,�
�3e� ��,���

− V̄k��̄
† ���2,k�k,�

�3e� ��,���� , �A9�

�i
�

��
+ �k�̄ − �̄� − �̄�̄ − Ū�2,k,�

�2e� ��,���

= V̄k�̄
† ���G�

�2e���,��� − �
k�

�V̄k��
† ���3,k�k,�

�3e� ��,���

+ V̄k��̄
† ���4,k�k,�

�3e� ��,���� , �A10�

�i
�

��
− �k�̄ − �̄� + �̄�̄�3,k,�

�2e� ��,���

= V̄k�̄����G�
�e���,��� − G�

�2e���,���� − �
k�

�V̄k��̄���

�5,k�k,�
�3e� ��,��� − V̄k��

† ���6,k�k,�
�3e� ��,���� . �A11�

On the right-hand side of these equations, we now have new,
higher-order GFs, 

j,k�k,�
�3e� defined by the middle terms of Eqs.

�A12�–�A17�. GFs �2e� and �3e� take account of spin corre-
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lations in the leads. Closure of the �in principle infinite�
EOM chain is achieved assuming that higher-order spin cor-
relations in the leads can be neglected. Thus, following Ref.
10, the terms �3e� are expressed in terms of lower-order
GFs,

1,k�k,�
�3e� ��,��� = − i�Tcĉk��̄

† ���ĉk����d̂�̄���d̂�
†����	 � 0,

�A12�

2,k�k,�
�3e� ��,��� = − i�Tcĉk����ĉk��̄���d̂�̄

†���d̂�
†����	 � 0,

�A13�

3,k�k,�
�3e� ��,��� = − i�Tcĉk�����ĉk�̄

† ���d̂�̄���d̂�
†����	 � 0,

�A14�

4,k�k,�
�3e� ��,��� = − i�Tcĉk�̄

† ���ĉk��̄���d̂����d̂�
†����	

� �k,k��n̂k�̄	G�
�e���,��� , �A15�

5,k�k,�
�3e� ��,��� = − i�Tcĉk�̄���ĉk��̄

† ���d̂����d̂�
†����	

� �k,k��1 − �n̂k�̄	�G�
�e���,��� , �A16�

6,k�k,�
�3e� ��,��� = − i�Tcĉk�̄���d̂�̄

†���ĉk�����d̂�
†����	 � 0.

�A17�

Now, using Eqs. �A12�–�A17� in Eqs. �A9�–�A11�, one can

solve for i,k,�
�2e� �i= �1,2 ,3� in terms of G�

�e� and G�
�2e�,

1,k,�
�2e� = gk,�V̄k� � G�

�2e�, �A18�

2,k,�
�2e� = gk,�̄

�1� V̄k�̄
†

� �G�
�2e� − �n̂k�̄	G�

�e�� , �A19�

3,k,�
�2e� = gk,�̄

�2� V̄k�̄ � ��n̂k�̄	G�
�e� − G�

�2e�� , �A20�

where we have used the short notation style with “�”
implying convolution of two functions on the contour
�A �B��� ,���=�cd��A�� ,���B��� ,���. These solutions are
substituted into Eq. �A5� which gives G�

�2e� in terms of G�
�e�.

Finally, the last result, together with Eq. �A4�, can be used in
Eq. �A1� to get an equation for G�

�e� in the form

G�
�e� = G2,�

�e� + U�n̂�̄	G2,�
�e� � G1,�

�e� . �A21�

Gi,�
�e� �i= �1,2 ,3 ,4� are defined in Eqs. �22�–�26� while self-

energies entering these definitions are given by Eqs.
�27�–�30�.

In order to simplify the structure, we rewrite it in the form

G�
�e� = �1 − �n̂�̄	�G2,�

�e� + �n̂�̄	�G2,�
�e� + UG2,�

�e� � G1,�
�e� 

�A22�

and note that

�¯ = G2,�
�e� � G1,�

�e� �Ĝ1,�
−1 + U� = G2,�

�e� � G1,�
�e� Ĝ4,�

−1 = G3,�
�e� .

�A23�

The last equation follows from Ĝ1,�
−1 Ĝ2,�

−1 = Ĝ4,�
−1 Ĝ3,�

−1 . Substitu-
tion of Eq. �A23� into Eq. �A22� leads to Eq. �21�. The re-
tarded projection of Eq. �21� is the final result of Ref. 10.

APPENDIX B: ANALYTICAL EXPRESSION
FOR SELF-ENERGY ��1

„�…

Here, we derive analytical expressions for retarded and
lesser projections of 
�1

���, Eq. �54�, under Lorentzian as-
sumption for coupling between molecule and contacts, Eq.
�44�. In the case of a dense continuum of states in the con-
tacts �assumed here�, the sum in Eq. �54� can be converted to
an integral, then, retarded and lesser projections of the SE �in
energy domain� are


�1
���r�E� = �

K=L,R
�

−�

+� d�

2	

K,�̄���fK���

E − � − �� + ��̄ + i��̄/2
, �B1�


�1
�����E� = i �

K=L,R
�

−�

+� d�

2	

K,�̄���fK
2 ���

�E − � − �� + ��̄�2 + ���̄/2�2

� i �
K=L,R

�
−�

+� d�

2	

K,�̄���fK���

�E − � − �� + ��̄�2 + ���̄/2�2 ,

�B2�

where the second line of Eq. �B2� is correct for the case of
T→0 �relevant for observation of the Kondo peak�.

Introducing

x = ��� − �K� , �B3�

we arrive at integrals of the forms

�
−�

+�

dx
1

�x − x1��x − x2��x − x3�
1

ex + 1
, �B4�

�
−�

+�

dx
1

�x − x1��x − x2��x − x3��x − x4�
1

ex + 1
�B5�

for Eqs. �B1� and �B2�, respectively, where

x1 = ��EK,�̄
�0� − �K + iWK,�̄

�0� � , �B6�

x2 = x1
*, �B7�

x3 = ��E − �� + ��̄ − �K + i
��̄

2
� , �B8�

x4 = x3
*, �B9�

with K=L ,R. These integrals can be taken analytically by
complex contour integration; the poles are at x1, x2, x3 �x4 in
the case of the integral in Eq. �B5�� and also at yn� i	�2n
+1�; n=0, ±1, ±2, . . . . Performing the integration, one ar-
rives at the following expressions for the SE projections:
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�1
���r�E� = �

K=L,R
� iK,�̄

�0� WK,�̄
�0�

4	 � �*�	 − ix1

2	
�

E2 + i�WK,�̄
�0� + ��̄/2�

−

��	 − ix1

2	
�

E2 − i�WK,�̄
�0� − ��̄/2��

−
K,�̄

�0� �WK,�̄
�0� �2

2	

��	 − ix3

2	
�

�E2 − i�Wk,�̄
�0� − ��̄/2���E2 + i�Wk,�̄

�0� + ��̄/2��
+

k,�̄
�0� Wk,�̄

�0�

4

1

E2 + i�Wk,�̄
�0� + ��̄/2�� , �B10�


�1
�����E� = i �

K=L,R
k,�̄

�0��Wk,�̄
�0� ��̄

2	
Im� ��	 − ix1

2	
�

�E2 − i�Wk,�̄
�0� − ��̄/2���E2 − i�Wk,�̄

�0� + ��̄/2���
+

�Wk,�̄
�0� �2

	
Im� ��	 − ix3

2	
�

�E2 − i�Wk,�̄
�0� − ��̄/2���E2 + i�Wk,�̄

�0� + ��̄/2��� +
Wk,�̄

�0�

2
�Wk,�̄

�0� +
��̄

2
� 1

E2
2 + �Wk,�̄

�0� + ��̄/2�2� , �B11�

with E2=E−��+��̄−Ek,�̄
�0� and where � is a psi �digamma� function.49 Note that it is the second term in Eq. �B10� which is

responsible for the Kondo effect appearance.
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