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Heat conduction through molecular chains connecting two reservoirs at different temperatures can
be asymmetric for forward and reversed temperature biases. Based on analytically solvable models
and on numerical simulations we show that molecules rectify heat when two conditions are satisfied
simultaneously: the interactions governing the heat conduction are nonlinear, and the junction has
some structural asymmetry. We consider several simplified models where a two-level systemsTLSd
simulates a highly anharmonic vibrational mode, and asymmetry is introduced either through
different coupling of the molecule to the contacts, or by considering internal molecular asymmetry.
In the first case, we presentanalytical results for the asymmetric heat current flowing through a
singleanharmonic mode using different forms for the TLS-reservoirs coupling. We also demonstrate
numerically, studying a realistic molecular model, that a uniform anharmonic molecular chain
connecting asymmetrically two thermal reservoirs rectifies heat. This effect is stronger for longer
chains, where nonlinear interactions dominate the transfer process. When asymmetry is related to
the internal level structure of the molecule, numerical simulations reveal a nontrivial rectification
behavior. We could still explain this behavior in terms of an effective system-bath coupling. Our
study suggests that heat rectification is a fundamental characteristic of asymmetric nonlinear thermal
conductors. This phenomenon is important for heat control in nanodevices and for understanding of
energy flow in biomolecules. ©2005 American Institute of Physics. fDOI: 10.1063/1.1900063g

I. INTRODUCTION

Rectifiers, devices that transport current efficiently in
one direction of the applied bias, while blocking it com-
pletely or significantly in the reverse direction, have been
commonly associated with electron transfer.Molecular elec-
tronics rectifiers, first proposed by Aviram and Ratner,1 have
been studied and demonstrated in different metal-molecule
metal structures.2–5 While different rectification mechanisms
have been identified and discussed, the common feature
characterizing such molecular electronics devices is an un-
derlying structural asymmetry that leads to different potential
profiles along the junction for the opposite bias directions.

Motivated by the growing interest in nanomechanics—
construction and study of nanolevel mechanical devices—we
investigate theoretically the analogous concept of a molecu-
lar level heat rectifier, a molecular device that conducts en-
ergy current asymmetrically upon reversing the temperature
bias. We discuss the origin of such heat transport asymmetry,
essentially asymmetric phonon transfer for forward and re-
verse temperature bias, its dependence on junction character-
istics, and its relationship to the way the temperature is dis-
tributed along the junction under steady-state operation.
Other mechanical devices that have been discussed recently
are heat engines,6–8 motors,9,10 and even a mechanical analog
of a laser.11 Experimentally, nanostructures have become ac-
cessible for heat transfer measurements,12,13 enabling study
of the thermal conductivity of single molecules, e.g., a car-
bon nanotube.14

From the theoretical perspective, different aspects of
heat transport in nanojunctions including single molecule de-
vices were investigated in recent years. Some of these studies
that are relevant to the present discussion are reviewed be-
low.

Historically, intramolecular vibrational redistribution
sIVRd phenomena in vibrationally excited molecules have
been subjects of intensive studies in the past two decades.
The main objective of these investigations is to expose the
important vibrational pathways to chemical reactions and the
possibility to control such processes.15 The key issues in
these studies involve the transfer of vibrational energy be-
tween different molecular modes and the relaxation of local
mode excitations to the rest of the molecular vibrational sub-
space. Of particular interest are the recent investigations by
Schwarzeret al.16,17 of IVR in bridged azulene-anthracene
structures. This work constitutes an important link between
IVR measurements and the traditional concepts of heat trans-
port theory: the coefficient of thermal conductivity and dif-
fusive versus ballistic modes of energy transfer.

From a different perspective, there has been a long-time
effort aimed at understanding the relationship between pho-
non transport in constrained nanosystems, specifically one-
dimensional s1Dd conductors, and the phenomenological
Fourier law of heat conduction,J=−K¹T, that connects the
heat fluxJ to the local temperature gradient¹T through the
thermal conductanceK. The ultimate goal of these investiga-
tions is to derive this macroscopic law from statistical-
mechanics arguments, and find how it applies in the low-
dimensional regime. Following Rieder, Lebowitz, and Lieb18

and Zürcher and Talkner19 who found that heat flux in har-
monic systems is proportional to the temperature difference
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rather than the temperature gradientsimplying that thermal
conductivity diverges with increasing chain lengthd, there
were many studies of “anomalous heat conduction” in 1D
systems and models for recovery of the Fourier law were
investigated.20–25 For a recent review see Ref. 26.

Quantum aspects of heat conductance were theoretically
investigated and experimentally manifested in recent years.
The existence of a universal quantum of thermal conduc-
tance,g=p2kB

2T/3h, has been predicted27 and experimentally
confirmed.28 Here kB and h are the Boltzmann and Planck
constants, respectively, andT is the temperature. For ballistic
phonon transfer, a two-terminal Landauer-type formula for
thermal flux has been derived,27,29,30and later generalized to
the four-terminal case.31 This relationship, an analog of the
Landauer formula for electrical conduction in
nanojunctions,32 describes energy transfer between twofleft
sLd, right sRdg thermal reservoirs maintained at equilibrium
with the temperaturesTL andTR, respectively, in terms of the
temperature-independent transmission coefficientTsvd for
phonons of frequencyv,

J =E TsvdfnLsvd − nRsvdgvdv. s1d

Here nKsvd=sebKv−1d−1; bK=skBTKd−1; K=L ,R s";1d are
the Bose Einstein distribution functions characterizing the
reservoirs.

BecauseTsvd is temperature independent for ballistic
transport, Eq.s1d is symmetric to interchanging the reser-
voirs temperatures. Consequently, systems obeying this ex-
pression, for example, harmonic chains, cannot show recti-
fying behavior irrespective of any structural asymmetry. A
natural question is then what are the minimal conditions
needed in order to manifest heat rectification. Similar con-
cerns were raised for molecular level electrical rectifiers,
where it was established that in order to exhibit diodelike
behavior the junction has to combine geometric asymmetry
with a characteristic voltage drop distribution across the mo-
lecular bridge.33,34 It is important to note that this depen-
dence on the electrostatic potential distribution that itself de-
pends on the bias direction is a manifestation of electron-
electron interaction, i.e., of nonlinear interactions in the
junction.

In this work we focus on heat transfer in nanojunctions
and show that similarly to the electrical case, two conditions
are required forheatrectification: first, the conducting chain
needs to have some built-in asymmetry and, secondly, non-
linear interactions should govern the energy transfer. When
these conditions are both satisfied, they may result in an
internal temperature drop across the molecule with different
temperature profiles for forward and reversed temperature
biases. Terraneoet al.35 had demonstrated these effects on a
lattice made of a highly nonlinear region sandwiched be-
tween two anharmonic and asymmetric domains using clas-
sical Langevin simulations. Recently, we have also theoreti-
cally analyzed similar effects on a simplified two-level
system simulating a single highly anharmonic vibrational
mode.36 There, in analogy to Ref. 37, the system asymmetry
was introduced by imposing different coupling strengths to
the L andR thermal reservoirs.

In this paper we first give a detailed account of the sim-
plified model discussed in Ref. 36. We then extend the model
to study heat rectification on a molecular junction with an
internal structure. We show that heat rectification can occur
in junctions characterized by inherent structural asymmetry,
as opposed to earlier studies where the asymmetry stemmed
from different couplings to the heat reservoirs. In all cases,
nonlinearity, such as associated with anharmonic interac-
tions, is required as discussed above. We note in passing that
directionally biased heat conduction will be potentially use-
ful in electrical nanodevices where efficient heat transfer
away from the conductor center is crucial for proper func-
tionality and stability. Similarly, directed energy flow in bio-
molecules, such as proteins,38 may play a role in controlling
conformational dynamics.

The paper is organized as follows: in Sec. II we study
the rectification emerging from system-reservoir asymmetric
coupling. We analyze the simplest nonlinear conductor: a
two-level systemsTLSd, for which the heat conduction be-
havior can be resolved using analytic approximations. We
also exemplify rectification on a realistic molecular chain
using Langevin dynamics simulations. In Sec. III we show
that a molecule with an asymmetric internal level structure
can operate as an asymmetric heat conductor molecule made
of unequal two separate segments. Section IV concludes.

II. RECTIFICATION: ASYMMETRIC SYSTEM-BATH
COUPLING

Here we present analytical and numerical results that
indicate that an anharmonic molecular system coupled asym-
metrically to two thermal baths can operate as a heat rectifier.
We study two anharmonic models. The first is essentially a
generalization of the spin-boson model39 in which a two-
level system is coupled to two equilibrium boson baths main-
tained at different temperatures. Such a two-level system
may be a truncated version of a general anharmonic system,
e.g., an anharmonic vibration or a local molecular libration,
where at low temperature only the lowest quantum states are
relevant. We study two variants of the model and show that if
asymmetry is built into either one by employing different
spin-boson coupling strengths for the two baths, thermal rec-
tification naturally sets in. We also study heat transfer
through a chain ofN identical anharmonic oscillators con-
necting asymmetrically two heat baths by using the classical
Langevin dynamics. Also in this case, with no spectral trun-
cation involved, we find rectifying transport behavior. This
shows that thermal rectification is a general characteristic of
anharmonic asymmetric molecular junctions.

A. Spin-boson model I

A TLS may be considered as a model of the highest
anharmonicity. We describe its interaction with two thermal
baths using a spin-boson Hamiltonian,

H = E0u0lk0u + E1u1lk1u + HB + HMB, s2d

HB = HL + HR; HK = o
jeK

v jaj
†aj ; K = L,R, s3d
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HMB = Bu0lk1u + B†u1lk0u; B = BL + BR, s4d

whereaj
†, aj are the boson creation and annihilation operators

associated with the phonon modes of the two harmonic baths
and BK are the bath operators, e.g., for a linear coupling
model,

BK = BK
† = o

jeK

ājxj, xj = s2v jd−1/2saj
† + ajd, K = L,R. s5d

Asymmetry is incorporated by takingā jeLÞ ā jeR. An impor-
tant attribute of this model, shared by most studied transport
models of this kind, is that the transport processes at the two
system-bath interfaces are independent of each other and can
be handled separately to a very good approximation.

It is convenient to regard the models2d–s5d as a special
case of anN equally spaced states system with nearest-
neighbor coupling through the two heat bathsHMB

=on=1
N−1ÎnsBun−1lknu+B†unlkn−1ud. In particular theN→`

limit with equal-energy spacing corresponds to a harmonic-
oscillator bridge connecting the baths. Equations5d corre-
sponds in the latter case to the bilinear coupling model with
the oscillator-bath interactions given byHMB=o jeKajxjx sK
=L ,Rd. x is the coordinate of the bridge oscillator anda j

=ā js2mv0d1/2 where m and v0=E1−E0 are the oscillator
mass and frequency, respectively.

The reduced dynamics in the space of theN-level system
can be derived following standard procedures, e.g., the Red-
field approximation40 for the weak system-bath coupling
limit. The resulting kinetic equations for the state probabili-
ties, in the Markovian limit and assuming that coherences
can be disregarded on the relevant time scale, can be written
in the unified form,

Ṗn = − fnkd + sn + 1dkuXngPn + nkuPn−1

+ sn + 1dkdXnPn+1, s6d

whereXn=dn,0 for the two-levelsn=0,1d system andXn=1
for the harmonic-oscillatorsn=0,… ,`d case. The rate con-
stants for vibrational excitation and relaxation are given by

ku =E
−`

`

dte−iv0tkBstdB†s0dl,

kd =E
−`

`

dte−iv0tkB†stdBs0dl. s7d

The average is done over the thermal distributions of the
baths. Equations6d is obtained irrespective of the fact that
the average ins7d may involve several baths kept at different
temperatures.41 Specifying to the case of two baths with tem-
peraturesTL=1/kBbL andTR=1/kBbR and to linear coupling,
and assuming that there is no correlation between the two
thermal baths leads to

Ṗn = − fnkL + nkR + sn + 1dskLe−bLv0 + kRe−bRv0dXngPn

+ sn + 1dskL + kRdXnPn+1 + nskLe−bLv0 + kRe−bRv0dPn−1

s8d

with

kL = GLsv0df1 + nLsv0dg, kR = GRsv0df1 + nRsv0dg, s9d

whereGL andGR are the temperature-independent rates given
by

GKsvd =
p

2mv2 o
jPK

a j
2dsv − v jd, K = L,R. s10d

In what follows we assume that heat transfer is domi-
nated by resonance energy transmission and that dephasing
processes are fast enough so that the dynamics is fully de-
scribed by the master equations8d. The heat conduction
properties in this limit are then obtained from the steady-
state solution of this equation.

Consider first the harmonic modelsN→`d. A steady-

state solution of Eq.s8d is obtained by puttingṖn=0 for all n.
On searching a solution of the formPn~yn we get a qua-
dratic equation fory whose physically acceptable solution is

y =
kLe−bLv0 + kRe−bRv0

kL + kR
. s11d

This leads to the normalized state populations,

Pn = s1 − ydyn, s12d

and to the average steady-state populationfusing the linear
coupling form, Eq.s9dg,

PT = o
n=0

`

nPn =
GLnL + GRnR

GR + GL
, s13d

where the thermal distributions and the rate coefficients are
evaluated at the frequencyv0. The steady-state heat flux is
obtained from

J = − v0o
n=1

`

nskLPn − kLPn−1e
−bLv0d

= v0o
n=1

`

nskRPn − kRPn−1e
−bRv0d, s14d

where the positive sign indicates current going from left to
right. Using Eqs.s9d, s11d, ands12d we find

J = v0
GLGR

GR + GL
snL − nRd. s15d

This is a special case of Eq.s1d fwith Tsvd=GLGRsGL

+GRd−1dsv−v0d, consistent with our resonance energy-
transfer assumptiong, which obviously cannot exhibit any
rectifying behavior.42 Analogous results are obtained for
electron transmission through double barrier resonance tun-
neling devices,43,44where in the wideband regime the electric
current is proportional toGLGR/ sGR+GLd, GL/R is the elastic
coupling to the leads, irrespective of inelastic effects.

Next consider the two-level case,N=2. The two steady-
state equations obtained from Eq.s8d yield

P1 =
kLe−bLv0 + kRe−bRv0

kLs1 + e−bLv0d + kRs1 + e−bRv0d
, P1 = 1 − P0, s16d

and the analog of Eq.s14d is
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J = − v0skLP1 − kLP0e
−bLv0d = v0skRP1 − kRP0e

−bRv0d.

s17d

This leads to

J = v0
kLkRse−bLv0 − e−bRv0d

kLs1 + e−bLv0d + kRs1 + e−bRv0d
s18d

and, using Eq.s9d, results in

J = v0
GLGRsnL − nRd

GLs1 + 2nLd + GRs1 + 2nRd
. s19d

Equations19d is an expression for the energy current through
our two-level system. In contrast with the harmonic-
oscillator results15d, Eq. s19d is not antisymmetric under the
exchange ofTL andTR if GLÞGR. Indeed, defining the asym-
metry parameterx such that

GL = Gs1 − xd, GR = Gs1 + xd, − 1ø x ø 1, s20d

we find

DJ ; JsTL = Th;TR = Tcd + JsTL = Tc;TR = Thd

=
v0Gxs1 − x2dsnh − ncd2

s1 + nh + ncd2 − x2snh − ncd2 , s21d

where Tc and Th are the temperatures of the cold and hot
reservoirs andnc andnh are the Bose–Einstein thermal dis-
tributions calculated at the respective temperatures. This re-
sult shows several interesting features:

sad In the deep quantum limit,Th, Tc!v0/kB, rectification
decreases exponentially with the frequency and the in-
verse temperatures,DJ,v0se−v0/kBTh−e−v0/kBTcd2.

sbd In the opposite, highly classical limit,Tc, Th@v0/kB,
Eq. s21d yields DJ,v0DT2/ sTc+Thd2, with DT=Th

−Tc, implying that asymmetry increases linearly with
sDTd2 and v0. The same dependence onsDTd2 is ob-
tained in theDT→0 limit.

scd In the intermediate regime,Tc, Th,v0/kB, rectification
decreaseswith v0, DJ,DT2/v0.

sdd Noting that signsDJd=signsxd it follows from Eq. s20d
that the current is larger when the bridge links more
strongly to the colder reservoir than when it links more
strongly to the hotter one. This behavior can be under-
stood by defining an effective, temperature-dependent

coupling constantG̃K=GKs1+2nKd; K=L, R. Then the
heat current from Eq.s19d can be recast in the form
similar to the harmonic expressions15d,

J = v0
G̃LG̃R

G̃L + G̃R

F nL − nR

s1 + 2nLds1 + 2nRdG . s22d

For GL@GR andTL.TR, for example, the energy cur-
rent is proportional to the effective coupling at the right
side, orJ~Tc in the classical limit. When reversing the
temperature bias we getJ~Th. Thus the ratio between
the oppositely going currents is,Tc/Th.

Figure 1 depicts an example of this behavior. Shown is
the ratioDJ/J0 swith J0= uJsx=0dud plotted against the tem-
peratureTc, while keepingTh fixed. In Fig. 2 we show the

rectification ratio against the asymmetry parameterx for dif-
ferent TLS frequencies. Note that the value ofG is not im-
portant when we consider rectification ratio, and that the heat
current for the symmetricGL=GR system is at the
1014 cm−1/s range.

B. Spin-boson model II

Next we consider another variant of the two-bath spin-
boson model, taking the Hamiltonian to be

H = E0u0lk0u + E1u1lk1u + V0,1u0lk1u + V1,0u1lk0u

+ o
jeL,R

v jaj
†aj + o

jeL,R
xjsa0,ju0lk0u + a1,ju1lk1ud. s23d

The two boson baths,L and R, are maintained at different
temperaturesTL and TR. Note that ifTL=TR, i.e., when the
TLS is coupled to a single thermal bath, Eq.s23d represents
a standard spin-boson Hamiltonian used, e.g, in the electron
transfer problem. Using the small polaron transformation,45

FIG. 1. Heat rectification by a TLS bridge in the linear coupling model,
described by Eqs.s2d–s21d. The ratioDJ/J0 is plotted againstTc while the
hot reservoir is kept at a fixed temperature:Th=150 K sdashedd, Th

=300 K sfull d andTh=450 K sdash-dottedd, v0=200 cm−1, andx=1/2. The
inset showsDJ for the three cases.

FIG. 2. The ratioDJ/J0 vs the asymmetry parameterx for several two-level
bridges characterized by different level spacingv0: dashed line v0

=200 cm−1; full line v0=400 cm−1; dotted linev0=600 cm−1. The bath tem-
peratures areTh=400 K andTc=300 K.
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H̃ = UHU−1, U = U0U1, s24d

where, forn=0, 1,

Un = exps− i unlknuVnd, Vn = Vn
L + Vn

R, s25d

Vn
K = i o

jPK

ln,jsaj
† − ajd sK = L,Rd, ln,j = s2v j

3d−1/2an,j

s26d

leads to

H̃ = E0u0lk0u + E1u1lk1u + V0,1u0lk1ueiV + V1,0u1lk0ue−iV

+ o
jeL,R

v jaj
†aj + Hshift, s27d

where V=V1−V0 and Hshift=−s1/2do jv j
−2sa0,j

2 u0lk0u
+a1,j

2 u1lk1ud may be henceforth incorporated into the zero-
order energies.

The Hamiltonians27d is similar to that defined in Eqs.
s2d–s4d, however, here the system-bath couplings appear as
multiplicative factors rather than as additive contributions in
the interaction term, therefore the transport processes associ-
ated with these couplings are nonseparable. The dynamics
may still be readily handled. For smallV sthe “nonadiabatic
limit” d the Hamiltonians27d implies again rate equations6d
with the rateskd andku given by

kd = uV0,1u2Csv0d, ku = uV0,1u2Cs− v0d, s28d

wherev0=E1−E0 andCsv0d=e−`
` dteiv0tC̃std with

C̃std = keiVstde−iVs0dl

= keifV1
Lstd−V0

Lstdge−ifV1
Ls0d−V0

Ls0dglL

3keifV1
Rstd−V0

Rstdge−ifV1
Rs0d−V0

Rs0dglR. s29d

This may be evaluated explicitly to give

C̃std = C̃LstdC̃Rstd, C̃Kstd = expf− fKstdg, K = L,R,

s30d

fKstd = o
jeK

sl1,j − l0,jd2hf1 + 2nKsv jdg

− f1 + nKsv jdge−iv j t − nKsv jdeiv j tj, K = L,R. s31d

Explicit expressions may be obtained using the short-time
approximationsvalid for o jeKsl1,j −l0,jd2@1 and/or at high
temperatured whereuponfstd is expanded in powers oft
keeping terms up to ordert2. This leads to

Csv0d =Î 2p

sDL
2 + DR

2d
expF−

sv0 − EM
L − EM

R d2

2sDL
2 + DR

2d G , s32d

wheresK=L ,Rd

EM
K = o

jeK

sl1,j − l0,jd2v j , s33d

DK
2 = o

jeK

sl1,j − l0,jd2v j
2f2nKsv jd + 1g ——→

v/kBTK→0

2kBTKEM
K .

s34d

Equations s28d–s34d provide an extension of the Marcus
nonadiabatic rate expressions46 to the case of two reservoirs
maintained at different temperatures.EM

L andEM
R are the cor-

responding reorganization energies.
Next consider the steady-state heat current in this model.

What makes this a unique transport problem is the nonsepa-
rability of the system-bath couplings that makes the proce-
dure that leads to Eq.s17d unusable. Instead we note that
CLsv0d andCRsv0d are essentially the rates affected by each
thermal reservoir separately and that from Eq.s30d Csv0d
=e−`

` dvCLsv0−vdCRsvd. It follows that the processu1l
→ u0l in which the TLS loses energyv0 can be viewed as a
combination of processes in which the system gives energy
v sor gains it ifv,0d to the right bath and energyv0−v to
the left one, with probabilityCLsv0−vdCRsvd. A similar
analysis applies to the processu0l→ u1l. The heat flux calcu-
lated as the energy transferred per unit time into the right
bath is therefore47

J = uV0,1u2E
−`

`

dvvCRsvdfCLsv0 − vdP1 + CLs− v0 − vdP0g

= uV0,1u2E
−`

`

dvvfCRsvdCLsv0 − vdP1 − CRs− vd

3CLs− v0 + vdP0g, s35d

where P0=Csv0d / fCsv0d+Cs−v0dg and P1=1−P0 are the
steady-state probabilities that the system is in state 0 or 1,
respectively.

Equation s35d can be evaluated numerically. Further
progress on the analytical level can be made by invoking the
short-time approximation in whichCsvd takes the form

CKsvd = sDK
2d−1/2 expf− sv − EM

K d2/s2DK
2dg, K = L,R.

s36d

Using this ins35d leads to

J = 4kBuV0,1u2
Î2p

sDL
2 + DR

2d3/2

e−sv0 − EM
L − EM

R d2/2sDL
2+DR

2d

1 + e2v0sEM
L +EM

R d/sDL
2+DR

2d

3EM
L EM

R sTL − TRd. s37d

It is convenient also to takeEM
L =EMs1−xd; EM

R =EMs1+xd
suxuø1d, which implies DL

2+DR
2 =2kBEMsTS−xDTd where

DT=TL−TR; TS=TL+TR. This leads to

J =
2ÎpuV0,1u2

fkBEMsTS− xDTdg3/2

e−sv0 − 2EMd2/4kBEMsTS−xDTd

1 + e2v0/kBsTS−xDTd

3EM
2 s1 − x2dkBDT. s38d

Equation s38d indeed implies asymmetric heat conduction
provided that symmetry is broken by taking different cou-
plings to the two baths, e.g., by takingxÞ0. This is illus-
trated in Fig. 3 where the ratioDJ/J0 is displayed againstx.
It is seen that the heat conduction asymmetry can be quite
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large, with its magnitude and sign strongly dependent on the
system parameters. WhenEM @v0 the heat flux is dominated
by the terme−sv0−2EMd2/4kBEMsTS−xDTd that is bigger whenDT
is negative than when it is positive, hence the negative asym-
metry in DJ. The same behavior is expected in the opposite,
EM !v0, limit. However, when 2EM .v0 andv0<kBTS, J is
dominated by the termfkBEMsTS−xDTg−3/2, implying a posi-
tive asymmetry, as seen in Fig. 3.

Another interesting characteristic of this model is the
strong dependence of the rectification ratio on the reorgani-
zation energyEM, as seen in Fig. 4. Here we find that strong
coupling implies strong rectification. This strong dependence
on the coupling strength manifests the main difference of our
model II from model I, Eqs.s2d–s21d, where the ratioDJ/J0

does not depend on the coupling strengthG f Eq. s10dg.

C. Classical Langevin dynamics

The spin-boson-type models discussed above represent
examples of “very anharmonic” systems that are simple
enough to yield detailed analytic solutions and thus insight
about the heat rectification phenomenon. It should be empha-
sized that this phenomenon is the rule, not the exception, in
anharmonic heat conduction. In order to demonstrate this

point we study next the heat conduction properties of a
model system akin to a realistic molecular chain. The system
includes a 1D highly anharmonic molecule composed ofN
identical units linking two reservoirsL andR maintained at
TL and TR. Anharmonicity is entered by using Morse-type
interactions between nearest atomic neighbors on the chain
and, as before, asymmetry is included by taking different
coupling strengths of the molecular chain to theL and R
reservoirs.

The model Hamiltonian is given by

H = s2md−1o
i=1

N

pi
2 + o

i=1

N−1

Dfe−asxi+1−xi−xeqd − 1g2

+ Dfe−asx1−ad − 1g2 + Dfe−asb−xNd − 1g2 s39d

supplemented by damping and noise terms operating on par-
ticle 1 andN to simulate the effect of two thermal baths. The
equations of motions are

ẍi = −
1

m

]H

]xi
, i = 2,3,…,N − 1,

ẍ1 = −
1

m

]H

]x1
− gLẋ1 + FLstd, s40d

ẍN = −
1

m

]H

]xN
− gRẋN + FRstd.

In these equationsa and b are constants,m is the particle
mass, and the Morse parametersD, xeq and a are based on
the alkane C-C stretch motion as detailed below. Introducing
a parametern to represent the level of anharmonicity in the
potential, we useD=88/n2 kcal/mole, a=1.88n Å−1, xeq

=1.538 Å, and m=mcarbon=12/6.0231023 g. In standard
models for alkane force fieldn=1.48 Here we artificially in-
crease the system anharmonicity by takingn.1. The other
model parameters are the friction constantgK sK=L ,Rd and
the bath temperaturesTL andTR. The latter enter through the
fluctuating Gaussian random forcesFKstd, K=L, R that rep-
resent the effect of the thermal reservoirs and satisfy
kFKstdFKs0dl=2gKkBTKdstd /m.

We takegL=gs1−xd andgR=gs1+xd, uxuø1, and as in
Figs. 1–4, study the ratio betweenDJ;JsTL=Th;TR=Tcd
+JsTL=Tc;TR=Thd andJ0;uJsx=0du where the heat current
J is calculated as the average over sites ofJi

=k−ẋis]Hi+1,i /]xidl with Hi+1,i =Dfe−asxi+1−xi−xeqd−1g2. The av-
erage is done over steady-state trajectories computed by in-
tegrating Eq. s40d using the fourth-order Runge–Kutta
method. Steady state is determined to be established when
the computed heat current is the sameswithin numerical
noised at all sites.

The results of the calculations based on this model, dis-
played in Figs. 5 and 6, show that the intrinsic nonlinearity
of the model is enough to induce asymmetry in the thermal
conduction of the asymmetrically coupledsgLÞgRd bridge.
This indicates that rectification through asymmetric chains is
a general property of highly anharmonic systems. Figure 5
shows that the rectification ratio increases when the chain
anharmonicity is artificially increased, while Fig. 6 presents

FIG. 3. Heat rectification of a TLS bridge for a nonseparable coupling,
described through Eqs.s23d–s38d. The ratioDJ/J0 is plotted as a function of
x for v0=200 cm−1 andEM =100 cm−1 sdashedd, andEM =3000 cm−1 sfull d.
The reservoir temperatures areTh=400 K andTc=300 K.

FIG. 4. The ratioDJ/J0 plotted againstEM for x=0.55 andv0=200 cm−1

sfull d, v0=400 cm−1 sdashedd, v0=600 cm−1 sdottedd, and v0=1000 cm−1

sdot-dashedd. The reservoir temperatures areTh=400 K andTc=300 K.
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the rectification obtained for different chain sizes. The in-
creased rectification by longest chains demonstrates that the
contribution of anharmonic interactions to the thermal trans-
port is becoming more important for longer molecules. Fig-
ure 7 demonstrates that the temperature drops essentially lin-
early along the chain central domain, with different slopes
under the opposite temperature biases. This stands in contrast
with harmonic chains where the temperature deviates from
the average value,sTL+TRd /2, only at the edges.18

III. RECTIFICATION BY INTERNAL ASYMMETRY
OF ANHARMONIC MOLECULAR MODELS

In the examples discussed above asymmetry was incor-
porated by taking different coupling strength between the
two thermal baths and the bridging unit. Obviously, separat-
ing the overall system into these components is to some ex-
tent a matter of choice, and what appears as asymmetry in
the contacts on one level of description may constitute struc-
tural asymmetry of the extended bridging unit in another.
Practically, structural asymmetries in molecular bridges are
easily introduced, and it is of interest to explore their effects

on the heat conduction behavior of the corresponding junc-
tion. Here we describe a molecular heat rectifier based on the
system anharmonicity andinternal molecular asymmetry,
which is now symmetrically coupled to the left and right
thermal reservoirs. Our simplified model consists of a mol-
ecule made of two coupled nonidentical spatially separated
segmentsN andM, each taken to be an anharmonic system
and each represented by local states that are eigenstates of
the isolated segment. The molecule sits as a bridge connect-
ing two macroscopic heat reservoirs of different tempera-
tures, see Fig. 8. We take each of the two molecular seg-
ments to couple directly to its neighboring reservoir, so that
the MsNd molecular residue is coupled to the leftsrightd
reservoir of temperatureTLsTRd. Direct thermal coupling be-
tween the reservoirs is assumed small and is disregarded in
our following treatment. Therefore, energy can be transferred
between the reservoirs only through theM-N contact.

For simplicity we assume that the temperature is low
enough so that each segment can be represented by its two
lowest eigenstates, i.e., each vibrational manifold is trun-
cated to include only the two lowest-energy states,um0l and
um1l of segmentM and un0l and un1l of segmentN, with the
corresponding energiesEmk

andEnk
sk=0,1d. These states are

taken orthogonal, i.e.,kmi umjl=kni unjl=di,j s j =0,1;i =0,1d
and complete in the sense thato j=0

1 umjlkmju and o j=0
1 unjlknju

FIG. 5. The asymmetry in the thermal conduction plotted as a function ofx
for a classical chain ofN atoms characterized by Eqs.s39d and s40d. The
parameters used areg=50 ps−1, Th=300 K, Tc=0 K, andN=20. The force
field parameters of Eq.s39d were modified by taking v=5sfull d, v=6
sdashedd, and v=6.75sdottedd.

FIG. 6. Same as Fig. 5 with v=6. Full, dashed, dotted, and dot-dashed lines
correspond toN=10, N=20, N=40, and N=80, respectively, withg
=50 ps−1, Th=300 K, andTc=0 K.

FIG. 7. The temperature profile for theN=80, v=6,g=50 ps−1, x=0.5 case
with TL=Tc,; TR=Th sfull d, TL=Th; TR=Tc sdashedd, whereTh=300 K and
Tc=0 K.

FIG. 8. A schematic representation of the model system described in Eqs.
s42d–s55d: two molecular speciesM and N whose vibrational spectrum is
truncated to include only the two lowest states. The molecule is placed
between two heat reservoirs of different temperatures.
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are unities in their respective subspaces. Asymmetry is intro-
duced by takingvM ÞvN: vN=En1

−En0
; vM =Em1

−Em0
ssee

Fig. 8d.
For definiteness takeTL.TR and assume that both tem-

peratures are low enough so that the bridge occupies mainly
its ground state. Energy transfer through the system may be
viewed as a three-step process,

um0n0l→
1

um1n0l→
2

um0n1l→
3

um0n0l. s41d

In step 1 the left heat reservoir excites theM segment to
the upper vibrational stateum1l while theN segment remains
in its ground state. Step 2 is anM→N energy-transfer pro-
cess in whichM returns to its ground state whileN is ex-
cited. Finally, in step 3N returns to its ground state, trans-
ferring its energy to the right heat reservoir. A model
Hamiltonian that describes this process consists of four
terms,

H = HS+ HB + F = H0 + HM−N + HB + F. s42d

The system HamiltonianHS includes the truncated seg-
ment Hamiltonians and the intersegment coupling,

H0 = o
j=0,1

Emj
umjlkmju + o

j=0,1
Enj

unjlknju, s43d

HM−N = Vum0,n1lkm1,n0u + Vum1,n0lkm0,n1u. s44d

The Hamiltonian describing the thermal bathHB is repre-
sented as before by a collection of harmonic oscillatorsHB

=olvlal
†al +orvrar

†ar. The molecule-reservoirs couplingF is
given by

F = FL
†um0lkm1u + FLum1lkm0u + FR

†un0lkn1u + FRun1lkn0u,

s45d

whereFKsK=L ,Rd are the bath operators. A specific model
for this interaction can be, for example,

FK = o
jeK

a j

Î2v j

saj
† + ajd, K = L,R. s46d

The coefficientsa js j = l ,rd are the molecule-reservoir cou-
pling strengths. While in Sec. II asymmetry was incorporated
by taking a js jeLdÞa js jeRd, here they are taken to be the
same. With this form of the coupling, Eqs.s45d ands46d, the
present model is closely related to the first spin-boson con-
figuration of Sec. II, see Eqs.s4d and s5d. Indeed we show
below that these two heat transport models are related.

We proceed by defining the four statessual
= um0,n0l , ubl= um0,n1l , ucl= um1,n0l , udl= um1,n1ld. These are
eigenstates of a system comprising the two uncoupled mo-
lecular segments with energiesEa=Em0

+En0
; Eb=Em0

+En1
;

Ec=Em1
+En0

; Ed=Em1
+En1

. In statesual and udl both TLS
are in their ground or excited vibrational states, respectively,
whereasubl and ucl represent states in which one segment is
excited while the other is in its ground state. The different
components of the Hamiltonians42d in this representation
are

H0 = Eaualkau + Ebublkbu + Ecuclkcu + Edudlkdu, s47d

HM−N = Vublkcu + Vuclkbu, s48d

HB = o
l

vlal
†al + o

r

vrar
†ar , s49d

F = FL
†fualkcu + ublkdug + FLfuclkau + udlkbug

+ FR
†fualkbu + uclkdug + FRfublkau + udlkcug. s50d

Let C be the matrix that diagonalizes the molecular Hamil-
tonianHS=H0+HM−N, i.e.,

HS= C−1DC, s51d

whereD is the diagonal eigenenergy matrix. The matrixC
transforms between the diagonal basissualuilu jludld and the
local basissualublucludld. For the details see the Appendix. In
the new basis the molecular states are uncoupled and transi-
tions between them can be caused only by their mutual in-
teractions with the thermal baths.

Next we calculate the heat current flowing through the
system. We focus on the regime of incoherent transport, as-
suming that dephasing is fast so that the dynamics can be
described by rate equationssmaster equationd for the popu-
lationsPs,s=sa, i , j ,dd of the diagonalized states. This master
equation takes the form

Ṗa = ski→a
L + ki→a

R dPi + skj→a
L + kj→a

R dPj − ska→i
L + ka→i

R

+ ka→ j
L + ka→ j

R dPa,

Ṗi = ska→i
L + ka→i

R dPa + skd→i
L + kd→i

R dPd − ski→a
L + ki→a

R

+ ki→d
L + ki→d

R dPi , s52d

Ṗj = ska→ j
L + ka→ j

R dPa + skd→ j
L + kd→ j

R dPd − skj→a
L + kj→a

R

+ kj→d
L + kj→d

R dPj ,

Ṗd = ski→d
L + ki→d

R dPi + skj→d
L + kj→d

R dPj − skd→i
L + kd→i

R

+ kd→ j
L + kd→ j

R dPd,

where the explicit expressions for the rates constants are
given in the Appendix. For example, the rate coefficientka→i

L

for the ual→ uil excitation process driven by the left heat
reservoirs is

ka→i
L = 2puC2,3u2rLsEi,adnLsEi,adU al

2

2vl
U

Ei,a

. s53d

It is expressed in terms of the matrix elements ofC, defined
in Eq. s51d, theL reservoir density of modesrLsEd, the ther-
mal occupation of the bath statesnLsEd, and the system-bath
coupling strengthal, all calculated at the energy difference
Ei,a;Ei −Ea.

The steady-state solution of Eq.s52d is obtained by tak-
ing the time derivatives in Eq.s52d to zero and applying the
probability conservation conditionPm0

+Pm1
=1; Pn0

+Pn1
=1 that implies that each segment must occupy either the
lower or the upper state. In the diagonalized basis this con-
dition is translated intoPa+Pi +Pj +Pd=1. The heat current
is defined in the incoherent regime as the net heat exchange
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between the molecular segments and the reservoirs. It is
given by multiplying the microscopic rate of population
transfer by the energy transferred. In the following expres-
sion the heat current is calculated at the left contact and a
sign notation is adopted by which positivesnegatived terms
represent excitationsrelaxationd processes on the molecule,

J = fska→i
L Ei,a + ka→ j

L Ej ,adPa + ki→d
L Ed,iPi + kj→d

L Ed,jPjg

− fki→a
L Ei,aPi + kj→a

L Ej ,aPj + skd→i
L Ed,i + kd→ j

L Ed,jdPdg.

s54d

Consequently, a positiveJ is associated with the heat flux
from left to right. An equivalent expression forJ can be
written at the right contact,

J = − fska→i
R Ei,a + ka→ j

R Ej ,adPa + ki→d
R Ed,iPi + kj→d

R Ed,jPjg

+ fki→a
R Ei,aPi + kj→a

R Ej ,aPj + skd→i
R Ed,i + kd→ j

R Ed,jdPdg.

s55d

At steady state Eqs.s54d and s55d yield identical results.
The rectifying behavior of the model is next analyzed in

terms of the ratiof ;DJ/Js where DJ;JsTL=Th;TR=Tcd
+JsTL=Tc;TR=Thd and Js;uJsTL=Th;TR=Tcdu+ uJsTL

=Tc;TR=Thdu and whereTh andTc denote the high and low
temperatures that characterize the thermally biased junction.
In the limit f =0 there is no rectification, whileuf u=1 implies
full rectification, where heat can be transferred only in one
direction. Figures 9 and 10 present our results. The typical
parameters used arevM, vN<100–1000 cm−1 and coupling
V in the range of 10–50 cm−1. In the calculation of thermal
rates, such as Eq.s53d ssee the Appendixd, we employ the
Debye model for the reservoir density of modes,

rKsvd = NB
v2

2vc
3e−v/vc, K = L,R. s56d

HereNB is the number of the reservoir modes andvc is the
Debye cutoff frequency, taken to be identical for the two
reservoirsL and R. Within this model the rate coefficient
s53d becomes

ks8→s
L

~ Upal
2

vl
U

v

nLsvdrLsvd = kve−v/vcnLsvd, s57d

where v=Es−Es, and k;NBspal
2/2vc

3dv is assumed to be
equal for the two reservoirs and for all modes. In the calcu-
lations depicted in Figs. 9 and 10 we have takenk=1 and
have used the cutoff frequencies in the range ofvc

=200–800 cm−1. With these parameters the resulting rate
constants are abouts50–300dnLsvd cm−1 for v in the 100
-1200-cm−1 range.

Figure 9 shows the rectification ratiof =DJ/JS as a func-
tion of the level spacingvM of the left TLS segment for
different vN values: 200, 600, and 1000 cm−1. The param-
etersV=50 cm−1, Tc=300 K, Th=500 K, andvc=400 cm−1

are used in this calculation. The linef =0 is also plotted to
enable easy identification of points of no rectification. We
find that the ratiof changes its sign from positive to negative
and again to positive as the frequencyvM is varied. Note that
positive f means that in absolute values, the current is larger
whenTL.TR than in the opposite case.

In spite of this apparently complicated dependence on
vM, this behavior of the rectification ratiof is in accordance
with the results of the first spin-boson model presented in
Sec. II. There we found that the heat current is larger when
the bridge links more strongly to the colder reservoir than
when it is coupled more strongly to the hotter one. This
observation holds also here, however, in the present case, the
effective molecule-bath couplings, as expressed by the asso-
ciated rate coefficients, e.g., Eq.s57d, have a complicated
structure. As a simplification we note that for the range of
temperatures and frequencies used, the thermal factornK is
of the order of one. The system-bath interaction can therefore
be fully absorbed in the frequency-dependent functionysvd
=ve−v/vc so thatks8→s

L ~ysvd, see Eq.s57d. This function is
plotted in the inset of Fig. 9 forvc=400 cm−1. Below its
maximum atv=vc the functionysvd gets the same value at
two different frequencies. For example,ysv=200d=ysv
=700d. We expect therefore that for these two frequencies the
effective system-bath coupling should be similar. This infor-
mation enables us to interpret the behavior off in Fig. 9:
while the frequency of the right TLS segment is held fixed,

FIG. 9. The ratioDJ/Js plotted against the frequencyvM for different fre-
quencies of theN component:vN=200 cm−1 sdashedd, vN=600 cm−1 sfull d,
and vN=1000 cm−1 sdot-dashedd. Th=500 K, Tc=300 K, and
vc=400 cm−1. Inset: the functionysvd=ve−v/vc vs v for cutoff frequency
vc=400 cm−1.

FIG. 10. Rectification ratio as a function ofTc. The hot bath is maintained at
Th=150 K sdashedd; Th=300 K sfull d; Th=500 K sdot-dashedd. Other pa-
rameters arevM =1000 cm−1, vN=300 cm−1, and vc=400 cm−1. Inset: the
sum of thesoppositely goingd heat currents for the corresponding cases.
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i.e., the effective interaction to the right reservoir is constant,
the frequency of the left TLS segment is varied, modifying
effectively the coupling strength to theL bath. Thus, for
vN=200 cm−1, the effective coupling to theL bath is smaller
than that to theR bath if vM ,200 cm−1, larger than it for
200,vM ,700 and again smaller forvM .700 cm−1. For
these ranges we expect thereforessimilarly to the separable
single TLS modeld to obtain positive rectification ratio, nega-
tive and again positive values, respectively. Indeed we find in
Fig. 9 sdashed lined the following ranges of behavior:

f . 0 for 0, vM , 200,

f , 0 for 200, vM , 580, s58d
f . 0 for vM . 580.

The same rule is obeyed forvN=600 cm−1 sfull lined, where
here asys600d,ys250d, we expect to get zero rectification
also for vM =250 cm−1. For 250 cm−1,vM ,600 cm−1, the
effective coupling between the left bath and its neighboring
TLS segment is stronger than the corresponding coupling on
the right andf should be negative, as indeed observed in Fig.
9. Similar arguments can explain the dashed-dottedvN

=1000 cm−1 curve. Smaller values of the coherent coupling
V and larger cutoff frequencies lead basically to the same
behavior.

It should be emphasized that the above argument is only
qualitative. First, the frequency dependence of the occupa-
tion factors in the rate constant cannot really be ignored,
particularly not in the low- or very high-temperature re-
gimes. Also, the actual calculation is done in the diagonal-
ized representations where the states are coupled to both hot
and cold reservoirs, and arguments based on the local state
representation picture can provide only qualitative, though
intuitively appealing, understanding.

Finally, Fig. 10 presents the temperature dependence of
rectification. We get the results similar to those observed in
Fig. 1 for the separable TLS with the asymmetrical coupling.
The inset shows for reference the absolute value ofDJ.

To conclude this section we emphasize three observa-
tions: sid asymmetry in the present model was incorporated
via inherent molecular asymmetry that indirectly controls the
effective molecule-bath coupling.sii d Even in the presence of
such structural asymmetry rectification will not be observed
when the effective system-bath couplings at the right and left
contacts are the same.siii d Large rectification ratios appear
for vM @vN or vN@vM. However, for such cases the abso-
lute currentJ may be small.

IV. CONCLUSIONS

While most theoretical investigations on nanowire trans-
port focus on electronic conduction properties, thermal trans-
port characteristics of these devices are also of interest for
various applications. We have focused here on molecular
level heat rectifiers, showing partial inhibition of heat flow in
one direction of the temperature bias, due to asymmetric
nonlinear interactions. This effect cannot exist in harmonic
chains, even in the presence of structural asymmetry. Taking
into account anharmonic interactions, we have described
several types of heat rectifiers, where asymmetry was im-

posed either through different coupling to the contacts or by
internal molecular asymmetry. In the first model anharmonic-
ity results from the character of a two-level system and
asymmetry stems from different interaction strengths with
the thermal baths. Two variants of this spin-boson model
were considered: separable, where the reservoirs interact ad-
ditively with the bridge, and nonseparable. For both cases
approximate analytical solutions for the heat current/
temperature-bias characteristics of the junction were ob-
tained. We have also demonstrated numerically, using Lange-
vin dynamics simulations, that an anharmonic molecular
chain coupled asymmetrically to the thermal baths, rectifies
heat, and that this effect is stronger for longer chains. Asym-
metrical coupling to the two thermal reservoirs can be imple-
mented by using different thermal contacts, either through
different coupling strengths or through the differences in the
Debye temperatures of these contacts. The latter affects the
matching between the vibrational spectra of the bridge and
the reservoirs. Finally, we have considered a model where
asymmetry is related to the internal level structure of the
molecule. In the example studied this asymmetry reflects the
asymmetrical spatial organization of molecular nuclear mo-
tions. We have explained the nontrivial rectification behavior
of this model in terms of an effective system-bath coupling.

In conclusion, we have found that heat rectification is a
basic property of any realistic asymmetric junction, since
vibrational anharmonicity is always presented at some de-
gree. Clearly, for a practical device, this kind of behavior
should be optimized by controlling the structural
parameters.49

ACKNOWLEDGMENTS

This research was supported by the Israel National Sci-
ence Foundation, by the U.S.—Israel Binational Science
Foundation and by the Wolkswagen Foundation.

APPENDIX: DERIVATION OF THE MASTER EQUATION
†EQ. „52…‡ AND THE RATE CONSTANTS

We derive here the master equation Eq.s52d from the
model Hamiltonian Eqs.s47d–s50d and give the explicit ex-
pressions for the rate constants. We start by diagonalizing the
molecular HamiltonianHS, defined in Eqs.s47d and s48d,
given in terms of the statesual,ubl,ucl,udl. Note that only the
statesubl and ucl are coupled to each other, while the states
ual andudl are already eigenstates of the system Hamiltonian.
DiagonalizationHS=C−1DC leads to the new four eigenvec-
tors denoted byual,uil,u jl,udl, related to the old basis through

ual = ual,

ubl = C2,2uil + C2,3u jl,

sA1d
ucl = C3,2uil + C3,3u jl,

udl = udl,
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whereCij are thei j elements of the transformation matrixC. The elements of the diagonal matrixD are the relevant molecular
energy levels,Ea, Ei, Ej, andEd. The system-bath interaction term, Eq.s50d, is next written in terms of the diagonalized basis,

FL
†fualkcu + ublkdug = FL

†fC3,2
* ualki u + C3,3

* ualk j u + C2,2uilkdu + C2,3u jlkdug,

FLfuclkau + udlkbug = FLfC3,2uilkau + C3,3u jlkau + C2,2
* udlki u + C2,3

* udlk j ug, sA2d

FR
†fualkbu + uclkdug = FR

†fC2,2
* ualki u + C2,3

* ualk j u + C3,2uilkdu + C3,3u jlkdug,

FRfublkau + udlkcug = FRfC2,2uilkau + C2,3u jlkau + C3,2
* udlki u + C3,3

* udlk j ug.

The complete Hamiltonian in its diagonalized form is

H = HB + H̃S+ F, sA3d

where the bath termHB is given in Eq.s49d. The system Hamiltonian is

H̃S= Eaualkau + Eiuilki u + Eju jlk j u + Edudlkdu. sA4d

The molecule-reservoir coupling terms are given insA2d. The master equations describing the dynamics of the molecular states
are written next. We assume that the dynamics is well described by the states population and that coherent effects can be
neglected. Systematic derivation of the system equations of motion is done by applying the Redfield approximation,40 neglect-
ing the nondiagonal terms of the density matrix, assuming their fast decay. This leads to the rate equations,

Ṗa = ski→a
L + ki→a

R dPi + skj→a
L + kj→a

R dPj − ska→i
L + ka→i

R + ka→ j
L + ka→ j

R dPa,

Ṗi = ska→i
L + ka→i

R dPa + skd→i
L + kd→i

R dPd − ski→a
L + ki→a

R + ki→d
L + ki→d

R dPi , sA5d

Ṗj = ska→ j
L + ka→ j

R dPa + skd→ j
L + kd→ j

R dPd − skj→a
L + kj→a

R + kj→d
L + kj→d

R dPj ,

Ṗd = ski→d
L + ki→d

R dPi + skj→d
L + kj→d

R dPj − skd→i
L + kd→i

R + kd→ j
L + kd→ j

R dPd,

where Pk, sk=a, i , j ,dd are the state populations. The rate
coefficients are given as Fourier transform of the bath corre-
lation functions. For example,

kj→a
L = uC3,3u2E

−`

`

e−iEj ,atkFLs0dFL
†stdldt. sA6d

In the linear coupling model, using Eq.s46d, this leads to

kj→a
L = uC3,3u2E

−`

`

e−iEj ,ato
l

al
2

2vl

3hnLsvlde−ivlt + fnLsvld + 1geivltjdt

= uC3,3u2o
l

pal
2

vl
hnLs− Ej ,addsEj ,a + vld

+ fnLsEj ,ad + 1gdsEj ,a − vldj sA7d

and an analogous expression at the right side,

kj→a
R = uC2,3u2E

−`

`

e−iEj ,atkFRs0dFR
†stdldt

= uC2,3u2o
r

par
2

vr
hnRs− Ej ,addsEj ,a + vrd + fnRsEj ,ad

+ 1gdsEj ,a − vrdj. sA8d

Note that though in principle we have to trace over both
reservoir degrees of freedom, in practice in the linear cou-
pling model we trace always only on one of the thermal
baths: in Eq.sA7d over theL reservoir and insA8d over the
R side. There are no mixed contributions such askFLFRl
since these terms are zero for the system-bath interaction
model s45d and s46d. In the limit where the couplingV is
small compared to the vibrational frequencies, the following
inequalities hold:

Ej . Ea, Ei . Ea. sA9d

Antirotating wave terms are therefore neglected and the rate
constantsA7d is written as

kj→a
L = uC3,3u2fnLsEj ,ad + 1grLsEj ,adUpal

2

vl
U

vl=Ej ,a

, sA10d

whererL is the density of states of theL reservoir. The rest
of the rate constants in the master equationssA5d are calcu-
lated in an analogous way. They depend on the diagonaliza-
tion elementsC, the molecule-reservoir coupling parameters
al and ar, the reservoir density of vibrational statesrKsEd,
K=L, R, and the bath thermal distribution. Denoting
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lLsEd ; U al
2

2vl
U

E

, lRsEd ; U ar
2

2vr
U

E

. sA11d

The rate constants insA5d then take the form

ka→i
K = 2plKsEi,adrKsEi,adnKsEi,adfuC2,3u2dL,K

+ uC2,2u2dR,Kg,

ka→ j
K = 2plKsEj ,adrKsEj ,adnKsEj ,adfuC3,3u2dL,K

+ uC2,3u2dR,Kg,

ki→d
K = 2plKsEd,idrKsEd,idnKsEd,idfuC2,2u2dL,K

+ uC2,3u2dR,Kg, sA12d

kj→d
K = 2plKsEd,jdrKsEd,jdnKsEd,jdfuC2,3u2dL,K

+ uC3,3u2dR,Kg,

and

kp→q
K = kq→p

K ebKEp,q, p,q = a,d,i, j , K = L,R. sA13d
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