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The application of the path-integral methodology of Chandler and Wolynes �D. Chandler and P. G.
Wolynes, J. Chem. Phys. 74, 4078 �1981�� to the calculation of one-electron-tunneling probabilities
is revisited. We show that the evaluation of the kink free energy that is related to the tunneling
splitting is associated with “polymer bead” distributions over a continuous distribution of scaled
barriers, which makes both the calculation and its physical interpretation relatively difficult. In
particular, we find that relative to other available techniques the method converges slowly and
suffers from inaccuracies associated with the finite-temperature aspect of the calculation, and that
past tentative identification of the bead distribution over the barrier with a physical picture of a
“tunneling path” should be reassessed. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2036989�
I. INTRODUCTION

Numerical simulations of electron transfer reactions
broadly fall into three categories. One class of calculations
relies on the Marcus conceptual picture1 and attempts to ex-
tract information about the relevant free-energy surfaces and
the activation and reorganization energies from a micro-
scopic model. Another seeks to describe solvent dynamical
effects in electron transfer reactions, usually by addressing
numerically spin-boson-type problems. Finally, again within
the Marcus conceptual picture, one needs to evaluate the
electronic tunneling probability or, rather, the electronic cou-
pling between the donor and the acceptor. At issue is the
solvent effect on this tunneling matrix element and its depen-
dence on the electron energy and on the donor-acceptor dis-
tance. A closely related issue is the characterization of the
tunneling path or the distribution of tunneling paths. While
not directly observable, knowledge about the likelihood of
finding the electron along different paths in the tunneling
barrier is useful both for its bearing on our understanding of
the tunneling process and on the ability to control the tun-
neling current. The latter issue is of potential importance in
electronic transport in nanojunctions. Another useful concept
is the effective barrier height—the rectangular barrier of
width equal to the donor-acceptor distance that will give the
same tunneling probability as the actual one.

As a computational task this problem is usually handled
as a tunneling probability through a complicated three-
dimensional potential barrier which is roughly determined by
the ionization energies of the donor and acceptor species
�containing the “extra” electron� superimposed with the
electron-solvent interaction. In many cases the energetics is
such that the process can be described within the atomic-
orbital basis sets used in standard quantum chemistry calcu-
lations. Such an approach has been extensively used to de-
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scribe electron transfer in proteins.2 Alternatively, if an
appropriate semiempirical pseudopotential for the electron-
solvent interaction is available, the process may be described
as a one-electron tunneling in the complicated potential land-
scape comprising the donor, the acceptor, and this pseudopo-
tential. This approach was used recently to describe pro-
cesses involving excess electrons in water, alcohols, and
ammonia environments. In a recent series of articles3–6 we
have used the latter approach to investigate electron tunnel-
ing through water barriers, focusing on the effect of the wa-
ter environment on the tunneling process, and have found
that electron tunneling through a water layer is very sensitive
to the three-dimensional structure of the water layer. These
calculations were done on numerical grids using the absorp-
tion boundary conditions Green function �ABCGF� method-
ology.

An alternative approach to tunneling probabilities
through complex environments given an electron-solvent
pseudopotential is based on the path-integral methodology of
Chandler and co-workers7,8 and Kuki and Wolynes.9 For the
transfer between the lowest-lying local donor and acceptor
states ��1�r���1� ,�2�r���2��, one focuses on matrix ele-
ments of the imaginary time propagation

I12 = �1�e−�H�2� =	 dri�1�ri� 	 dr f�2�r f�	
ri

rf

Dr���

�exp
− 	
0

�

H�r�����d��� �1�

and the equivalent I11, where H�r����= �m /2��dr /d��2

+V�r���� and V�r� is the potential on which the electron
moves. The symbol D denotes path integration, here with
fixed initial and final points ri and r f. An approximation to
the path integral is obtained by cutting the path to P seg-
ments at corresponding intervals � / P. This leads to an ex-

pression in the form of the partition function of a harmonic

© 2005 American Institute of Physics03-1

IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2036989
http://dx.doi.org/10.1063/1.2036989


104103-2 I. Benjamin and A. Nitzan J. Chem. Phys. 123, 104103 �2005�
polymer chain with P+1 beads, fixed at the initial �r0=ri�
and final �rP=r f� positions,

	
ri

rf

Dr���exp
− 	
0

�

H�r����d����
=	 dr1	 dr2 . . .	 drP−1� m

2��2�/P
3P/2

�exp�− ��

P
�

i=1

p �m�ri − ri−1�2

2���/P�2 + V�ri�� . �2�

An important result for deep tunneling �high tunneling
barrier� in symmetric structures is that the tunneling splitting
� is related to the free energy FK of forming a single kink in
the structure of this polymer chain at the temperature T
= �kB��−1. A kink is defined as a segment of the polymer
chain that goes between the two wells, and FK is the free-
energy difference between two structures of the harmonic
bead chain: one in which ri, r f, and all connecting beads stay
in the initial well and the other where ri and r f are restricted
to be on opposite wells with only one kink connecting the
two wells. The tunneling splitting, which provides a measure
for the electronic coupling, is given by9

� = �−1e−�FK �3�

provided that ���−1��E, where �E is the spacing be-
tween the split levels and higher quantum states. For com-
pleteness, a proof of Eq. �3� is given in Appendix A. We note
in passing that another path-integral approach, using ap-
proximations based on the path centroid density,10 may be
useful for describing tunneling effects at higher temperatures
and in dissipative environments. Equations �2� and �3� pro-
vide a route for computing FK and thus � by classical free-
energy computation methods based, e.g., on the Monte Carlo
procedure. An application to electron transfer between Fe+2

and Fe+3 in water was described in Ref. 8. Furthermore, Kuki
and Wolynes9 have made the appealing suggestion that the
distribution of paths that contribute to FK can provide addi-
tional information on the route taken by the tunneling par-
ticle through the solvent structure and have explored this
idea for electron transfer in proteins.

In this paper we revisit this problem in an attempt to
examine the viability and usefulness of this method in com-
parison with the ABCGF methods used in our earlier calcu-
lations. To this end we investigate two systems. In one the
electron tunnels through a simple rectangular potential. In
the other tunneling occurs through a static layer of water
molecules sampled from a thermal distribution of water con-
figurations. We carry out numerical studies similar to that of
Kuki and Wolynes for electron transfer in these model sys-
tems and at the same time examine critically the foundation
of their assumption that the distribution of paths contributes
to the path integral �2�. We find that the method is tractable;
the needed free energy can be expressed as an integral over
an averaged potential-weighted sum over the polymer beads
that occupy the barrier, and the distribution of kink trajecto-
ries qualitatively reflects the distribution of tunneling paths.
However, the procedure converges relatively slowly and de-

tailed insight is obscured by the fact that kink configurations
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from infinitely many scaled barriers contribute to the overall
tunneling probability. We note that while these observations
suggest that this method for calculating tunneling probabili-
ties in static configurations is of limited value, path-integral
methodology provides a principal route for evaluating tun-
neling probabilities of particles interacting with their thermal
environment and with each other.

II. MODEL

Since we are interested in assessing the usefulness of the
method rather than in a specific calculation, we have chosen
a model that reflects our interest in electron transmission
probabilities through molecular layers. Such transmission
processes do not involve donor and acceptor species and are
best viewed as scattering processes in which the initial en-
ergy of the tunneling particle is well defined. Furthermore,
the barrier used to describe such processes should mimic a
molecular layer: infinite in two directions �x and y, say� and
finite with thickness L in the transmission direction z. The
path-integral method described above and in Appendix A
relies on a picture of two localized states separated by a
barrier. We have therefore chosen to consider tunneling in a
model described in Fig. 1. The slab represents the molecular
layer. The wells, however, are artificial constructs. They are
chosen to be deep and narrow enough so that the ground
state in the corresponding isolated well �a limit obtained
when the slab is infinitely wide� is well separated �relative to
kBT� from the lowest excited state. This ground-state energy
then defines the initial energy for the tunneling calculation.

This choice of a particular model raises a question con-
cerning the generality of the results obtained. At issue is to
what extent the tunneling probability calculated is a property
of the barrier and of the initial energy, and how much of it
reflects specific properties of the initial and final states. Re-
call that tunneling may be described by a coupling term in
the Hamiltonian when represented in a basis of states local-
ized on the two sides of the barrier.11 In one dimension this

FIG. 1. The basic model used in the calculation. The gray area that repre-
sents the potential barrier UB�r� is a slab of thickness L in the tunneling �z�
direction infinite in the x-y plane. Outside the slab the potential is taken
infinite anywhere, except with the cubic volumes of linear size a, denoted by
the black squares, where the potential is taken to be zero �i.e., UB�r� mea-
sures the height of the potential barrier above the bottom of these wells�.
effective coupling between the local states in the well is de-
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rived from their overlap in the barrier, which primarily de-
pends on their energy. In a three-dimensional system the total
energy does not uniquely determine the overlap: in a sepa-
rable problem it would be determined by the energy in the z
direction. For a deep enough cubic well this energy is
roughly 1/3 of the total ground-state energy. We have veri-
fied �see below� that for such wells of different dimensions
but with the same ground-state energy �obtained from vary-
ing both the well depth and its width�, the path-integral re-
sults are very similar.

III. THE KINK FREE ENERGY AND THE TUNNELING
PROBABILITY

For definiteness we consider the path integral �2� where
xi is located on one well and compare two cases, one where
xf is located in the same well, the other where it is located in
the opposite well, a distance L apart. We are thus interested
in the corresponding two configurations of the polymer
chain. The free-energy difference between these configura-
tions can be represented as a sum

FK = FK
�1� + FK

�2�, �4�

where FK
�1� is the free energy needed to stretch the polymer

chain in free space, i.e., to move the restricted position of the
last bead from the position identical to that of the first bead
to another position at distance L in the absence of a potential.
FK

�2� is the free-energy difference between the resulting
stretched configuration in free space and another configura-
tion obtained when a potential barrier is introduced while
keeping the first and last beads pinned to their positions on
the opposite sides of the barrier, a distance L from each
other. Obviously, the components FK

�i�, i=1,2, have no physi-
cal significance and other decompositions of the kink free
energy could be used to facilitate computation.

In Appendix B we show that four our polymer chain in
free space the partition function, Eq. �2�, evaluated under the
restriction r0=0, �rN�=d yields

Z1�d� = A0 exp�− md2/�2�2��� , �5�

where A0 is a constant. The free energy to stretch the poly-
mer to a distance L between the first and last bead is there-
fore

FK
�1��L� = − kBT ln�Z1�L�

Z1�0�  = �kBT�2mL2/�2�2� . �6�

Interestingly, this free energy increases as T2. It should be
noted that Eq. �6� is an approximation: it is based on a free-
space calculation and disregards the fact that our system is
confined to the volume defined by the slab and the two cubic
regions in Fig. 1. The order of magnitude of this contribution
to the free energy is kBTf , where f is the ratio kBT /� and � is
of the order of the ground-state energy of the tunneling par-
ticle in a one-dimensional rectangular infinitely deep box of
width L. For L of the order of 10 Å and T=300 K, f �1 and
fK

�1��kBT. We will see that this contribution to the free en-
�2�
ergy may be altogether disregarded relative to FK .
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Appendix B also describes the procedure for calculating
FK

�2�. The result can be expressed in terms of the average
density �	�r��
 of beads on the scaled barrier 
V�r�

FK
�2� =

1

P
	 drV�r�	

0

1

d
�	�r��
, P → � . �7�

Since 	 is expected to be linear in the number of beads P, the
result does not depend on this number, as is verified below.
For a rectangular barrier, V�r�=UB on the barrier and zero
otherwise, Eq. �7� yields

FK
�2� =

UB

P
	

0

1

d
�nb�
, �8�

where �nb�
 is the average number of beads on a barrier of
height 
UB above the bottom of the side wells. For UB

�kBT, FK
�2� is seen to dominate the kink free energy. Either

�7� or �8� can be easily computed within the same simulation
of the path integral �2�.

The observation that FK
�2� is related to the distribution of

beads on the barrier supports the intuitive notion taken in
Ref. 9 that this distribution is somehow related to the tunnel-
ing path. Equation �8�, however, indicates that one should be
careful about this interpretation since the integral over 

contains contributions from bead distributions associated
with all scaled potentials 
V�r�. Some characteristics of such
distributions are shown as functions of 
 below.

IV. RESULTS OF MODEL CALCULATIONS

In order to gain insight about the nature of the path-
integral calculation and the significance of the computed
configurations and their distribution, we have performed sev-
eral calculations of electron tunneling in the simple configu-
ration of Fig. 1 using a rectangular barrier of width L
=10 Å and two identical wells placed opposite each other.
The equilibration of the system and the production of equi-
librium configurations were done by a Monte Carlo �MC�
procedure using chains of at least a thousand beads, with the
end beads taken fixed on the opposite sides of the barrier, in
the center of the side wells. In some cases the number of
beads P was varied in order to check the convergence of the
calculation as well as to validate the integrity of the mea-
sures used to compare the paths in the different systems stud-
ied. We have focused on two such measures: the fraction of
beads that occupy the barrier region that is related to the
tunneling splitting, and the lateral width of the bead distribu-
tion on the barrier. In the range of bead numbers that were
used in these calculations we did not observe more than one
kink in the sampled configurations.

In the Monte Carlo evolution a move is attempted on
each bead in its turn and is accepted or rejected using the
usual energy criterion based on the potential that appears in
the exponent of Eq. �2�. Typically, 200 000 configurations of
the polymer chain were sampled at intervals of 20 cycles
apart �in a cycle one move is attempted for each bead�. For
each system studied an equilibration stage has to precede the
production run. During the equilibration we have used a vari-

able MC step size adjusted to yield approximately 40% ac-
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ceptance ratio. In the production stage the MC step size was
kept fixed, at the value assumed at the end of the equilibra-
tion. The configurations sampled during the production run
were used to analyze the path, as described below.

Our main interest lies in correlating the path character-
istics with the barrier structure and energetics. To this end the
choice of the side wells should not make an essential differ-
ence, except by fixing the energy. Indeed we have verified
that using a=3 Å and UB=20 eV �UB−Eg�8.4 eV�, a
=4 Å and UB=15 eV �UB−Eg�8.5 eV� gave the same frac-
tion, 0.02 �±5% � of beads in the �rectangular� barrier region.

The convergence of these calculations is rather slow;
Fig. 2 shows a typical equilibration behavior in a simulation
of tunneling in the configuration of Fig. 1 using P=2000
beads. Shown is the calculated fraction �nb� / P of beads on
the barrier as a function of the number of MC steps. In this
run nearly 400 000 MC cycles �steps per bead� were needed
to equilibrate the polymer chain. It should be noted, how-
ever, that in calculations that study the dependence of tun-
neling on system parameters much of the efforts involved in
the equilibration can be saved by starting each run from
equilibrated configurations obtained from neighboring pa-
rameter values.

Figure 3 shows some characteristics of the converged
equilibrium distribution P�nb� of the number of beads in the
barrier region. The distribution itself is shown in Fig. 3�a� for
different total numbers of beads P. The distribution is rather
broad and the corresponding average �nb� and the width 

= ��nb
2�− �nb�2�1/2 are proportional to P. This is seen explicitly

in Figs. 3�b� and 3�c�. The inset to Fig. 3�a� shows the same
data expressed as the distribution of fraction of beads, P�x�,
x=nb / P. Here the different distributions collapse to a single
one, as expected. We thus verify that the numbers �nb� / P and
 / P behave, as expected, as characteristics of the tunneling
process that do not depend on the number of beads used in
the calculation.

The results shown in Fig. 4 focus on bead distributions
obtained from different scaled potentials. The barrier/well
parameters are a=3 Å and UB=15 eV and results are shown
at temperatures 200 and 300 K. 1000 beads are used in this

5

FIG. 2. Convergence of a typical equilibration run for a polymer chain �P
=2000� across a rectangular slab �Fig. 1�. The figure shows the evolution of
the average number of beads in the barrier region with the number of MC
cycles. The parameters used are UB=15 eV, a=3 Å, and T=300 K. The
ground-state energy in an isolated well of size 3�3�3 Å3 surrounded by
infinite walls on five sides and by a wall of height 15 eV on one side is
approximately 11.6 eV, i.e., about 3.4 eV below the top of the barrier.
calculation and 2�10 configurations sampled at 20-cycle
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intervals were used for each scaling parameter 
. For a given

 the calculations are done using the scaled barrier 
UB.
Shown as functions of 
 are the average bead number �nb�
and the average gyration radius of the bead distribution on

FIG. 3. �a� The distribution P�nb� of the number of beads in the barrier
region, obtained from calculations using different numbers of beads on a
rectangular barrier �Fig. 1� with the same parameters as in Fig. 2. The inset
shows the same data expressed as the distribution of x=nb / P. These results
were compiled from the result of the 106 path-integral Monte Carlo cycles
following an equilibration run of 106 cycles. �b� The average number of
beads in the barrier region �nb� obtained from the calculation done for Fig.
3�a�, displayed as a function of the total number of beads P. �c� The width
of the bead distribution, = ��nb

2�-�nb�2�1/2, plotted as a function of P ob-
tained from the simulations of Fig. 3�a�.

FIG. 4. Upper panel: the fraction nb / P. Lower panel: The gyration radius Rg

plotted against the scaling factor 
. Parameters are as in Fig. 2. Full line:

T=300 K. Dotted line: T=200 K.
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the barrier, Rg=nb
−1�i�nB

�xi
2+yi

2�1/2, where xi and yi measure
the lateral distances of the beads on the barrier from the line
that connects the centers of the two wells. We find that both
behave almost as step functions, for example, �nb� / P drops
from its free space value, essentially 1, to 0.1 on a very
narrow 
 interval above a critical value 
c that depends on
the temperature. The desired free energy is essentially the
area below the �nb� line. This implies, according to Eq. �8�,
that approximately FK

�2�=
c�T�UB.
An important class of tunneling transport phenomena in-

clude those that involve resonance tunneling. It is of interest
to observe such tunneling processes in the context of the
path-integral formulation. In Fig. 5 we examine the behavior
of the bead distribution associated with the path integral �2�
for a rectangular barrier in which a cubic rectangular well is
placed in the middle of the barrier along the line connecting
the two side wells �see inset to Fig. 5�. The barrier width is,
as before, L=10 Å and the width of the middle cubic well is
b=6 Å. The other parameters are, again as before, a=3 Å,
UB=20 eV, and T=300 K. The number of beads used is
1000. We vary the depth W of the middle well in order to
change the energy of its ground state. Resonance conditions
occur, and the tunneling probability peaks, when the energies
of the state in the side well and in the middle well coincide.
A full calculation of the tunneling probability requires the

computation for each value of W of V̄�
�= P−1�drV�r�
��	�r��
 for each 
, then integrating the result over all 
.
We did not attempt this time-consuming calculation here.
Instead we shown in Fig. 5 how resonance tunneling mani-

fests itself in the calculation of the integrand V̄ at one par-
ticular point, 
=1. The signature of the resonance state is

seen as a strong peak in the dependence of V̄ on W, however,
it needs to be emphasized that the shape and position of this
structure do not reflect the tunneling resonance that can be
obtained using �3� only from the full calculation of F.

Finally, we examine the application of such path-integral
calculation for electron tunneling through a water barrier.
Water configurations were prepared as described in Ref. 5.
Briefly, classical room-temperature equilibrium molecular-
dynamics �MD� simulations were run for water layers be-

FIG. 5. V̄= P−1�iV�ri� �sum over all beads on the barrier� displayed against
the depth W of the middle well, expressed as a height above the bottom of
the side wells. The barrier height above this bottom is UB=20 eV. The
side-well dimensions are a�a�a, a=3 Å. The overall barrier width is L
=10 Å and the dimensions of the central well are b�b�b with b=6 Å.
tween Pt electrodes and the configurations used in the
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present analysis were sampled from the equilibrium trajec-
tory. The results shown in Figs. 6 and 7 were obtained from
configurations that have three water monolayers between the
two metal surfaces �barrier width �10 Å�. The electron-
water interaction is the pseudopotential constructed by
Rossky and Schnitker,12 supplemented to include the effect
of water electronic polarizability as described in Refs. 3 and
5. We have also used an artificial repulsive electron-water
potential that is obtained from the “real” one by setting the
electron charge to zero �thus eliminating all electrostatic in-
teractions, leaving only short-range repulsive terms�. Com-
paring between the behavior of the tunneling processes under
this repulsive potential and the real one enables us to exam-
ine the effect of the water spacer on the electron-tunneling
process against a repulsive barrier of the same structure—
essentially to study the balance between the effect of the
repulsive oxygen cores and the attractive polarizability re-
sponse in determining the tunneling probability. The overall
barrier potential is taken as a superposition of the electron-
water pseudopotential and a rectangular barrier, whose
height above the ground-state energy of the electrons in the
side wells represents the work function of the metal elec-
trodes.

The first statement that should be made about the appli-
cation of this path-integral technique to the evaluation of
tunneling characteristics of the electron-water system is that
it is, in many respects, not competitive with other available
methods, in particular, the absorbing boundary condition
Green’s function methodology that we have applied before.
In particular, combining a numerical grid-based calculation
of the Green function with an exact evaluation of energy-
dependent absorbing boundary potential �i.e., self-energy�
makes the latter a highly efficient and accurate method.6,13

Still, in view of past interest in the path-integral approach to
tunneling calculations, it is interesting also to examine this
method with regard to electron tunneling in water. We note in
passing that path-integral methodology is expected to have a
much better scaling with the number of particles involved in
the tunneling process than any method based on a grid rep-
resentation of the quantum-mechanical wave function.

Figures 6 and 7 show results obtained from these calcu-
lations. Because this approach is highly CPU intensive, we
have limited our study to two issues. Figure 6 shows result
pertaining to the effective barrier potential. Shown as a func-

tion of 
 is the average potential V̄�
�= P−1�dr�	�r��
V�r�
that determines the free energy FK

�2� via Eq. �7�. This poten-
tial is plotted against 
 for the full electron-water pseudopo-
tential �dotted line�, the repulsive electron-water interaction
�dashed line�, and for the vacuum barrier. The qualitative
behavior of these potentials is similar to what was found in
our earlier calculations using the ABCGF method.3,5 the
presence of water in the barrier lowers the effective barrier
height relative to vacuum, while, not surprisingly, the repul-
sive “water” increases the effective barrier height. We have
found, however, that from quantitative comparison between
these models this method performs poorly because for 

�0.5, even with our relatively large sampling size �see Sec.
IV�, the statistical fluctuations were bigger than the differ-

ence between the models. This problematic character of the
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path-integral calculations can be understood by noting that
Eqs. �3� and �7� imply that fluctuations of the order of �kBT

in V̄ amount to uncertainty of the order of e in the tunneling
probability so the transmission probability can be determined
only within a factor of this order. �Our earlier results3,5 gave
a factor of �5 between the tunneling probability in vacuum
and in water for a barrier width �10 Å�. We have also at-
tempted to run the path-integral simulations at lower tem-
peratures �100 K�, but found that convergence in this case
was impractically slow.

Figure 7 shows the distribution of polymer beads of a
typical kink across the water barrier �made of three water
monolayers� in relation to the distributions of water mol-
ecules in the barrier. This result is equivalent to Fig. 1 of Ref.
9 that was suggested to reflect the electron-tunneling path.
Shown is a two-dimensional projection on a plane parallel to
the tunneling direction, where the black dots mark the cen-
ters of the water oxygen atoms and the open circles are the
polymer beads. Two features are evident. First, the beads
prefer to accumulate near the water layers, again reflecting
the attractive nature of water that leads to the lowering of the
effective barrier. Second, the kink connects the initial and
final wells with what appears to be a straight line in the
tunneling direction, with only small fluctuations about this
direction. Indeed we have obtained similar results from 20

FIG. 6. V̄�
�= P−1�dr�	�r��
V�r� displayed as a function of 
 for a poten-
tial barrier made of three monolayers of water molecules �width �10 Å�.
The overall potential is taken to be V�r�=UB+Vel-water�r�=15 eV
+Vel-water�r� above the bottom of the side wells. The calculation is done at
T=300 K.
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independent water configurations, and averaging over many
kinks just smears the bead structure in Fig. 7 into a relatively
narrow cylinder.

This latter feature stands in contrast to our earlier
observations,6 where the electron-tunneling function was
used to obtain the spatial dependence of the tunneling flux
according to J�r�=��2mi�−1��*��−���*�. In that work we
have identified three distinct situations, with one correspond-
ing to what might be called “straight path tunneling.” In the
other two the flux distribution is very different from the
straight line.

This observation again points to the shortcoming of us-
ing the bead distribution in the path-integral calculation as an
indicator of the tunneling path. We have already found that
the tunneling probability is determined by the bead distribu-
tions in kinks obtained for a series of scaled barriers via Eqs.
�3� and �7�. The bead distribution obtained for a full barrier
V�r� is very reasonable for such a high barrier, but obviously
not the only and possibly not the most relevant one. Indeed,

Fig. 6 shows that V̄�
� increases with decreasing 
, indicat-
ing that a scaled barrier with a small 
 may dominate the
bead distribution associated with the actual tunneling path.
For comparison we show in Fig. 7�b� the bead distribution
obtained for a scaled barrier, with 
=0.2.

V. CONCLUSIONS

We have critically examined the application of the tech-
nique based on the path-integral methodology of Chandler
and co-workers7,8 and Kuki and Wolynes9 for evaluating tun-
neling integrals in condensed phases. Path integrals are
among the methods of choice for calculations involving
many quantum particles that interact with a classical envi-
ronment. For single-electron tunneling in the absence of ther-
mal interactions, we have found that this approach suffers
from high CPU demand and slow convergence. Physical in-
terpretations based on the spatial distributions of classical
beads, while intuitively appealing, are also limited by the
fact that contributions to the tunneling probability are asso-
ciated with the polymer bead distributions on many scaled
barrier potentials. Such distributions, in themselves, do not
seem the have any particular physical significance. In par-
ticular, the bead distribution obtained on the real potential
barrier, while certainly related to the tunneling process, can-
not be directly identified with a tunneling path distribution.

FIG. 7. A two-dimensional projection
of a typical polymer kink showing the
distribution of beads �open circles� in
relation to the positions of the water
oxygen atoms �black dots�. �a� Full
barrier �
=1�. �b� Scaled barrier �

=0.2�.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



104103-7 Path-integral computations of tunneling J. Chem. Phys. 123, 104103 �2005�
ACKNOWLEDGMENTS

This research was supported by the US-Israel Binational
Science Foundation, by the Israel Science Foundation �AN�,
and by a grant from the National Science Foundation �CHE-
0345361, IB�.

APPENDIX A: PROOF OF EQ. „3…

Here we provide a simple proof of Eq. �3�. In addition,
we show that for the path integral associated with the tun-
neling transition between the two wells separated by a high
barrier as in Fig. 1, it is sufficient to restrict the polymer
chain to start in one well and end in the other—the exact
initial and final positions are not important.

We consider a symmetric double well system. The
ground states of the isolated wells are denoted �1� and �2�
with energy E0. Let

� � �−1 � �E , �A1�

where � is the tunnel splitting and �E is the energy differ-
ence between the ground and excited states of the isolated
single well. Denote the lowest eigenstates of H by ��� and
���. To a good approximation �exact if there were only one
state in each well�

�1� =
1
�2

�� + � + �− ��, �2� =
1
�2

�� + � − �− �� . �A2�

Therefore, e−�H�1�=2−1/2�e−�E+�+ �+e−�E−�−�� and

I11 = �1�e−�H�1� =
1

2
�e−�E+ + e−�E−�

=
1

2
e−�E0�e�1/2��� + e−�1/2���� , �A3�

I21 = �2�e−�H�1� =
1

2
�e−�E+ − e−�E−�

=
1

2
e−�E0�e�1/2��� − e−�1/2���� . �A4�

Using �A1� we have

I21

I11
= �� , �A5�

so that

− �FK = ln� I21

I11
 = ln���� , �A6�

which leads immediately to �3�. Obviously, at the low tem-
perature considered I21 and I11 are dominated by single kink
and no kink trajectories. This identifies the free energy in
�A6� as the free energy to form a single kink.

Note that if instead of states �1� and �2� we take any
positions �x1� in well 1 and �x2� in well 2, the result would
have been the same, because under condition �A1� e−�H�x1�
��1

*�x1�e−�H�1�. Instead of �A3� and �A4� we have in this
case

−�H 2
I11� = �x1�e �x1� = ��1�x1�� I11, �A7�
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I21� �x2�e−�H�x1� = �2�x2��1
*�x1�I21, �A8�

where x1 and x2 are positioned in the opposite wells. This
leads to

− �FK� � ln
I21�

I11�
= ln��2�x2�

�1�x1�
 + ln���� . �A9�

Note that �1 as a ground-state wave function does not have
nodes. In the case considered here, FK��1, the terms con-
taining the wave functions can be disregarded.

APPENDIX B: AN ANALYTICAL EXPRESSION
FOR THE KINK FREE ENERGY

The kink free energy FK was defined as the free-energy
difference between two polymer configurations. In one, the
initial and final beads are restricted to be in one well. In the
other, each is restricted to be in a different well, a distance d
apart. It can be represented by

FK = FK
�1� + FK

�2�, �B1�

where FK
�1� is the free energy to move the restricted position

of the last bead from the position identical to that of the first
bead to another position at distance d in the absence of a
potential. FK

�2� will be the free-energy difference between the
resulting configuration �no potential� and the one obtained
when the barrier is introduced.

1. Calculation of FK
„1…

From Eq. �2�

Z1�d� = � mP

2��2�
3P/2	 dr1	 dr2 ¯	 drP−1

�exp�− ��

P
�

i=1

P
m�ri − ri−1�2

2���/P�2 �
= A	 dr1	 dr2 ¯	 drP−1

�exp�− B�
i=1

P

�ri − ri−1�2� , �B2�

where

A = � mP

2��2�
3P/2

, B =
Pm

2�2�
�B3�

and where

r0 = 0, �rN� = d . �B4�

The direction of rN should not matter. Once �B2� is evaluated
we have

FK
�1��d� = − kBT ln�Z1�d�

Z1�0� . �B5�

To evaluate �B2� take P=2N �the total number of beads is
P+1, an odd number� and denote the partition function �B2�
Z1�d ;A ,B ,N�. Next integrate over the 2N−1 variables

r1 ,r3 , . . . ,rP−1. Using
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	 dr1e−B��r1 − r0�2+�r2 − r1�2� = � �

2B
3/2

e−�1/2�B�r2 − r0�2
�B6�

and reassigning the names of the remaining variables accord-
ing to �r0 ,r2 , . . . ,rp−2 ,rp�⇒ �r0 ,r1 , . . . ,rp/2−1 ,rp/2�, we find

Z1�d;A,B,N� = Z1�d;A��/2B��3/2�2N−1
,B/2,N − 1� . �B7�

Denoting the original parameters A and B by AN and BN, we
may rewrite this as

Z1�d;AN,BN,N� = Z1�d;AN−1,BN−1,N − 1� , �B8�

where

AN−1 = AN�� 2�

2BN
�3/2��2N−1

, BN−1 =
BN

2
. �B9�

This can be repeated, and after N cycles we have integrated
over 2N−1+2N−2+ ¯ +1=2N−1 bead positions, i.e., all the
movable beads. The final result is then

Z1�d� = A0 exp�− B0�rP − r0�2� = A0 exp�− B0d2� , �B10�

where

B0 =
BN

2N =
BN

P
=

m

2�2�
�B11�

is independent of P. A0 may also be evaluated, but its value
does not affect the final result. We get, using Eq. �B5�,

FK
�1��d� = − kBT ln�Z1�d�

Z1�0� = �kBT�2md2/�2�2� . �B12�

2. Calculation of FK
„2…

FK
�2� is the free-energy difference between two distribu-

tions of the polymer chain, both with the two end beads fixed
at a distance d between them, with and without the potential
barrier. We start from the partition function written with a
scaled potential 
V�r�,

Z2�
� =	 dr1	 dr2 ¯	 drP−1

�exp�− ��

P
�

i=1

P �m�ri − ri−1�2

2���/P�2 + 
V�ri�� . �B13�

The free energy for creating the potential barrier V�r� is
Downloaded 25 Oct 2005 to 132.66.16.34. Redistribution subject to A
FK
�2� = 	

0

1

d
� �E

�

�




, �B14�

where

E�
� = E��ri�,
� = �
i=1

P � Pm

2�2�2 �ri − ri−1�2 +
1

P

V�ri� ,

�B15�

�E

�

=

1

P
�

i

V�ri� , �B16�

and where � �
 denotes averaging with respect to the prob-
ability distribution

P
��ri�� =

exp�− ��i=1

P � Pm

2�2�2 �ri − ri−1�2 +



P
V�ri��

Z2�
�
.

�B17�

So we have

FK
�2� = 	

0

1

d
	 dr1 ¯ drP−1� 1

P
�

i

V�ri�P
��ri�� .

�B18�

Expression �7� is a coarse-grained version of this result.
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