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A rate constant expression for charge transfer reactions mediated by flexible bridges is presented as
a series of terms of decreasing importance. The leading term corresponds to the static limit obtained
from the Condon approximation. Corrections due to finite time fluctuations are evaluated explicitly,
assuming a Gaussian shape of the coupling autocorrelation function and the Marcus model with a
one-dimensional harmonic thermal bath. The use of this model for the interpretation of experimental
data and the expected magnitudes of the fluctuation effects are discussed. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1601600#
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I. INTRODUCTION

Theoretical interest in charge transfer~CT! processes ha
not diminished since the first theories1–3 were successfully
tested.4 In fact, the increasing complexity of the systems co
sidered and the greater breath and accuracy of experim
have revealed a number of situations where the conventi
approach does not fully account for the experimental ob
vations, calling for improvement and generalization of t
original theoretical models.5–7

Most experimental work is focused on intramolecu
charge transfer processes in donor–bridge–acce
(D –B–A) systems, where the bridge is often a rigid spac
More generally we can consider the ‘‘bridge’’ to be any m
dium between donor and acceptor~including solvent mol-
ecules, glasses, and flexible biomolecules such as DNA! that
lowers the barrier for electron tunneling with respect
vacuum. The standard expression for the nonadiabatic t
mal rate constant in such systems is often written as

kCT5
2p

\
uVu2rFCT, ~1!

whereV is the effective electronic coupling betweenD and
A, andrFCT is the density of states weighted by the Franc
Condon factor and thermally averaged. Equation~1! is de-
rived in the nonadiabatic limit, assuming thermalized re
tants. Two other assumptions, whose validity is sometim
questioned, are that~i! the couplingV does not depend on
the nuclear coordinates~Condon approximation! and~ii ! that
states localized on the bridge are not thermally popula
The case opposite to that of assumption~ii ! where transmis-
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sion proceeds by thermally populating the bridge cor
sponds to the incoherent~hopping! mechanism, which has
been extensively studied in the past few years b
theoretically8–14 and experimentally.15–17 In this paper we
focus on the tunneling regime where assumption~ii ! holds
and we examine the Condon approximation, and the con
quences of its breakdown for the rate constant.

Several early papers discussed the validity of the C
don approximation, analyzing the theoretical consequen
of its breakdown,18–20 but only in more recent years hav
both experimental and computational studies revealed
importance of the bridge dynamics on the CT rate. The s
plest effect of bridge dynamics is the temperature dep
dence of the effective electronic coupling found for exam
by Daviset al. in a study of CT reactions mediated by pol
vinylene bridges.21 In particular bridge conformations, th
CT rate increases strongly, a phenomenon observed in
eral biological systems22–24 and sometimes referred to a
conformational gating.25,26 The dynamical effects are see
when the bridge is a solvent molecule, as demonstrated
series of papers by Zimmt and co-workers, who used spe
cally designed ‘‘C-clamp’’D –B–A molecules.27 Similarly,
strong dynamic effects were observed by Castneret al.28 in a
CT reaction where the solvent also acts as an acceptor. N
Condon effects have been also probed by other ultrafast m
surements of electron transfer rates.29

Since the CT rate depends on many factors, which c
not be easily separated, numerical simulations have o
been used to quantify the effect of structural change in
bridge on the observed rate.30–38 In most of these calcula
tions a classical molecular dynamics trajectory is genera
and theD –A coupling is computed at given time interval
For example, Nitzan and coworkers studied electron tunn
ing through water layers finding that several conformatio
lead to the formation of transient resonant states, which
il:
2 © 2003 American Institute of Physics
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5783J. Chem. Phys., Vol. 119, No. 12, 22 September 2003 Charge transfer through fluctuating bridges
hance the tunneling rate.32 In most of these studies the anal
sis is performed in the limit of slow modulation wheredy-
namicaleffects are ignored and a modified version of Eq.~1!
can be used whereV2 is substituted by its time~or ensemble!
averagê V2&,

kCT>
2p

\
^V2&rFCT. ~2!

Equation~2! captures the effect of structural averaging of t
bridge conformation while it neglects the coupling betwe
nuclear and electron dynamics. Balabin and Onuchic co
puted the time dependentD –A coupling,V(t), for the pho-
tosynthetic reaction center, showing that the tunneling p
changes in time influenced by the thermal structural chan
of the protein.33 They also introduced thecoherence param-
eter C5^V&2/^V2&, which is close to unity when Condo
approximation holds and close to zero when the coup
strongly depends on the bridge conformation. Troisi and
landi found a very low coherence parameter for the h
hopping between nonadjacent guanines in DNA, demons
ing that this process is ruled by conformational gating.34 As
we will see in Sec. III, the corrections to Eq.~2! due to
dynamical effects are important only if the coherence para
eter ~which is not itself a dynamical quantity! is close to
zero. Skourtiset al. computed the time evolution of th
donor–acceptor coupling in azurin performing a fully tim
dependent quantum-mechanical treatment of the electr
problem and making clear that quantum effects may be
portant for fluctuations at the same timescale as the elec
transfer rate.36 Cao investigated the opposite limit of fluctu
tions much slower than the electron dynamics~a limit not
considered here! that leads to non exponential decay of t
initial population.39

Several papers have described quantum dynamica
fects in electron transfer reaction.40–43 In particular
Medvedev and Stuchebrukhov44 have considered an electro
transfer reaction coupled to a classical harmonic bath
obtained an expression for the rate in terms of the coup
autocorrelation function̂ V(t)V(0)&. This quantity arises
naturally in any quantum dynamics treatment45 and can be
evaluated numerically or analytically once a suitable mo
for the electronic-vibrational coupling is provided. This a
proach to rate calculations cannot be directly related to
perimental measurements because the coupling autocor
tion function, in the context of CT processes, is n
accessible experimentally and the connection to express
valid in absence of coupling fluctuations@Eq. ~1!# is not di-
rect.

We show in this paper that it is possible to express
exact rate in the presence of fluctuating coupling as a se
in which Eq.~2! is the leading term. The first corrective ter
to Eq. ~2! quantifies the effect of finite time fluctuation
@clarifying the validity of Eq.~2! as an approximation#. We
first derive a hierarchical expression for the rate without
sumptions on the nature of the bath or on the structure of
coupling autocorrelation function. Then we assume a cla
cal harmonic thermal bath and classical bridge dynamic
get a more directly computable expression for the dynam
contribution to the rate. Using approximations akin to M
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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cus’ theory of electron transfer, we find a corrective term d
to fluctuations that introduces only one additional parame
intuitively related to the characteristic fluctuations tim
Since our proposed expression introduces the effect of fl
tuations as a correction to well-established formulas, it
particularly suitable for the analysis of experimental da
when the possible importance of fluctuations is to be eva
ated.

II. GENERAL CT RATE EXPRESSION
IN THE PRESENCE OF A FLUCTUATING BRIDGE

Nuclear motions can be divided into two groups wi
regard to their effect on the electron transfer process.46,47

One group, which includes the donor and acceptor mode
well as some particular solvent motions~later indicated as
$QDAS%), contains the modes along which the electronic e
ergies of the initial and final states changes rapidly. T
property has two implications. First, the electronic transiti
occurs only at a specific configuration~or regime of configu-
rations! of these modes for which the initial and final ele
tronic energies are nearly the same, i.e., where the co
sponding potential energies cross. Second, since these m
couple energetically to the transition, their motion is impo
tant both to supply the needed electronic energy and to
move excess energy released during the transition. Th
modes are therefore referred to asaccepting modes, a term
used for such modes in the theory of molecular radiationl
transition. An important consequence of the fact that
electronic transition is dominated by a particular regime
configurations along these modes is that the Condon appr
mation is applicable for these modes, i.e., the electronic c
pling can be taken to be independent of their configurati
at the value corresponding to this local configuration regim

A second group of nuclear motions includes the brid
modes~indicated as$QB%) and solvent motions that do no
interact strongly with the donor and acceptor states. The
ergies of these latter states are only weakly dependent on
configuration of these modes, which is another way to
that the electron transfer is not limited to a local positi
along them. The electronic coupling can be strongly infl
enced by these modes,48 but in this case the Condon approx
mation cannot be made. Because of their effect on the c
pling these modes will be termedinducingmodes.

The initial and final states can now be written as Bor
Oppenheimer products,

C Iv,a5c I~q,QDAS,QB!L Iv
DAS~QDAS!La

B~QB!, ~3a!

CFw,b5cF~q,QDAS,QB!LFw
DAS~QDAS!Lb

B~QB!, ~3b!

wherec andL represent the electronic and vibrational wa
functions, respectively,q and Q are electronic and nuclea
coordinates, andI andF denote the initial and final electroni
states~only two states will be considered!. In addition,v and
w are indices of initial and final vibrational states on t
DAS subsystem whilea andb correspond to initial and fina
vibrational states on theB subsystem.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Our assumptions regarding these modes now impl
Hamiltonian of the formH1V with

H5(
v,a

~EIv1Ea!ua&uIv&^Ivu^au

1(
w,a

~EFw1Ea!ua&uFw&^Fwu^au

5(
v

EIvuIv&^Ivu

1(
w

EFwuFw&^Fwu1(
a

Eaua&^au, ~4!

V5(
v

(
w

(
ab

VIva,Fwbua&uIv&^Fwu^bu1, ~5!

and the probability of being in stateua&uIv&, at a given tem-
peratureT, may be factorized as

PIv,a~T!5PIv~T!Pa~T!. ~6!

The Golden Rule expression for a state to state transi
in this system is

kIv,a→Fw,b5
2p

\
u^Iv,auVuFw,b&u2d~EIv1Ea2EFw2Eb!,

~7!

and the observed rate, resulting from summing over fi
states and thermal averaging over initial states, is

k5(
v,a

PIvPa(
w,b

kIv,a→Fw,b . ~8!

Writing the delta function in Eq.~7! as a Fourier transform
we get

k5
1

\2 (
v,a

PIvPa(
w,b

E ^Iv,auVuFw,b&

3^Fw,buVuIv,a&e~ i /\!~Ea2Eb1EIv2EFw!tdt. ~9!

The matrix elements in Eq.~9! may be written as

^Iv,auVuFw,b&5^auVIv,Fwub&, ~10!

i.e., after integrating over the coordinates$q% and $QDAS%.
For simplicity we assume that the matrix elementsVIv,Fw are
real ~that impliesVIv,Fw5VFw,Iv). Equation~9! can be fur-
ther manipulated to give

k5
1

\2 (
v,a

PIvPa (
Fw,b

E ^aue~ i /\!HtVIv,Fwe2~ i /\!Htub&

3^buVIv,Fwua&e~ i /\!~EIv2EFw!tdt, ~11!

k5
1

\2 (
v,a

PIvPa (
Fw,b

E ^auVIv,Fw~ t !ub&

3^buVIv,Fwua&e~ i /\!~EIv2EFw!tdt, ~12!

k5
1

\2 (
v

(
a

PIvPa(
Fw

E ^auVIv,Fw~ t !VIv,Fwua&

3e~ i /\!~EIv2EFw!tdt. ~13!
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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We identify, in Eq. ~13!, the thermal over the bridge
vibrational states(aPa^auOua&5^O&B , so that we can write

k5
1

\2 (
Iv

PIv(
Fw

E ^VIv,Fw~ t !VIv,Fw~0!&B

3e~ i /\!~EIv2EFw!tdt. ~14!

We drop indexesI, F for now. We also use the Condon ap
proximation for the$v,w% states, which allows us to write

Vvw~ t !Vvw~0!5V~ t !V~0!Svw , ~15a!

^Vvw~ t !Vvw~0!&B5^V~ t !V~0!&BSvw , ~15b!

whereSvw are the Franck–Condon factors. We get

k5
1

\2 (
v

Pv(
w

E ^V~ t !V~0!&BSvwe~ i /\!~Ev2Ew!tdt.

~16!

Finally we substitute the summation over the final states$w%
with an integral over the energy,

k5
1

\2 (
v

PvE E ^V~ t !V~0!&BrFCv~E!

3e~ i /\!~Ev2E!tdtdE, ~17!

where the Franck–Condon weighted density of final sta
for initial vibronic statev, rFCv , is defined as

rFCv~E!5(
w

Svwd~E2Ew! ~18!

~note that this quantity is not temperature averaged and c
sequently it depends onv).

It is helpful, at this stage, to define the spectral densitJ
as

J~E!5
1

\2 E
2`

1`

^V~ t !V~0!&Be~ i /\!Etdt. ~19!

This leads to the rate constant from any donor initial vib
tional statev in the form,

kv5E
2`

1`

J~E2Ev!rFCv~E!dE. ~20!

Equation~20! will be used as a starting point for the deriv
tion of approximate expressions in the next section. T
main difference between this derivation and the oth
present in literature40,42,44is in the separation of modes@Eq.
~4!#, which leads to a final expression containing the prod
of the spectral density, carrying information on the inducin
modes, and Franck–Condon weighted density of states
lated only to the accepting modes. The combination of
~20! and Eq.~17! gives a rate constant expression similar
the one presented in Ref. 44@Eq. ~1.2!#, where the probabil-
ity of energy exchange with the bridge vibrational modes
more evident. One difference between the two approache
that Eq. ~20! is not limited to classical accepting mode
(\vv /kBT!1), but most of the following consideration
can be readily cast in the formalism of Ref. 44.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ion

ue

d

io

l i
an

-

he

m

co
ac
th

of

er-
tion
lts
at

es-

to

at
e

d-
was

b-

-
qs.
d

se
ed
w

cal
g

in
y

fect
s

5785J. Chem. Phys., Vol. 119, No. 12, 22 September 2003 Charge transfer through fluctuating bridges
III. SERIES EXPANSION OF THE RATE CONSTANT

The approximations that we will use to evaluate Eq.~20!
are based on the qualitative knowledge about the funct
Jv(E) and rFCv(E). The correlation function̂V(t)V(0)&B

has a maximum fort50 and it reaches the constant val
^V&2 for utu larger than a characteristic timetC . It is useful to
decompose the coupling as

V~ t !5^V&1dV~ t !, ~21!

where^dV(t)&50. Consequently,J(E) can be decompose
as

J~E!5
1

\2 E
2`

1`

dt^dV~ t !dV~0!&Be~ i /\!Et

1
2p

\
^V&2d~E!. ~22!

The first term has a maximum forE50, it goes asymptoti-
cally to zero foruEu larger than a typical width\/tC . Such
width for some of the systems mentioned in the introduct
is about 200 cm21.22,28,34 In this rangerFCv(E) is not ex-
pected to vary too much and the evaluation of the integra
Eq. ~20! can be carried out after the Taylor’s series exp
sion,

rFCv~E!5rFCv~Ev!1rFCv8 ~Ev!~E2Ev!

1 1
2rFCv9 ~Ev!~E2Ev!21¯ . ~23!

Using Eq.~23!, Eq. ~20! leads to a series of additional con
tributions to the rates,

kv5kv
~0!1kv

~1!1kv
~2!1¯ , ~24!

where the first three terms are

kv
~0!5rFCv~Ev!E

2`

1`

J~E!dE, ~25!

kv
~1!5rFCv8 ~Ev!E

2`

1`

EJ~E!dE, ~26!

kv
~2!5 1

3rFCv9 ~Ev!E
2`

1`

E2J~E!dE. ~27!

In general thenth contribution to the rate depends on t
n-order moment of the spectral density and then-order de-
rivative of the density of states,

kv
~n!5

1

n! S dnrFCv

dEn D
E5EEv

E
2`

1`

EnJ~E!dE. ~28!

Note that the expansion does not contain further approxi
tions with respect to Eq.~20!. The qualitative argument we
gave at the beginning simply suggests that the series
verges rapidly. We will see that is possible to evaluate e
term of the series for selected problems, showing that
series indeed is rapidly converging.

Using Eqs. ~19! and ~25! we can explicitly com-
putekv

(0) ,

kv
~0!5

2p

\
^V2&rFCv~Ev!, ~29!
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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and, performing the average over the initial statesv, we get

k~0!5(
v

Pv~T!kv
~0!5

2p

\
^V2&rFCT, ~30!

with rFCT the thermally averaged Franck–Condon density
states,

rFCT5(
v

Pv~T!rFCv~Ev!. ~31!

This term corresponds to the static limit in which one av
ages the instantaneous rate expression over the distribu
of static bridge configuration. The correction terms resu
from the bridge dynamics. We assume in the following th
the rFCT function can be evaluated using one of the expr
sions suggested in the literature.

The next step consists of calculating the corrections
Eq. ~30! given by Eqs.~26! and ~27!. We assume for sim-
plicity that the bridge dynamics is classical so th
^V(t)V(0)&B is an even function of time. Moreover, we tak
as a model for̂ dV(t)dV(0)&B a Gaussian function with
width tc . Although many other possibilities can be consi
ered, the Gaussian shape is sufficiently general and
found consistent with recent computational results.22,34 The
spectral density for this model correlation function is o
tained from Eq.~22!,

J~E!5
2p

\ S ^dV2&
tc

Ap\
expS 2

tc
2~E!2

2\2 D 1^V2&d~E!D .

~32!

It is important to point out that two levels of approxima
tions have been introduced. The important results of E
~24!–~30! rely only on the validity of the Golden Rule an
on the modes separation introduced in Eq.~4!. In contrast,
Eq. ~32! is valid only when the non-Condon effects ari
primarily from of low frequency modes that can be treat
classically~this should include torsions, which might sho
important non-Condon behavior!. It is possible in principle
to generalize the functionJ(E), incorporating quantum
effects,49 so as to allow the study in the same theoreti
framework of the contribution of high frequency inducin
modes.

From Eq. ~32! we can easily calculate the integrals
Eqs. ~26! and ~27!. The first-order correction vanishes b
symmetry, sinceJ(E) is even,

kv
~0!50. ~33!

The second-order correction is

kv
~2!5

p

\
^dV2&

\2

tc
2 rFCv9 ~Ev!. ~34!

The unique parameter added to include the dynamical ef
is the correlation timetc . For an extremely slow proces
@tc→`,J(E)→2p\^V2&d(E)#, kv

(0) becomes the unique
term contributing to the rate. With faster fluctuationsJ(E)
becomes broader and samples value ofrFCv(E) at an energy
different thanE50. Note however that the limittc→0 can-
not be handled by the expansion in Eq.~23!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Next, the correction to the thermal rate is obtained
taking a thermal average over the initial states$v% in Eq.
~34!. This leads to

k~2!5
p

\
^dV2&

\2

tc
2 (

v
Pv~T!rFCv9 ~Ev!. ~35!

In the Appendix we show that the sum in Eq.~35! may be
expressed by

(
v̇

Pv~T!rFCv9 ~Ev!5rFCT9 ~DE0!

5S d2rFCT~DE!

dDE2 D
DE5DE0

. ~36!

DE is the energy difference between the vibrational grou
state of the I and F states.DE0 is the actual value of this
energy gap of for the system under investigation. Thus

k~2!5
p

\
^dV2&

\2

tc
2 rFCT9 ~DE0!. ~37!

It is now possible to express bothk(0) andk(2), once a
model expression forrFCT(DE0) is selected. General expre
sions have been widely discussed5,6 and they can be used t
evaluate Eqs.~30! and~37!. We will adopt here the simples
case, the classical expression derived by Marcus,

rFCT~DE0!5A 1

4plkBT
expS 2

~l1DE0!2

4lkBT D , ~38!

wherel is the reorganization energy. Equations~30! and~37!
then yield

k~0!5
^V2&

\
A p

lkBT
expS 2

~l1DE0!2

4lkBT D , ~39!

k~2!5k~0!2
\2

tc
2 F ~l1DE0!222lkBT

~4lkBT!2 G S 12
^V&2

^V2& D . ~40!

To obtain Eq.~40! we have used the relation̂dV2&5^V2&
2^V&2.

The Marcus theory describes nonadiabatic elect
transfer in terms of three parameters: the nonadibatic c
pling V and the parameters that determine the diabatic
tential energy surfaces (l,DE0). Equation~30! expresses the
correction to the rate resulting from dynamical effects,
terms of two other parameters: the correlation time (tc) and
the coherence parameter (^V&2/^V2&). In particular, the ef-
fect of fluctuations, as quantified byk(2), is negligible when
the coherence parameter is close to 1, i.e., when Con
approximation holds, and reaches a maximum when the
rameter is 0. The latter situation is found not only in e
tremely flexible systems, like the ones described in the In
duction, but also in the case of^V&50, i.e., for processes
forbidden by symmetry at the equilibrium nuclear configu
tion. The effect of the potential energy surface paramete
the corrective termk(2) is illustrated in Fig. 1. Note thatk(2)

is positive except for the small range of parameters wh
2l2(2lkBT)1/2,DE0,2l1(2lkBT)1/2, i.e., in the limit
between normal and inverted region. In any case the cha
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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on k due to the correctionk(2) are very small, in particular
when displayed on the traditional logarithmic scale.

Equations~39! and ~40! may be used to improve th
fitting of experimental data or simply to estimate the con
bution of fluctuations to the rate when the parametertC can
be computed or measured. For many systems of inte
characterized by a small coherence parameter, the corre
k(2) is then expected to be significant (k(2)/k(0).0.1) and
introduce anomalous temperature dependence to the
constant. Figure 2 shows the temperature dependenc
k(2)/k(0) for a selected set of the other parameters. The r
tive contribution ofk(2) is more important at lower tempera
tures. We note, however, that Eq.~40! cannot be used in the
limit of T→0, since it is based on the assumption that
bridge motions are treatable classically. The temperature
pendence of the rate constant is further complicated by
temperature dependence ofl and^V(t)V(0)&B that has been
neglected in Fig. 2.

FIG. 1. Effect of the potential energy surface parameters on the r
k(2)/k(0) quantifying the relative importance of dynamical fluctuations
the rate constant.DE0 is the energy difference between the ground vibr
tional states of the initial and final states. The graph is calculated accor
to Eq. 39 using\/tC5200 cm21, T5300 K, ^V&50, l52000 cm21 ~solid
line!, l56000 cm21 ~dashed line!.

FIG. 2. Effect of the temperature onk(2)/k(0). The graph is calculated ac
cording to Eq.~39! using ^V&50, l54000 cm21, DE050 cm21, \/tC

5200 cm21 ~solid line!, \/tC5100 cm21 ~dashed line!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



h
rib

ar
i

te
s
s
to
m
l
rs
w

he
a

ys
i
a
tr
ea
ea
a
ti
i
o

an
in
re
n
o
e
g

o-
ea

nce
ion,
te-
r

.

. B

rle,

M.

atl.

pl.

c.

oc.

B.

.A.

s.

.
.

5787J. Chem. Phys., Vol. 119, No. 12, 22 September 2003 Charge transfer through fluctuating bridges
IV. CONCLUSION

The rate constant for electron transfer reaction throug
fluctuating bridge has been expressed as a series of cont
tions of decreasing importance. The leading term,k(0), coin-
cides with the classical expression except that the squ
coupling is substituted by its average value, and is valid
the limit of slow fluctuations. The corrections due to fini
time fluctuations have been expressed using a Gaus
model for the coupling autocorrelation function. The fir
nonzero correction tok(0) depends on the model used
describe therFCT function, and an expression derived fro
the Marcus theory forrFCT was obtained. Within this mode
the correctionk(2) was expressed in terms of two paramete
the correlation time and the coherence parameter, with a
defined physical meaning.

We noted that only the lowest order moments of t
spectral density give a contribution to the rate, leading to
expression that is both simple and well-suited to the anal
of experimental data. In fact, the main difference with sim
lar approaches based on the machinery of quantum dyn
ics, is that our final expressions do not contain the spec
density, a function hardly relatable to the experimental m
sures of CT rate. It is not generally possible, in fact, to m
sure CT rates for each individual energy, a limitation th
prevents experimental access to the coupling autocorrela
function. Another advantage of this theoretical framework
that it can be readily extended to any model function
spectral densityJ(E) or density of statesrFCT(E).

The approach we proposed may be helpful for the qu
titative understanding of the role of bridge fluctuations
charge transfer reactions, as it naturally leads to an exp
sion valid in the static limit corrected by a fluctuation depe
dent term. This highly desirable separation allows an imp
tant improvement without hiding the structure of th
conventional expressions, whose simplicity has encoura
their widespread use.

APPENDIX: PROOF OF EQ. „36…

We denote byDE the difference in energy between d
nor and acceptor ground vibrational states. It is easy to r
ize that the functionrFCv(E) is in reality a function of
E–DE so that Eq.~31! may be rewritten as

rFCT~DE!5(
v

Pv~T!rFCv~Ev2DE!. ~A1!

Performing the second derivative respect toDE on both
sides and taking the value atDE5DE0 we get

S d2rFCT~DE!

dDE2 D
DE5DE0

5(
i

Pi~T!S d2rFCv~Ev2DE!

dDE2 D
DE5DE0

. ~A2!

But since

S d2f ~x2y!

dx2 D5S d2f ~x2y!

dy2 D , ~A3!
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we have

S d2rFCv~Ev2DE!

dDE2 D
DE5DE0

5S d2rFCv~E2DE0!

dE2 D
E5Ev

,

~A4!

and then

rFCT9 ~DE0!5(
v

Pv~T!rFCv9 ~Ev!. ~A5!

This expression was used to evaluate Eq.~37!.
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