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Abstract. This note discusses the relationship between a given bridge-assisted
electron transfer rate and the corresponding zero-bias molecular conduction of the
same molecular species, in the limit where both processes occur by sequential
hopping. It follows a previous publication (A. Nitzan, J. Phys. Chem. A 2001, 105,
2677–2679) in which the same issue was discussed for coherent tunneling transfer.

1. INTRODUCTION
Molecular electron transfer, one of the most basic
chemical processes, has been an active field of research
for over half a century.1–6 Investigations of this reaction
on the fundamental level focus on the rate of the transfer
process between donor and acceptor species that exist in
solution either as free solutes or as separate sites of a
bigger molecule. Theoretical studies of such reactions
aim to understand the effect of molecular and solvent
properties on observed rates and yields of electron trans-
fer reactions, mostly following the Marcus theory.7,8

Another manifestation of molecular electron transfer
that is gaining increasing attention in recent years is the
conduction of a molecule (or a molecular layer) con-
necting two metal leads (see, e.g., refs 9–12). Clearly,
the conduction property of a given molecular system
and the electron transfer properties of the same system
should be closely related. One should keep in mind that
because of either tunneling or thermal activation, there
is always an ohmic regime near zero bias. Obviously,
this conduction may be extremely low, implying in
practice an insulating behavior.13 Of particular interest is
estimating the electron transfer rate in a given donor–
bridge–acceptor (DBA) system that will translate into a
measurable zero-bias conduction of the same system
when used as a molecular conductor between two metal
leads.

In an earlier paper,14 I analyzed the relationship be-
tween molecular electron transfer rates and molecular
zero-bias conduction for cases where the electron trans-

mission is dominated by coherent tunneling. Denoting
the molecule by M = D–B–A, in which the segment
B = 1–2–...–N may be viewed as a bridge connecting the
donor (D) and acceptor (A) segments, the Marcus theory
for the electron transfer rate yields (for weak coupling
between the bridge and the donor/acceptor species, and
in the non-adiabatic electron transfer limit relevant for
this case)

(1)

where F is the Franck–Condon weighted density of states

(2)

in which kB is the Boltzmann constant, T is the temp-
erature, λ is the reorganization energy, and G1N

(B) (E) =
〈1|(E – HB)–1 |N〉 (HB is the bridge Hamiltonian) is a
matrix element of the bridge Green’s function. The sec-
ond part of eq 1 is written for a model in which the
coupling between the donor and acceptor species is
mediated by the coupling of D and A to the first (1) and
last (N) bridge levels, respectively. Note that the explicit
form (eq 2) of the Marcus factor F is a classical, high T
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limit, and that more rigorous expressions for this factor
can be used.

The corresponding conduction problem is usually
described using variants of the Landauer formula.15–17 In
a simple model in which the molecule–metal leads inter-
actions are localized at the D and A segments, this
approach leads to

(3)

where e is the electron charge, ΓD
(L) and ΓA

(R) are widths
(imaginary parts of the corresponding self energies ΣD

(L)

and ΣA
(R)) of the D and A levels due to their couplings to

the left and right metal leads, respectively, and  GDA
(M) is

the D–A matrix element of the Green’s function (E – H)–1

projected on the molecular (DBA) subspace. In the
model that yields the result (eq 1), GDA

(M) (E) of eq 3 is
related to the bridge Green’s function by

(4)

where bars above 
–
G1N

(B) and the coupling elements repre-
sent the fact that their values for the chemisorbed mol-
ecule may be different from the corresponding values in
the free DBA complex. Equations 1, 3, and 4 lead to14

(5)

where

(6)

where  ẼD and ẼA are the donor and acceptor energies
shifted by the real parts of the self energies Σ, respec-
tively, and where all width parameters Γ are computed
at EF. A rough approximation to (eq 5) is obtained by
assuming that energy shifts occur uniformly in the DBA
complex, without distorting its internal electronic struc-
ture, and that shifted energies ẼD and ẼA lie within dis-
tances of order Γ from the Fermi energy. This leads to14

(7)

An order of magnitude estimate was obtained14 by
using, e.g., λ = 0.5eV in F ≈ ( )–1 exp (–λ/4kBT)
and taking ΓD

(L) = ΓA
(R) ~ 0.5eV, to give for the co-

herent transfer case g ~ (e2
 / πh ) (10–13 kD → A  (s–1)) ≅

[10–17 kD → A  (s–1)]Ω–1.
In the present paper I discuss a similar issue, the

relation between electron transfer rate and molecular
conduction, for the case where both processes proceed
via incoherent sequential hopping between nearest-
neighbor bridge sites. The next section presents the
technical analysis and the following one discusses the
implication of the resulting relationship.

2. CONDUCTION AND TRANSFER RATE IN THE
SEQUENTIAL HOPPING CASE

Consider first the electron transfer rate problem. In what
follows, we will use alternately the notations ki,j and
ki → j for the rate of transition from state j to state i. It is
convenient to denote the donor and acceptor states by
the labels 0 and N+1, respectively. The sequential tran-
sition from donor to acceptor starting through the
N-state bridge may be described by a master equation
for the time evolution of the occupations Pk of the
different N+2 states.

(8a)

(8b)

(8c)

(8d)

with P0(t = 0) = 1. We are interested in the situation where
beyond a short transient time, the 0 → N+1 transition can
be described by a simple exponential decay of the donor
population, implying a single and well-defined electron
transfer rate. When this holds, the corresponding rate may
be obtained using the steady-state flux method. In this
approach, we consider the steady-state obtained after a
long time under the restriction that state 0 is a constant
source (P0 = constant) while state N+1 is a drain (PN+1 =
0). The corresponding steady-state equations are

(9a)

(9b)

×
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(9c)

(9d)

This set of N equations yields a simple solution18 in the
case where all rates that do not involve the donor and
acceptor states are the same, i.e., when kj, j ± 1 = k for j,
j ± 1 different from 0 and/or N + 1. The steady-state
population of state N is obtained in the form

(10)

This implies that the steady-state flux is kN+1,N PN, yield-
ing the electron transfer rate

(11)

Using detailed balance and resorting to the usual nota-
tion for the donor and acceptor species, we finally get

(12)

where EB is the energy gap between the bridge and the
donor state. It is important to note that in these expres-
sions, the rates kj,  j+1 are “regular” Marcus-type electron
transfer rates between the corresponding species. This
holds because the assumption that fast nuclear relax-
ation relative to the electron hopping timescale is inher-
ent in the incoherent hopping model.

Next consider the conduction problem. The molecu-
lar chain now connects two metal leads, and I assume
the binding involved is chemically strong. An important
aspect of the new physics is expressed by the assump-
tion, similar to that I made in ref 14, that the electron
does not stay localized on the donor and acceptor spe-
cies, and escapes into the corresponding metals on a fast
timescale relative to nuclear relaxation on these species.
The donor and acceptor species effectively become
parts of the left and right electrodes, respectively. If we
represent the donor/left electrode species by a single
state L and similarly the acceptor/right electrode species
by a single state R, eq 12 would still be valid:

(13)

The bar on 
–
EB reflects the fact that the bridge height

above the relevant electrode levels may be different than
in the free molecule. The rates kL,1 and kR,N are essen-
tially electron transfer rates from the leftmost and
rightmost bridge states into their corresponding elec-
trodes. These can again be calculated using Marcus-type
theory for electron transfer from a molecular state into a
metal surface,19–21 except that the coupling involved is
mediated by the corresponding donor or acceptor states:
If l denotes a state in the continuous manifold of free
electron states in the left metal, we will have

(14)

where ΓD is the width acquired by the donor state be-
cause of its interaction with the metal. Note that the rates
kL,1 and kR,N depend on nuclear reorganization in the corre-
sponding bridge states 1 or N, but not on the nuclear
reorganization at the donor and acceptor species.

In zero-biased junctions the relevant energy is that of
the leads’ Fermi energy, and 

–
EB denotes the energy

spacing between this energy and the bridge levels. The
net current resulting from an infinitesimal potential bias
δΦ between the two electrodes is

(15)

implying the following expression for the conduction:

(16)

Equations 12 and 16 lead to the following approxi-
mate relationship between the conduction and the elec-
tron transfer rate

(17)

where ∆E = 
–
EB – EB.

×
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3. DISCUSSION
The result (eq 17) reflects the fact that the bridge dy-
namics is the same in both experimental situations: do-
nor-to-acceptor electron transfer in a D–B–A complex
on one hand, and conduction through the same D–B–A
species used as a molecular wire connecting two metal
leads. However, the rates to populate and depopulate the
bridge are different for these two cases in two ways.
First, the activations energies involved may be different
(∆E is their difference). Secondly, the Marcus-type rates
kD,1 and kA,N from the bridge states 1 and N into their
neighboring donor and acceptor states are different from
the corresponding rates into the left and right electrodes.
The relationships between these rates may in principle
be estimated from eq 14 if the corresponding coupling
terms are known. Perhaps more significant is the fact that
for large N, eq 17 yields the remarkably simple result

(18)

or  at T = 300 K.
Note that for ∆E ≤ kBT, this numerical estimate is re-
markably close to that obtained using eq 7 for the coher-
ent case.

The relationships (eqs 5–7) and (eqs 17–18) make it
possible to set criteria for observing ohmic behavior for
small voltage biases in molecular junctions. For ex-
ample, eqs 7 or 18 imply that with a current detector
sensitive to pico-amperes, kD→A has to exceed ~106s–1

before measurable current can be observed at 0.1 V
voltage across such a junction. These results provide prac-
tical expressions for making such estimates, but their use
should be exercised with attention paid to the principal
assumption under which they were derived, that the elec-
tronic structure of the molecular bridge, when connecting
the metal leads, is not considerably different from the
electronic structure of the corresponding species in solu-
tion. In the more general case, eqs 5–6 and eq 17 should be
used, implying the need to have information about the way
binding to the electrodes affects the molecular electronic
structure. Another point to emphasize is that these results
correspond only to conduction at zero bias. An important
attribute of experimental setups involving molecular con-
ductors is the possibility to employ their finite bias con-
duction, which is not directly related to the corresponding
electron transfer property.22 Keeping these limitations in
mind, eqs 5–7 and eqs 17–18 provide, in the coherent and
incoherent transport regimes, respectively, useful approxi-
mate relationships between two extremely important
molecular transport observables.
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