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The electrostatic potential profile along a biased molecular wire: A model
quantum-mechanical calculation
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We study the electrostatic potential of a molecular wire bridging two metallic electrodes in the limit
of weak contacts. With the use of a tight-binding model including a fully three-dimensional
treatment of the electrostatics of the molecular junction, the potential is shown to be poorly
screened, dropping mostly along the entire molecule. In addition, we observe pronounced Friedel
oscillations that can be related to the breaking of electron–hole symmetry. Our results are in
semiquantitative agreement with recent state-of-the-artab initio calculations and point to the need
of a three-dimensional treatment to properly capture the behavior of the electrostatic potential.
Based on these results, current-voltage curves are calculated within the Landauer formalism. It is
shown that Coulomb interaction partially compensates the localization of the charges induced by the
electric field and consequently tends to suppress zones of negative differential resistance. ©2003
American Institute of Physics.@DOI: 10.1063/1.1539863#
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I. INTRODUCTION

Due to important technical progress, the field of molec
lar electronics, born in the mid-70s with the proposal of A
ram and Ratner to use single organic molecules as rectifi1

receives rapidly growing interest.2–4 Indeed, new fabrication
methods and probes now enable individual molecules
small numbers of them to be connected to macrosco
electrodes.2,5–8 Among these methods, one may cite, for i
stance, the break-junction technique5,6,8and the use of a con
ducting atomic-force microscope~AFM! to contact mol-
ecules absorbed on a metallic surface.7

On the theoretical side, the problem posed by these
perimental works is highly challenging. We are facing a no
equilibrium many-body problem where, moreover, the co
pling to a phonon bath may also be of importance. Up
now, most of the studies have focused on the coheren
gime and the Landauer approach has been employed to
tain the conductance fromab initio or semiempirical
models.3 Important inelastic processes were included o
within simple models9–13 and much further progress i
needed before one may hope to reach a satisfactory un
standing of the problem.

The exact number of molecules contacted by the le
remains for a large part uncontrolled in the experimental
ups cited above.2,8 In theoretical modeling it is convenient t
assume that a single organic molecule bridges two se
infinite metallic electrodes~cf. Fig. 1!. Another important
experimental aspect is the fact that current-voltage chara
istics are measured with applied voltages up to a few vo
values which bring us well away from the linear regime.

In this context, a central question concerns the elec
3750021-9606/2003/118(8)/3756/8/$20.00
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static potential profile of a biased molecular wire. The im
portance of this issue was first demonstrated by Datta
co-workers.14,15 Using semiempirical models, they hav
shown that different choices of the electrostatic profile ha
a profound effect on the current-voltage characteristics o
molecular junction. For instance, the transport properties
strongly modified depending on whether the potential d
occurs at the interface between molecule and electrod
along the molecular wire. In fact, it is natural to assume t
even the details of the potential shape have a consider
effect on molecular conductance.

Recently, a few works along that line have be
reported.16–18 They give us a rather ambiguous view of th
fundamental problem. Model calculations involving se
consistent solutions of the coupled Poisson and Schro¨dinger
equations suggest that the potential drop occurs mainly a
interface between the molecule and the electrodes.16 Within
the molecule, the electrostatic potential is then found to
essentially flat. Screening appears to be very efficient wit
this approach, and the final conclusions are in agreem
with some previous investigations.14,15 However, these
model calculations involve a drastic approximation: inste
of solving the full Poisson equation, the authors of Ref.
have used a one-dimensional version of it. Implicitly, it
then assumed that the lateral dimensions of the molecule
much larger than the screening length. For quasi-o
dimensional systems with lateral dimensions of the order o
few angstroms, such as the organic molecules used in re
experimental work, this approximation is clear
questionable.19 Indeed, recent state-of-the-artab initio calcu-
lations on carbon and gold chains show a quite differ
picture.17,18 In these works, the potential drop occurs n
6 © 2003 American Institute of Physics
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only at the interface but rather along the entire molecu
Moreover, the local potential is found to display pronounc
Friedel oscillations. Contrary to previous results, screen
appears to be rather inefficient, even for metallic wires.

We are then left with two different pictures, and it b
comes clear that a full understanding of the electrostatic
tential profile in biased molecular wires or metallic constr
tions is still lacking. In this work, we readdress the proble
following the approach by Mujicaet al.16 We perform model
calculations and solve the coupled set of two equations:
Poisson equation for the electrostatics and the Schro¨dinger
equation for the electronic structure. In this respect, our w
is similar to that of Mujicaet al.16 However, the calculation
is modified in ways that we believe to be essential. In p
ticular, we treat the real three-dimensional Poisson equa
As recently discussed by us,19 we expect that this prope
handling of the electrostatic problem changes the qualita
behavior: The potential is poorly screened and falls off s
stantially along the molecule. Indeed, the electrostatic po
tial profile of the model calculations presented here is
semiquantitative agreement with theab initio results reported
in Refs. 17 and 18. However, whileab initio calculations are
involved and intricate enough to leave the underlying ph
ics essentially obscure, our model includes only the ingre
ents necessary to capture the correct screening effects
consequently our calculations are rather economic in ti
We thus believe that our approach may help to gain furt
insight into the difficult problem of understanding transp
through molecules, i.e., at a scale where quantum effects
prominent. A forthcoming work by Ghoshet al.20 reaches
conclusions similar to those presented here.

In Sec. II, our model Hamiltonian is introduced. Th
electronic density in the absence of a bias potential is t
studied in Sec. III, using exact diagonalization and Hartre
Fock calculations that are shown to agree reasonably
with each other. The electrostatic profile is then calculated
Sec. IV at the Hartree-Fock level. Finally, the current-volta
characteristics are discussed in Sec. V.

II. MODEL HAMILTONIAN

A. Coulomb interaction including image charges

The physical problem posed by a molecular wire b
tween two infinite metallic reservoirs is far too complicat
to be solved exactly and, to proceed, several approximat
are necessary. First, we assume that the surfaces of the
electrodes are infinite planes~cf. Fig. 1!. Second, the mol-
ecule is assumed to be weakly connected to the metallic e
trodes so that their chemical constitution is unimportant. T
is certainly not fulfilled for some of the wires examined e
perimentally, with covalent bonds between molecule a
electrode. Finally, we assume the characteristic time scale
electronic processes in the electrodes to be much shorter
the transit time of electrons in the wire. The electrodes
then be treated as equipotential surfaces, and the Schro¨dinger
equation is solved under these potential boundary conditi
We are then within the same framework used in Ref. 16,
proceed differently. We first determine the Coulomb inter
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
.
d
g

o-
-

e

k

r-
n.

e
-

n-
n

-
i-
nd

e.
r

t
re

n
–
ll

in
e

-

ns
wo

c-
is

d
or
an
n

s.
t
-

tion potential which includes the image charges due to
metallic leads, keeping its three-dimensional character. Th
we solve the electronic wire problem.

The Coulomb interaction energy reads

W5 1
2E d3rE d3r 8r~r !r~r 8!w~r ,r 8!, ~1!

wherer~r ! is the charge density in the wire andw~r ,r 8! is the
potential at pointr5(x,y,z) produced by the charge locate
at point r 85(x8,y8,z8). The Coulomb potential is the solu
tion of the Poisson equation

D rw~r ,r 8!524pUd~r2r 8!, ~2!

where for convenience we have introduced a factorU mea-
suring the strength of the electron–electron interaction.
the absence of the metallic electrodes the solution of~2! is
given by the standard Coulomb potential

w0~r ,r 8!5
U

ur2r 8u
. ~3!

In the setup depicted in Fig. 1, we require the poten
in the absence of an external bias to vanish on the surface
the metallic electrodes, i.e., atz50 andz5L. A solution of
the Poisson equation with these particular boundary co
tions is found using the standard method of image charg

w~r ,r 8!5 (
p52`

1`

@w0~r12pLẑ,r 8!2w0~2pLẑ2r ,r 8!#,

~4!

whereL is the distance between the two electrodes~cf. Fig.
1! and ẑ the unit vector along the molecular axis.

w~r ,r 8! is a genuine three-dimensional Coulomb pote
tial including the effects of the two semi-infinite metall
electrodes. The electrostatics of the molecular junction
then governed by this potential. It remains to construct a
solve the Schro¨dinger equation for the molecular wire.

B. Tight-binding model including image charges

In the following, we will mainly be concerned with con
jugated molecules and, in particular, with their low-ener
properties. An appropriate description can then be given

FIG. 1. Idealized molecular junction. A molecular wire, modeled by a fin
one-dimensional lattice, bridges two metallic electrodes with surfaces
sumed to be infinite planes. The tunneling contacts, effective only at the
molecular end sites indicated by 1 andN, are assumed to be weak. Th
chemical potentials in the left and right electrode are denoted bym l andm r ,
respectively.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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an effective tight-binding Hamiltonian for thep electrons
only.21,22 In addition, since there existab initio results for
short chains of gold atoms,18 it is also of interest to study
systems with electrons ins orbitals.

We therefore attach Gaussian-type orbitals of the for

fn~r !5Asx
s exp@2a@x21y21~z2zn!2##, ~5!

to each atomic siten. This allows us to model boths orbitals
with s50 andp orbitals withs51. The center of the orbital
zn5d1(n21)a, depends on the distanced between each
electrode and the molecule as well as the lattice constanta in
the molecule~cf. Fig. 1!. The parametera determines the
spread of the state and gives an estimate of the electr
density. Finally, the normalization constants fors- andp or-
bitals are given byA05(2a/p)3/4 and A152(2/p)3/4a5/4,
respectively.

The explicit form~5! of the orbitals allows us to deter
mine the effective parameters entering the tight-bind
model. In the following, we adopt the ‘‘zero differentia
overlap’’ ~ZDO! approximation21–23

fn* ~r !fm~r !5ufn~r !u2dn,m , ~6!

which remains valid as long as the orbitalsfn are strongly
localized on the atomic sitesn. It implies orthogonality be-
tween the Gaussian orbitals on different sites and, most
portantly, leads to a drastic reduction of nonvanishing ma
elements of the Coulomb operator since only the two ce
integrals are retained in the final model. In particular,
exchange integrals will appear. These integrals, involvin
differential overlap, are usually negligibly small compared
the Coulomb integrals. Moreover, we approximate the po
tive cores by point charges localized at the atomic sitesm
with coordinates (0,0,zm). Then, the energy of an electro
localized at siten due to all positive core charges and the
images becomes

en52U (
m51

N E d3r ufn~r !u2w~r ,zmẑ!. ~7!

Within the ZDO approximation the only finite Coulomb m
trix elements are related to the interaction energy betw
electrons localized at sitesn andn8

Un,n85UE d3rE d3r 8ufn~r !u2w~r ,r 8!ufn8~r 8!u2. ~8!

It is worthwhile to notice that the interaction terms~7! and
~8! depend on the positionn along the chain due to the imag
charges but also because of the finite size of the molec
wire.

Within the ZDO approximation kinetic energy contribu
tions vanish as a consequence of~6!. To lowest order, the
overlap leads to a constant shift of the on-site energyen that
may be disregarded and to nearest-neighbor hopping.
hopping matrix elementt cannot be evaluated directly withi
the ZDO and, therefore, has to be treated as a paramet
the model.21–23 However, it is possible to relax th
approximation23 and estimate the hopping matrix elemen
from ~5!. Doing so, we have found that their dependences
n are not pronounced, and, moreover, this kind of more
phisticated treatment would not change qualitatively our fi
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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conclusions. Therefore, we assume the hopping matrix
ments,t, to be constant along the chain, and use the ratioU/t
as a parameter to examine the importance of electro
electron interaction.

With the parameters just discussed, we obtain a desc
tion of the electrons in terms of an effective tight-bindin
model which includes long-range Coulomb interaction21,22

H5(
n,s

~en1vn!cn,s
† cn,s1(

n,s
t~cn11,s

† cn,s1h.c.!

1
1

2 (
n,n8,s,s8

Un,n8cn,s
† cn8,s8

† cn8,s8cn,s . ~9!

cn,s
† (cn,s) are the usual creation~annihilation! operators for

an electron with spins in the local statefn . In the first term,
we have accounted for an additional shift of the local pot
tial due to an external bias. With the chemical potentialsm l

andm r in the left and right electrode, respectively, the shift
site n is given by

vn5m l1
m r2m l

L
zn . ~10!

The resulting tight-binding model~9! is mostly defined
by the geometry of the molecular junction. The only oth
parameters are the energiest and U, which determine the
strength of the kinetic and Coulomb energies, respectivel
is usually believed that conjugated molecules lie in an int
mediate regime whereU/t51,...,4.21,22

III. ELECTRON DENSITY WITHOUT BIAS POTENTIAL

Consider first the situation without bias potential,m l

5m r or vn50. We analyze for this case the electron dens
at equilibrium in the absence of electron transfer between
molecule and the leads. In all the calculations presented h
we assume the chains to be electrically neutral with on
erage one electron per site. Because of the electron spin
corresponds to the half-filled case. Furthermore, we res
ourselves to the ground state of the system.

We have done exact diagonalization studies for chain
up to 12 sites. Results for the charge density of a chain w
12 sites shown in Fig. 2 are typical for other cases stud
Two main features can easily be seen.~i! The electron den-
sity is nonuniform: the electrons have a tendency to s
towards the middle of the chain.~ii ! Because of this nonuni
formity, substantial Friedel oscillations occur across the w
These features can be explained by invoking electron–h
symmetry as shown below.

For the case of a half-filled band it has long been kno
that the electron density is uniform, i.e., does not depend
the site indexn, for models defined on bipartite lattices i
such a way that electron–hole symmetry is fulfilled. Th
theorem was first discovered for the ground state of the fr
electron~Hückel! model24 and later extended to some inte
acting systems.25 More recently, a generalization to canonic
and grand canonical ensembles was proven for a large c
of models.26 Mathematically, the theorem applies to mode
invariant with respect to the transformationcn,s

†

→(21)ncn,s .
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Applying this transformation, we find that the Hami
tonian of the molecular wire~9! is invariant only if the equal-
ity

en52
1

2 (
m51

N

Un,mS 12
dn,m

2 D1K ~11!

is fulfilled, where K is a constant. This implies that th
electron–ion interaction is essentially compensated, up
constant term, by the repulsive electron–electron interact
Notice that allowing for hopping matrix elements that d
pend on the position in the chain would not change t
equality. Indeed, a term like (n,stn,n11(cn11,s

† cn,s

1cn,s
† cn11,s) remains unchanged when the electron–h

transformation is applied. From this point of view, it is n
necessary to go beyond the ZDO approximation.

The equality~11! can be satisfied only in very particula
cases where at least one of the following conditions is sa
fied:

~i! the chain is infinite;
~ii ! there is no interaction,U50;
~iii ! a→`, corresponding to interactions between po

charges.

None of these criteria is fulfilled in realistic cases
interest. With the exception of carbon nanotubes, experim
tal molecular junctions involve relatively short~,10 nm!
molecular chains.2 The Coulomb interaction is of the sam
order of magnitude as the kinetic terms21,22and certainly not
negligible. Even then, the electron density would still be u
form if the electron-orbitals are reduced to points~a→`!
regardless of the presence of image charges. Therefore
may say that the nonuniformity of the density comes fro
the lateral extension of the electronic clouds, thep- or s
states. This shows, once again, the need for a th
dimensional treatment of the electronic structure.

The exact shape of the electron density is determined
~i! the strength of the Coulomb interaction,U/t; ~ii ! the
spread of the electronic orbitals,a; and~iii ! the geometry of

FIG. 2. Electronic density without bias potential for a molecular wire
carbon (s51) with N512 sites. The parameters area54.5/a2 and U5t.
The full curve is the exact result for a molecule–electrode distance od
52a. The dotted curve is for the same geometry but at Hartree–Fock le
The dashed curve is the exact result for the case without metallic electro
d→`.
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
a
n.
-
s

e

s-

t

n-

-

ne

e-

y

the system, expressed in our model by the length (n21)a of
the molecule and by the distanced between the electrode
and the molecule.

All these factors contribute to yield, instead of the un
form density condition~11!, the relation

en52
1

2 (
m51

N

Un,mS 12
dn,m

2 D1 f L~n!, ~12!

where f L(n) is a function of the position in the chain; it
dependence onn is responsible for the nonhomogeneity
the electronic density. It is of interest to understand the
fects of each of these parameters separately.

Coulomb interaction. Starting from the noninteracting
case where the electronic density is uniform, increasingU
results in an increase of the Friedel oscillations until the el
trons start to localize. In the limitU→`, half filling leads to
a Mott insulator and one recovers a constant electron den

Spread of the electronic orbitals. When the orbitals are
reduced to points~point charge limit!, a→`, the electronic
density is uniform. Indeed, in this particular limit th
electron–ion and electron–electron interactions have
same form, restoring the electron–hole symmetry of the m
lecular Hamiltonian. Accounting for a spread of the orbita
increases slowly the amplitude of the Friedel oscillations

Geometry of the molecular junction. Two effects need to
be distinguished:~i! the finite size effects and~ii ! the image-
charge effects. In Fig. 2, the dashed curve shows the den
for the very same system used to obtain the other two cur
except that now no metallic electrodes are present. Th
fore, the dashed curve contains only the finite size effe
From this particular example, one sees that both effects c
tribute to the Friedel oscillations and that, in order to get
correct density, image interactions should be included un
the electrode–molecule distances are large. In fact, in
example of Fig. 2, the contribution to the oscillations due
the image charges is the larger one. The Coulomb interac
with the electrodes described by the image charges is th
fore crucial to estimate transport properties of molecu
wires or metallic constrictions. We have observed, as
pected, that finite size effects alone tend to disappear w
the chain size is increased. In contrast, the effect of im
charges tends to become more important: the amplitude
the Friedel oscillations increases with the system size du
the presence of the two metallic electrodes. This tende
should continue until, for long wires, which we do not co
sider here, the oscillations occur predominantly near
edges.

Finally, the dotted curve of Fig. 2 shows the electr
density with metallic electrodes calculated within th
Hartree–Fock approximation; it is in very good agreem
with the exact result. We have performed calculations
different values ofU up toU54t and observed that, as far a
the electron density is concerned, the Hartree–Fock appr
mation gives reasonable results. This allow us to use
mean-field approach for the study of the electrostatic pro
in biased molecular wires~Sec. IV! and their transport prop
erties~Sec. V!.

l.
es,
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IV. ELECTROSTATIC POTENTIAL IN BIASED
MOLECULAR WIRES

The application of the screened on-site electrostatic
tential to calculations of conductance properties is use
only within a single electron theory, e.g., in the mean-fie
description of the process. This is how this concept was
plied in the calculation of Mujicaet al.16 and in the density
functional theory.17,18 Here, our calculations are done usin
the Hartree–Fock approximation applied to the molecu
Hamiltonian ~9!. In the previous section, by comparing th
mean-field electron density with the exact one, we have
ready shown that the approximate result is reasonable in
range of parameters proper to conjugated molecules. M
precisely, the Hartree–Fock density is in very good agr
ment with the exact results for values ofU up to, approxi-
mately, 2t ~cf. Fig. 2! and remains of reasonable accuracy
to values of about 4t. In the following we present only re
sults forU5t, but the same qualitative picture arises also
larger values ofU.

Starting from the initial tight-binding model~9!, we
build an effective Hamiltonian by solving self-consisten
the usual Hartree–Fock equations21 leading to

Heff5(
n,s

en~V!cn,s
† cn,s

1 (
n,n8,s

tn,n8~V!~cn8,s
† cn,s1h.c.!, ~13!

whereV5m l2m r . The chemical potentials will always b
chosen such thatm l52m r . en(V) is the effective on-site
potential which includes the ionic attraction and t
electron–electron repulsion incorporated within a me
field picture as well as the on-site potential~10!. tn,n8(V)
is the effective hopping matrix element which includ
the exchange terms. Note that a vanishing of excha
integrals in the ZDO approximation is not equivalent to
Hartree approximation. Indeed, a mean-field approxima
of ~9! still contains exchange terms of the for
2 1

2(nÞn8Un,n8^cn,s
† cn8,s&cn8,s

† cn,s which, due to the long-
range part of the Coulomb potential~4!, include long-range
hopping.

Without Coulomb interactions, the electrostatic poten
is given by the ramp defined in~10!, i.e., by the potential in
the absence of a molecule. This linear profile has been u
sometimes in the literature to study nonlinear current-volt
characteristics.27,28

In the presence of Coulomb interaction, the linear pro
is changed and the screened electrostatic potential,En(V), is
given by the difference between the on-site term with a
without bias voltage

En~V!5en~V!2en~0!. ~14!

A typical example is shown in Fig. 3 for a chain with 2
sites. We see two main features:~i! screening is not very
efficient and, consequently, there is only a small poten
drop at the interfaces but a finite slope of the potential alo
the entire molecule;~ii ! there are substantial Friedel oscill
tions along the profile.
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Our results differ from those of Mujicaet al.16 despite
the fact that the two models are closely related. These dif
ences mostly come from the fact that we solve the Pois
equation without resorting to a one-dimensional approxim
tion. As recently shown by us within a classical model,19 a
three-dimensional treatment of the electrostatics is neces
and in fact leads to the identification of the lateral thickne
of the molecule as a new generic attribute that determines
potential profile. In Fig. 4, we show a comparison betwe
our results and the calculations of Damleet al.18 for a chain
of six gold atoms. It is important to stress that we did not
to fit the ab initio curve but, instead, we simply chose
reasonable set of parameters. Note, however, that we inc
the response of infinite leads while theab initio calculations
take only small metal clusters into account. Furthermore,
asymmetry in the latter case indicates that theab initio cal-
culations result in a charged molecule, while in our case
molecular wire always remains neutral. Otherab initio
calculations17,29,30 on similar models are also in agreeme
with our observations.

To conclude this section, we summarize our main
sults: in the relevant range of parameters, screening is

FIG. 3. Electrostatic potential profile for a carbon wire@s51 in Eq. ~5!#
with N520 sites. The parameters area54.5/a2, U5t, V5m l2m r5t, and
d52a. The dashed curve is the unscreened potential without mole
~ramp potential!. The full curve is the screened potential in the presence
the molecular wire. It shows a small decrease in slope along the e
molecule with substantial Friedel oscillations.

FIG. 4. The electrostatic potential profile for a gold wire@s50 in Eq. ~5!#
with N56 sites obtained from Hartree–Fock calculations is shown by
filled circles. The parameters used ared50.9a, a54.5/a2, andU5t. For
comparison the full curve shows theab initio results taken from Ref. 18.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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very efficient in the wire and the drop of the potential occu
along the entire molecule. Additionally, substantial Fried
oscillations are present in the electrostatic profile. Our res
are in good agreement with recentab initio results.17,18When
compared with the results of Ref. 16, our treatment stres
the need to study the full three-dimensional problem, as
as the electrostatics of the molecular junction is concern

In the next section, we discuss consequences of
screening effects for the current-voltage characteristics
molecular wires studied within the Landauer formalism.

V. CURRENT–VOLTAGE CHARACTERISTICS OF A
MOLECULAR WIRE IN THE WEAK TUNNELING
CONTACT LIMIT

In a model where only the first and the last atom o
molecular chain couple to the corresponding metal leads
at T50, the Landauer conduction formula yields3,31

I 5
2e

p\ E
mr

m l
dEuG1N~E,V!u2D l~E,V!D r~E,V!, ~15!

whereV5m l2m r andD l /r are the spectral functions for th
left and right reservoirs. The molecule–lead coupling o
occurs at sites 1 andN andG1N is the matrix element of the
exact Green function of the molecular junction betwe
these sites~cf. Fig. 1!.

This equation can be understood as a special case o
Landauer formula32 adapted to the case of bad contac
where it is possible to use second-order perturbation the
in the tunneling matrix element.31 In the limit of ‘‘ex-
tremely’’ bad contacts of interest here, the Green function
the system in formula~15! may be replaced by the Gree
function of the isolated molecular wire,G1N

0 .33 Moreover,
assuming that the product of spectral densities does not
nificantly depend on energy in the range betweenm l andm r ,
one gets

I 5
2e

p\
D0

2E
mr

m l
dEuG1N

0 ~E,V!u2, ~16!

whereD0 is the spectral density at zero bias.
From this simplified equation, we can calculate t

current-voltage characteristics of the molecular junction,
ing only the Green function of the isolated molecular wi
evaluated in the presence of the electrostatic potential cre
by the metallic electrodes. Examples are given in Fig. 5
increasing Coulomb strengthU starting from the noninteract
ing case where the on-site potential is given by the ra
~10!.

In all cases, theI –V curves have a staircase structu
which is a common feature in the weak tunneling limit18,27,34

and simply reflects the discreteness of the molecular e
tronic spectrum. Indeed, an increase of the bias potential
responds to an increase of the window of integration in f
mula ~16!. Therefore, a jump in theI –V curves means tha
one more discrete molecular level enters this window of
tegration.

It is interesting to note that Fig. 5 shows also wide
gions of negative differential resistance, in particular in t
noninteracting case. Within our simple formulation, they c
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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be explained by the localization of charges induced by
strong enough electric field: at sufficiently high bias voltag
charge carriers are localized at one end of the chain, resu
in a decrease of the current. This could be an artifact of
weak molecule–electrode coupling model; however, ne
tive differential resistance has been found in rec
experiments,35 and electric field-induced localization coul
be a way to understand these experimental findings.

The Coulomb interaction has two main effects on t
I –V characteristics. First, the positions of the curre
voltage steps are shifted to higher voltages reflecting the
placement of the molecular levels to higher energy with
creasing Coulomb interaction. Second, the localization of
charges due to a strong electric field is partially compensa
by the electron–electron repulsion. These screening eff
attenuate the negative differential resistance effects~cf. Fig.
5!. These observations are similar to those made by Mu
et al.,27 where a Hubbard model was studied at the Hart
level.

VI. CONCLUSION

We have addressed the problem of calculating trans
properties of a molecular wire bridging two semi-infinite m
tallic electrodes. A first important part of this task is to d
termine the electrostatic potential profile through the bia
wire.14–18Indeed, it is of importance to know how screenin
effects modify the ramp potential@Eq. ~10!# existing in the
absence of the organic molecule.

This work and our earlier paper19 resolve discrepancie
between answers available in the literature. On the one h
a tight-binding model combined with a one-dimension
Poisson equation gives a strong screening version of
problem: the drop of the potential occurs at the interfa
and the potential is therefore almost flat within th
molecule.16 On the other hand, recentab initio results give a
weak screening version: no substantial drop at the interfa
but rather a decrease along the entire molecule together
substantial Friedel oscillations.17,18

FIG. 5. Current-voltage characteristics for a carbon molecule (s51) with
N512, d52a, a54.5/a2, and for different Coulomb interaction strength
U/t50, 0.1, 1 are depicted by the dotted, dashed, and full line, respectiv
The current is given in units of (2e/p\)D0

2/t.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In this paper, we have proposed a modified tight-bind
model to address this question. It is based on three m
ingredients.~i! We introduce a three-dimensional Coulom
potential@Eq. ~4!# which includes the image interaction wit
the two metallic electrodes assumed to have planar surfa
~ii ! The electrons localized at atomic sites are modeled
Gaussian-type orbitals of finite lateral extent@Eq. ~5!#. ~iii !
The positive background is assumed to be a set of p
charges localized on the atomic sites. With these three in
dients, it is possible to evaluate the various terms of
model Hamiltonian: the on-site energy@Eq. ~7!# and the
electron–electron interaction@Eq. ~8!#. They are all functions
of the position on the chain due to the finite size of t
system and the image charges induced by the electrodes
our calculations are done in the weak tunneling limit, assu
ing bad contacts.

This model yields an electronic density that is nonu
form already in the absence of a bias potential—the electr
prefer to be in the center of the wire—and displays p
nounced Friedel oscillations~Fig. 2!. These characteristic
are due to the fact that our model does not fulfill, in gene
the electron–hole symmetry.24–26 In the presence of an ap
plied voltage the electrostatic potential profile does not d
appreciably at the interfaces but rather, in accordance w
theab initio results of Refs. 17 and 18, it decreases along
molecule with substantial Friedel oscillations appear
along the entire profile~Figs. 3 and 4!. Our results are dif-
ferent from the ones of Ref. 16, where a one-dimensio
Poisson equation was used. This disagreement stresse
need to perform a three-dimensional calculation, as d
here, to properly describe the electrostatic properties of
molecular junction.

Finally, the current-voltage characteristics are obtain
within the same Hartree–Fock calculation using the La
auer formula~i.e., neglecting electronic correlation effec
and assuming coherent tunneling!. It shows a staircase struc
ture ~Fig. 5!, as is common in the weak tunneling limit.18,27

Zones of negative differential resistance are found due
charge localization induced by the electric field. The m
effects of the Coulomb interaction, within our approxim
tions, are, on the one hand, a shift to higher energies of
position of the current-voltage steps and, on the other han
partial compensation of the localization of the electrons
minishing the negative differential resistance effects
agreement with a previous study.27

In closing, it is important to stress some limitations
our model. On the one hand, we consider coherent trans
assuming that the electrons are transferred from one lea
the other in a single quantum-mechanical process. This
good approximation if the tunneling time is much less th
the inelastic scattering time. For organic molecules, this tr
sit time could be of the same order of magnitude as
intramolecular vibronic relaxation time, especially in th
weak contact limit employed here.3 In this case, part of the
current could be due to sequential tunneling, where the
lecular wire would be successively charged and discharg
This important issue remains to be studied further. We h
neglected charging effects assuming the molecule to rem
neutral. At high voltage, this approximation could fail.27 The
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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average charge number of the molecule could increas
analogy with Coulomb blockade phenomena observed in
soscopic metallic double-tunnel junctions and quant
dots,36 and, more recently, in multiwall carbon nanotubes37

A proper handling of the full problem requires treatin
the wire as an open system dynamically coupled to the e
trodes and to the vibronic degrees of freedom. This progr
is far beyond the scope of the present work.
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