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The tunneling time of a particle through a given barrier is commonly defined in terms of “internal clocks”
that effectively measure the interaction time with internal degrees of freedom of the barrier. It is known that
this definition of the time scale for tunneling is not unique in the sense that it depends on the clock used to
define it. For the case of resonance tunneling, a particular choice that in the limit of a high/broad square
barrier yields the original result of Bu¨ttiker and Landauer (Phys. ReV. Lett. 1982, 49, 1739) is correlated to
the lifetime of the resonance state. This is illustrated for analytically solvable one-dimensional double barrier
models and for a realistic model of electron tunneling through a static water barrier. The latter calculation
constitutes a novel application of this concept to a 3-dimensional model, and the observed structure in the
energy dependence of the computed traversal time reflects the existence of transient tunneling resonances
associated with instantaneous water structures. These models, characterized by the existence of shape resonances
in the barrier, make it possible to examine different internal clocks that were proposed for measuring tunneling
times in situations where a “clock independent” intrinsic time scale (the resonance lifetime) for the tunneling
time exists. It is argued that this time may be used in order to estimate the relative importance of dynamical
barrier processes that affect the tunneling probability.

1. Introduction

The dynamics of tunneling processes has been under discus-
sion for a long time. “Straightforward” time scales such as the
rate for probability buildup on one side of a barrier following
a collision of a particle wave packet on the other side or,
equivalently, the time associated with the tunneling splitting in
a symmetric double well potential, are important measures of
the tunneling rate. Following the work of Landauer and
Büttiker1-6 and others,7 it has been recognized that other time
scales may be relevant for other observables associated with
the tunneling process. In particular, the question “how long does
the tunneling particle actually spends in the classically forbidden
region of the potential” is of particular interest. ThistraVersal
time for tunneling is useful in estimates of the relative
importance of processes that may potentially occur while the
particle is in the tunneling region. Energy exchange with other
degrees of freedom in the barrier and interaction with external
fields focused in the barrier region (e.g., deflection of a tunneling
electron by an electrostatic field induced by a heavy ion) are
important examples.

The Büttiker-Landauer approach to tunneling time scales is
based on imposing an internal clock on the tunneling system,
for example, a sinusoidal modulation of the barrier height.1 At
modulation frequencies much smaller than the inverse tunneling
time the tunneling particle sees a static barrier that is lower or
higher than the unperturbed barrier depending on the phase of
the modulation. At frequencies much higher than the inverse
tunneling time the system sees an average perturbation and so

no effective change in the barrier height, but inelastic tunneling
can occur by absorption or emission of modulation quanta. The
inverse of the crossover frequency separating these regimes is
the estimated traversal time for tunneling. For tunneling through
the 1-dimensional rectangular barrier

and provided thatd ) y2 - y1 is not too small and that the
tunneling energyE is sufficiently belowUB, this analysis gives

for a particle of massm and energyE < UB. VI, defined by (2),
is the imaginary velocity for the underbarrier motion. A similar
result is obtained (see below) by using a clock based on
population transfer between two internal states of the tunneling
particle induced by a small barrier localized coupling between
them.2 Using the same clock for electron transfer via the
superexchange mechanism (equal-energy donor and acceptor
levels coupled to opposite ends of a molecular bridge described
by anN-state tight binding model with nearest-neighbor coupling
V, with an energy gap∆E . V between the donor/acceptor
and bridge states), yields8

It was shown8 that both results (2) and (3) are limiting cases
(wide and narrow band limits) of a more general expression.† Part of the special issue “John C. Tully Festschrift”.
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The interpretation ofτ defined above as a characteristic time
for the tunneling process should be used with caution. An
important observation made by Bu¨ttiker2 is that the tunneling
time is not unique and depends on the observable used as a
clock. This observation is put on a more formal basis in section
2 below. Still, as shown in ref 1, it appears that with a proper
choice of clock the traversal time provides a useful measure
for the degree of adiabaticity of the interaction of the tunneling
particle with barrier degrees of freedom. This issue is repeatedly
encountered in electron tunneling through molecular environ-
ments, and its importance has been highlighted recently in
studies of electron transport in metal-molecule-metal junc-
tions. Whether the barrier appears rigid to the tunneling electron,
as is often assumed in theoretical modeling, and to what extent
inelastic transitions occur and affect transmission and conduc-
tance depend on the relative scales of barrier motions and
traversal time, properly defined.

Assuming that eqs 2 and 3 do provide suitable measures for
this purpose, we note that for a barrier of heightUB - E = ∆E
∼ 1 eV and width∼10 Å (taking the correspondingN to be
∼2-3), eqs 2 and 3 yieldτ = 0.2 fs andτ = 2 fs, respectively,
both considerably shorter than the period of molecular vibra-
tions. When tunneling is affected or dominated by barrier
resonances, these estimates may change. For example, we have
recently analyzed resonance effects in electron tunneling through
water and have shown that the lifetime of excess electron
resonances associated with transient cavities in the water
structure is of the order of 10 fs, suggesting the possible
involvement of OH vibrations and librations who move on
similar time scales. A suitably defined tunneling time should
contain similar information. Indeed, as shown in ref 9, the
traversal time computed using the same clock that leads to eqs
2 and 3 shows a good correlation with the typical resonance
lifetime. In the present paper we expand our analysis of this
correspondence, using both a simple 1-dimensional double
barrier model and a realistic 3-dimensional water barrier that
corresponds to electron transfer between metal electrodes
separated by a thin water film. A brief review of the clock-
based definition of the tunneling traversal time is presented in
section 2. Section 3 discusses the applicability of the tunneling
time concept to resonant tunneling processes within a simple
1-dimensional double barrier model, while section 4 describes
our results for water barriers. Section 5 concludes.

2. Traversal Time as an Observable Variation Problem

Different approaches to tunneling traversal and reflection
times attempt to estimate the time the tunneling particle spends
“under the barrier” given that it is eventually transmitted or
reflected. Additionally, a dwell time can be defined when the
outcome of the tunneling process is undetermined.10 These times
are obviously different from each other. In the present section
we focus on the traversal time. We follow the approach taken
by Büttiker2 following earlier works by Baz11,12 and Ry-
bachenko.13 This approach is based on the analysis of a particle
with two degenerate internal states undergoing the elastic
scattering (or tunneling) process. The two internal states are
weakly coupled only in a particular spatial region (e.g., the
barrier). An analysis of the subspace of internal states in different
components of the outgoing wave function provides a measure
of the time the particle spent in that region.

In the following discussion we consider a 1-dimensional
tunneling process (defined to be along they direction) and focus
on the transmitted part of the outgoing wave function. The
tunneling particle has an internal spin coordinate described in

the space of two states,|1〉 ) (10) and |2〉 ) (01). These states
are coupled only in the barrier region. The Hamiltonian
describing the system is

whereF(y) is 1 in the barrier region and 0 outside it,I is the

unit operator(1 0
0 1) and σi are Pauli matrices, e.g.,σx ) (0 1

1 0).
The Hamiltonian (4) (we useĤ to denote the 2× 2 Hamiltonian
matrix) corresponds to the concrete example of a spin-1/2 particle
described in the representation of eigenstates of the Pauli matrix
σz that interacts with a magnetic fieldB pointing in the-x
direction, which vanishes outside the barrier and is constant
inside it. In this caseλ ) gµB/2 ≡ pωL/2 where g is the
gyromagnetic ratio,µ is the absolute value of the magnetic
moment, andωL is the Larmor frequency.14

For an incident particle polarized in an arbitrary direction,
i.e.,

with |a1|2 + |a21|2 ) 1, the transmitted wave function is, apart
from the position dependent phase factor,

where the incident and transmitted spinors are related by a linear
transformation that depends on the barrier characteristics and
on the couplingλ:

Analytical expressions for the elements of the scattering matrix
S, as functions of the incident energy, for the Hamiltonian (4)
for a 1-dimensional rectangular barrier were obtained by
Büttiker.2 In the limit λ f 0 the total transmission probability
T ) |S11|2 ) |S22|2 is the same as would be obtained for a particle
without internal structure. Association with time is achieved
by considering the relationship between the normalized trans-
mitted wave function,T-1/2ψtrans, and the wave function obtained
by the interactionλ operating during timeτ, i.e.

whereHλ ) λ(|1〉〈2| + |2〉 〈1|). For smallλ

We may attempt to define the traversal time for tunneling by
formally requiring that forλ f 0, Ψ(τ) ) T-1/2ψtrans, i.e.,15

These equations, however,are not mutually consistent; i.e., they
give different results forτ. Furthermore, these results may
depend on the choice of the initiala. This is the origin of the
observation that the “tunneling time” depends on the observable
used to estimate it. For a dynamical variableA in the spin

Ĥ ) [- p2

2m
∂

2

∂y2
+ V(y)]I + λF(y)σx (4)

ψin ) exp(iky)(a1|1〉 + a2|2〉) ) exp(iky)(a1

a2
) (5)

ψtrans) (c1

c2
) (6)

c ) Sa (7)

Ψ(τ) ) e-i(Hλ/p)τ(a1

a2
) ≡ U(τ)a (8)

U(τ) ) (1 - (1/2)(λτ/p)2 -iλτ/p

-iλτ/p 1 - (1/2)(λτ/p)2) (9)

U11a1 + U12a2 ) T(a)-1/2(S11a1 + S12a2)

U21a1 + U22a2 ) T(a)-1/2(S21a1 + S22a2) (10)
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subspace, a timeτΑ may be defined by the requirement that
the relative change inA that accompanies the tunneling process
is the same as that associated with the time evolution (8):

or

Let the incident spin wave be in the+z direction, i.e.,a )

(10). For A ) σz ) (10 0
-1) this leads to

to second order inλ, while A ) σy ) (0i -i
0) yields

These equalities yield expressions forτz andτy that are consistent
with Büttiker’s definitions2 of the corresponding tunneling times
in terms of the spin rotations in the two directions that are
orthogonal to the direction of the “external” magnetic field.16

However, usingA ) σx ) (0 1
1 0) gives zero on the right-hand

side of (12), so no information can be obtained on the tunneling
time τx, which is associated by Bu¨ttiker with spin rotation in
the direction parallel to the external filed. Indeed, the commu-
tativity of σx with H implies that〈σx〉 remains zero at all time
under the time evolution (8).17 We note that Bu¨ttiker2 has
identified 〈σx〉 with ωLτx, anddefinedτx by this relation. This
leads to

These three times are related by2

The fact that the tunneling time obtained as described above
depends on the observable used to define it is an awkward
feature of this concept. It is interesting to note that, for an

incident particle in thea ) (10) state, if we replace the
requirementΨ(τ) ) T-1/2ψtrans, i.e., U ) T-1/2S by |Uij| )
T-1/2|Sij| (to be evaluated forλ f 0) it may be easily checked
that the resulting two equalities lead both to the same expression
for τ,

which, for a square barrier characterized by the widthd and
heightUB, yields the result (2).2

This definition of the tunneling timeτ asτz is appealing as
a measure of the duration for a tunneling process for the purpose

of considering the importance of competing population transfer
processes in the barrier. Furthermore, in the following sections
we find (see also ref 18) that for resonance tunneling this time
correlates well with the lifetime of the barrier resonance. Still,
it should be emphasized that this concept should be used with
caution. For example, tunneling times defined by eq 14 or 16
also depend on the energy spacing between the two internal
(spin) levels that was taken as zero above. For example, Figure
1 shows the dependence of the timeτ of eq 16 on the energy
spacing∆E ) E1 - E2 between the levels|1〉 and|2〉; i.e., the
Hamiltonian (4) is replaced by

It is seen that the computed traversal time depends on∆E, not
a surprising result considering the fact that at constant incident
energy the two internal states see different effective barriers
that depend on∆E. Still, in the range-0.5 eV < ∆E < 0.5
eV, which is the relevant range for assessing the relative
importance of nuclear dynamics effects on electron tunneling,
this dependence is seen to be modest and the calculated time
provides a reasonable order of magnitude indication.

3. Traversal Times in Resonant Tunneling by the
Distorted Wave Approach

As argued above, the concept of tunneling time is useful when
discussing the possible importance of barrier processes that
transfer population between internal states of the tunneling
system. Resonant tunneling situations are important examples
of cases were such barrier processes could happen. Here we
apply the formalism outlined above to such processes. A
1-dimensional double barrier model where the tunneling be-
havior is affected by resonance(s) in the intermediate well is
considered in this section, and a 3-dimensional model that
corresponds to a water layer between two metal electrodes is
discussed in section 4. In both cases we show that, near
resonance, the result of eq 16 is in a good correspondence with
the resonance lifetimes, while alternative measures can give
counterintuitive results.

The one-dimensional double barrier potential is defined in
terms of the potential energy function:

Figure 1. Traversal time, eq 16, for a system described by the
Hamiltonian (17) withV(y) given by eq 1, displayed as a function of
∆E for a particle incident on a 1-dimensional barrier with energyE0 in

channel 1, i.e., in spin state|1〉 ) (10). The barrier height isUB ) 5 eV,

and the incident kinetic energy is 2 eV (full line), 3 eV (dashed line),
and 4 eV (dotted line).

〈ψtrans|A|ψtrans〉
〈ψtrans|ψtrans〉

-
〈ψin|A|ψin〉
〈ψin|ψin〉

)

〈Ψ(τA)|A|Ψ(τA)〉
〈Ψ(τA)|Ψ(τA)〉

-
〈Ψ(τ)0)|A|Ψ(τ)0)〉
〈Ψ(τ)0)|Ψ(τ)0)〉

(11)
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j)1

2

∑
k)1

2

Ajkcj
/ck ) ∑

j)1

2

∑
k)1

2

Ajk(U(τA)‚a)j
/(U(τA)‚a)k (12)

|S11|2 - |S21|2

|S11|2 + |S21|2
) 1 - 2(λτz

p )2

(13)

{Im}(S11S21)

|S11|2 + |S21|2
)

λτy

p
(14)

{Re}(S11S21
/ )

|S11|2 + |S21|2
)

λτx

p
(15)

τx
2 + τy

2 ) τz
2

τ ) p
|λ|

|S12|
T1/2

) p
|λ|

|S12|
|S11|

) τz (16)

Ĥ ) [- p2

2m
∂

2

∂y2
+ V(y)]I + 1

2
∆Eσz + λF(y)σx (17)
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The tunneling time through the double barrier is defined in terms
of the two-dimensional Hamiltonian in eq 4, in which the one-
dimensional tunneling coordinate is coupled locally to internal
“spin” levels. The coupling range is defined byF(y), which is
zero fory < y1 andy > y4 and equals 1 within the barrier range
y1 < y < y4. In the particular case of resonant tunneling through
a symmetric double barrier, where the on-resonance transmission
probability is unity, it was shown by Leavens and Aers18 that
τx vanishes, and so the traversal time is given by

In the previous section the different tunneling times were defined
in terms of the scattering matrix elements associated with the
two-dimensional (“spinor”) Hamiltonian, eq 4. Our purpose is
to expressτtrav in terms of the parameters of the one-dimensional
double barrier (eq 18). We start by dividing the potential energy
operator into two parts, following the two potential formalism,19

with

In the weak coupling limit,λ f 0, the transmission proba-
bility amplitudes can be well approximated by the distorted
waves approximation. Let the incoming wave vector bek )
x2mE/p2, the transmission probability amplitude from an
initial spinor state|æj〉〉 to a final spinor state|æi〉〉 is given by

The double bracket notation is used for integration over both
the spatial and the spin coordinates.|ψj〉〉 is the exact scattering
wave function associated with the asymptotic state|æj〉〉

and the asymptotic states are defined as|æ1〉〉 ) eiky(10) and

|æ2〉〉 ) eiky(01). |ψI,i
(〉〉 are the distorted waves, which are the

exact incoming (+) and outgoing (-) scattering states in the
absence of the two-level coupling (i.e., forλ ) 0):

Substitution of the appropriate asymptotic states leads to the
following expression for the transmission probability amplitudes:

Using eqs 13, 25, and 26, the tunneling timeτz can be expressed
as

where we have used the limitλ f 0 again, in neglecting|S1,2|2
relative to|S1,1|2. The latter expression can be farther simplified
for the particular case of asymmetricdouble barrier, with
isolated resonance states. Forλ f 0 the transmission at near
resonance impact energies is close to unity,|S1,1| f 1. In such
a case, one obtains

whereυ is the incoming velocity

and the effective barrier width,Xeff, is given by the overlap
integral between the incoming and outgoing distorted waves in
the barrier region:

The distorted waves can be calculated explicitly as solutions to
the one-dimensional Schro¨dinger equation,

For a stepwise potential,

a solution to the eq 31 in thenth segment is given by

where the standard continuity condition of the function and its
derivative at the matching points leads to the following
recursion:20

The coefficients{An(E)} and {Bn(E)} of the incoming and
outgoing distorted waves are obtained by the recursion above,
with the following incoming wave boundary conditions,

V(y) ) {0 y > y4

V0 y3 < y e y4

0 y2 < y e y3

V0 y1 < y e y2

0 y e y1

(18)

τtrav ) τz ) τy (19)

V̂ ) V̂I + V̂II (20)

V̂I ) V(y)I2 V̂II ) λF(y)σx (21)

Si,j ) δi,j - im
kp2〈〈æi|V̂|ψj〉〉98

λf0

δi,j - im
kp2(〈〈ψI,i

-|V̂II|ψI,j
+〉〉 + 〈〈ψI,i

-|V̂I|æj〉〉) (22)

|ψj〉〉 ) (1 + 1
E - Ĥ + iε

V̂)|æj〉〉 (23)

|ψI,j
(〉〉 ) (1 + 1

E - ĤI ( iε
V̂I)|æj〉〉 (24)

S1,1 ) 1 - im

kp2
〈〈ψI,1

- |V̂I|æ1〉〉 )

1 - im

kp2∫y1

y4ψI,1
- *(y) V(y) æ1(y) dy (25)

S1,2 ) - im

kp2
〈〈ψI,1

- |V̂II|ψI,2
+ 〉〉 ) - imλ

kp2∫y1

y4ψI,1
- *(y) ψI,1

+ (y) dy

(26)

τz ) px |S1,2|2

λ2(|S1,1|2 + |S1,2|2)
≈ p|S1,2|

λ|S1,1|
)

m
kp|S1,1|

|∫y1

y4ψI,1
- *(y) ψI,1

+ (y) dy| (27)

τz )
Xeff

υ
(28)

υ ) kp
m

(29)

Xeff ) |∫y1

y4ψI,1
- *(y) ψI,1

+ (y) dy| (30)

[-p2

2m
∂

2

∂y2
+ V(y)]ψ(y) ) Eψ(y) (31)

V(y) ) Vn yn e y < yn+1 n ) 1, 2, ...,N (32)

ψn(y) ) An(E)eikny + Bn(E)e-ikny

kn ) x2m(E - Vn)

p2
(33)

An-1(E)

Bn-1(E)
)

e-2ikn-1yn
(An(E)/Bn(E))eiknyn(kn-1 + kn) + e-iknyn(kn-1 - kn)

(An(E)/Bn(E))eiknyn(kn-1 - kn) + e-iknyn(kn-1 + kn)

(34)
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The tunneling time,τz, can therefore be calculated explicitly
according to eqs 28-30.

Let us consider two different double barrier model potentials.
The first is a symmetric double barrier potential characterized
by the parametersUB ) 5 eV, (y1, y2, y3, y4) ) (-10, -7.5,
7.5, 10) au. The second is nonsymmetric with the parameters
UB ) 5 eV, (y1, y2, y3, y4) ) (-10, -7.5, 3.75, 10) au. Both
models support resonance states, which are solutions of the
Schrödinger equation (which amounts to the recursion relation,
eq 34) when outgoing wave boundary conditions are applied.
Denoting the resonance state asψR(y) gives the corresponding
boundary conditions for the recursion as

These conditions can only be satisfied for a complex resonance
energy,

A search was carried out for complex resonance energies for
the two models. The resonance lifetimes,τres ) 1/Γ,were
calculated directly from the imaginary parts of the resonance
energies and are given in Table 1. For each resonance the
traversal time,τtrav, was calculated in terms of the distorted
waves (eqs 9 and 27), for the impact energyE ) Er, the real
part of the resonance energy. These results are also shown in
Table 1. We see that the resonance lifetimes and the traversal
times are strongly correlated. Interestingly, we find that “on
resonance” the traversal time that measures the interaction time
with an external clock is roughly twice the lifetime of the
corresponding resonance states. One may be tempted to explain
this observation for a symmetric double barrier where the
resonance decays to both directions at double the rate associated
with traversal to one direction. Indeed, for this case Bu¨ttiker21

has shown that within the Breit-Wigner approximation for the
scattering matrix near resonance, the tunneling time is equal to
the dwell time, which is twice the resonance lifetime. Interest-
ingly, we obtain similar results also for a nonsymmetric barrier,
which suggests that the roots of this observation may run deeper
and will be addressed elsewhere.

4. Traversal Times in Water

In this section we examine the use of the traversal time
concept for a particular and singularly important case: electron
tunneling through water. Preliminary results for this system were
already published.9 For specificity we consider a particular
situation: electron tunneling through a water layer confined
between two planar Pt (100) electrodes. Our model system and
interaction potentials are the same as those used before22,23 to
evaluate electron transmission probabilities in water. In par-
ticular, the potential experienced by the electron is taken to be
a superposition of the vacuum potential, modeled by a rectan-
gular barrier, and the electron-water interaction.24 The latter is
represented by the pseudo-potential of Barnett et al.,25 modified26

to account for the many-body aspect of the water electronic
polarizability. Water configurations are sampled from an equi-
librium trajectory obtained by running classical molecular
dynamics simulations. The electron Hamiltonian is represented
on a grid in position space. The overall grid size that was used

is 16 × 400 × 16, with grid spacings 0.4 au in the tunneling
direction (y) and 2.77 au in the parallel directions (x, z).
Absorbing potentials, applied near the grid boundary in they
direction, make it possible to solve a scattering problem on a
finite grid. Periodic boundary conditions are used in thex and
zdirections. The distance between the metal electrodes depends
on the number of water monolayers. The overall dimensions of
the water slab in the simulation cell were thus 23.5× 10 ×
23.5 Å for 3 monolayers, and 23.5× 12.9 × 23.5 Å for 4
monolayers. The water density between the electrodes was
assumed independent of the confinement, and was taken as 1
g/cm3. This corresponds to a total of 197 and 257 water
molecules in these two water slabs.

We consider theone-to-all transmission probability: the
electron is incident in the directiony normal to the barrier, and
the transmission probability is a sum over all final directions.
For an electron without internal states, described by a Hamil-
tonianH0, this probability is given by27,28

whereφin ) eiky/xυ with k ) x2mE/p2 andυ ) pk/m, εin and
εout are absorbing potentials in the incident and transmitted wave
regions and

For the absorbing potentials we have usedεin ) (2|y|/Ly)7for
-Ly/2 < y < 0 and the corresponding mirror image forεout,
whereLy is the length of the calculational grid in they direction.

For the present problem we take|φin〉〉 ) (eiky/xυ)(10) and
the Green’s operator is given by (39) withH0 replaced by

whereλ is a constant andF(y) ) 1 in the barrier region and 0
outside it. The approximate scattering wave function,

is evaluated using iterative inversion methods as in our previous
work.22,23 The transmission probabilities into the|1〉 and |2〉
states (summed over all final directions of the transmitted wave)
are obtained from27,28

These probabilities are used to compute the traversal timeτ(E)
according to eq 16

Figure 2 shows calculated traversal times as functions of
incident electron energy. The distance between the two platinum
electrodes is hered ) 18.9 au, corresponding to three water
monolayers. The barrier potential is taken as the superposition
of the vacuum potential (represented by a simple rectangular

ψI,1
+ (y) T A1 ) 1; BN ) 0

ψI,1
- (y) T AN ) 1; B1 ) 0 (35)

ψR(y) T A1 ) 0; BN ) 0 (36)

E ) Er - i
Γ
2

(37)

TABLE 1: Resonance Lifetimes and Traversal Times for
Double Barrier Potentials

model resonance energy τres τtrav τtrav/τres

symmetric 0.0142- i0.000302 1655.6 3330 2.0114
0.0566- i0.002517 198.65 410 2.0639
0.1266- i0.008990 55.617 122 2.1936

nonsymmetric 0.02265- i0.0003915 1277.1 2574 2.0155
0.0887- i0.0032165 155.45 324 2.0843

T ) 2
p

〈φin(E)|εinG
†
εoutGεin|φin(E)〉 (38)

G ) (E - H0 + i(εin + εout))
-1 (39)

Ĥ ) H0(1 0
0 1) + λF(y)(0 1

1 0) (40)

|ψ(E)〉〉 ) iĜ(E) ε̂in|φin(E)〉〉 ) (ψ1(E)
ψ2(E) ) (41)

|Si1(E)|2 ) (2/p)〈〈ψi(E)|ε̂out|ψi(E)〉〉 i ) 1,2 (42)
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barrier of heightUB) and the electron-water effective potential.
Shown are the results obtained for this barrier (full line) and
for the corresponding vacuum potential (dashed line). The dotted
line represents the approximation (2) to the traversal time for
the vacuum potential. These results were obtained for a vacuum
barrier heightUB ) 5 eV, but takingUB ) 3 eV made practically
no difference. We may conclude that, as in eq 2, also for the
3-dimensional water barrier the traversal time depends mainly
on the incident energy measured relative to the (vacuum) barrier
height and only very weakly on the absolute energy. Two other
significant observations can be made: (a) For the 3-dimensional
water barrier the tunneling time exhibits a complex dependence
on the incident energy (measured relative to the vacuum energy),
and in particular, what appear to be resonance features are seen
below the vacuum barrier. (b) The absolute traversal times are
fractions of femtoseconds in the deep tunneling regime, and
5-10 fs at the peaks of the resonance structure below the
vacuum barrier.

It should be emphasized that the results displayed in Figure
2 correspond to a single static configuration of the equilibrated
water, and different results, in particular in the resonance-
dominated tunneling regime within 1 eV below the vacuum
barrier, are obtained for different static configurations. The
following common features are noteworthy.9 First, a strong
correlation with the resonance structure of the transition
probability is observed (see also below); second, in the deep
tunneling regime, the computed time is similar for different
configurations, is proportional to the barrier width, and is∼10%
longer than for the vacuum barrier.

The nature of the resonance structure observed below the
vacuum barrier is elucidated in Figure 3. Here we show, for a
particular configuration of the three-monolayer film, the tun-
neling time and the transmission probability, both as functions
of the incident electron energy. The resonance structure in the
transmission probability was discussed in ref 23 and was shown
to be associated with cavities in the water structure. Here we
see that the energy dependence of the tunneling time follows
this resonance structure closely. In fact, the times (3-15 fs)
obtained from the peaks in Figure 3 correlate well with the
resonance lifetimes estimated in ref 23. A similar correspon-
dence was found for all configurations studied. It is interesting
to note that, as in the 1-dimensional case discussed above, the
traversal times at resonance energies are longer by factors of
order 2 than the corresponding resonance lifetimes. For example,
for several of the resonances found in ref 23 we find an average
traversal of 11 fs, compared with an average lifetime of 6.65

fs. We leave the exact correspondence between these times to
future study.

The calculations discussed so far are based on the one-to-all
transmission probability with the electron incident normal to
the water layer. For completeness we consider also the
equivalent result obtained from a one-to-one transmission
probability, where the electron is transmitted at a given angle
relative to the layer. The neededS matrix elements were
calculated from eq 41 using27-29

with |ψ〉〉 given by eq 41: |φ1〉〉 ) υ-1/2eik‚r(10); |φ2〉 )

υ-1/2eik‚r(01).
Figure 4 shows the results obtained forτ (our τz; τx of ref 2)

as well asτx andτy (eqs 5 and 14;τz andτy of ref 2). We see
that the estimate forτ is only weakly sensitive to the “experi-
ment” (one-to-one or one-to-all) done. Also, as functions of
incident energy,τx and τy behave quite differently fromτ. In
particular,τx shows a pronounced dip (familiar from earlier
studies18) near the resonance energy, whileτy can become
negative close to the barrier top where interference features
affect the transmission probability. Surprisingly, we find that
these times are not very sensitive to the particular incident and
scattered directions used in the 1-to-1 calculation.

These calculations were carried using static water structures
sampled from a classical equilibrium distribution. The computed
times provide a posteriori justification for this procedure. In
particular, the relatively long times obtained near the resonance
peaks are short relative to the lifetime of the structural defects
that give rise to these resonances. It is important to note,
however, that these times are of the same order of magnitude
as the periods of intermolecular librations and intramolecular
OH stretch vibrations, suggesting the possibility that inelastic
processes contribute to the tunneling process. Indeed, recent
calculations30 have elucidated the effects of water vibrational
and librational motions on electron tunneling through this
system.

5. Conclusions

The tunneling time is not a unique quantity, and different
measures depend on the observables used to quantify them. We
have pointed out that a particular measure, eq 16, is particularly

Figure 2. Computed traversal time as a function of the incident electron
energy measured relative to the vacuum barrier. See text for details.

Figure 3. Traversal timeτ (full line; left vertical scale) and the
transmission probability (dotted line; right vertical scale) computed as
functions of incident electron energy for one static configuration of
the three-monolayer water film.

Si1 ) 〈〈φi|ε̂out|ψ〉〉 (43)
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appealing in that at resonance it is closely correlated with the
resonance lifetime computed independently. We have applied
this measure in order to compute this tunneling time for an
electron traversing a water barrier separating two metal elec-
trodes. As in a 1-dimensional rectangular barrier model, in the
deep tunneling regime (>1 eV below the barrier) the computed
time was found to depend mainly on the relative energy barrier
rather than on the absolute incident electron energy, and to be
proportional to the distance between the electrodes. For distances
of the order of∼10 Å the computed times in this regime are in
the range of 0.1-1 fs. Within 1 eV from the vacuum barrier a
marked structure in the energy dependence of the tunneling time

is associated with resonances originating from structural defects
in the water structure.23 The tunneling times,∼10 fs, computed
at the peaks of these structures, follow the lifetimes of the
corresponding resonances. These results set the scale for gauging
possible effects of other barrier motions, e.g., intramolecular
water vibrational modes, on the tunneling process.
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Figure 4. Different “tunneling times” vs incident electron energy for
the configuration of Figure 3. All results are for incident direction
normal to the water layer. (a) Traversal timeτ obtained from the one-
to-all transmission (full line, same as full line of Figure 3) and for
one-to-one transmission with an outgoing wave at 20° (dashed line)
and 45° (thin dotted line) to the normal. (b) One-to-one transmission
calculation ofτy (full line and thick-dotted line; outgoing wave at 20
and 45° to normal, respectively) and ofτx (τz of ref 2; dashed line and
thin-dotted lines; outgoing wave at 20 and 45° to normal, respectively)
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