JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 8 22 AUGUST 2002

Heating in current carrying molecular junctions
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A framework for estimating heating and expected temperature rise in current carrying molecular
junctions is described. Our approach is based on applying the Redfield approximation to a tight
binding model for the molecular bridge supplemented by coupling to a phonon bath. This model,
used previously to study thermal relaxation effects on electron transfer and conduction in molecular
junctions, is extended and used to evaluate the fraction of available energy, i.e., of the potential drop,
that is released as heat on the molecular bridge. Classical heat conduction theory is then applied to
estimate the expected temperature rise. For a reasonable choice of molecular parameters and for
junctions carrying currents in the nA range, we find the temperature rise to be a modest few degrees.
It is argued, however, that using classical theory to describe heat transport away from the junction
may underestimate the heating effect. 2002 American Institute of Physics.
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I. INTRODUCTION the current density, and is the conductivity. In contrast, the
o 4l &1 observation of molecular scale resistance does not necessar-
In several recent publications we and others™have i\ imply that heat dissipates locally on the source of this

addressed the issue of thermal effects in charge transpoiigistance. Consider for example a classical barrier separat-
through molecular nanojunctions. There are two importanf,g pepween two identical reservoirs of charge carriers that
reasons for the interest in this issue. First, on the fundameng.o -haracterized by electrochemical potentials: u [Fig.

tal level, the effect of eIectron—phon’drcouplmg IS anim- - 1(g)]. Imposing a potential bias on this junction leads to the
portant factor effecting the nature of the transmission and thg;  ation depicted in Fig.(b), in which a steady state current

conduction prgpertie; of th_e molgcular j.uncFion. Se,condflows in a closed circuit. This current is proportional to the
from the practical point of view, this coupling is associated 4¢a difference

with possible heating of the junction as it operates as a con-

ductor. As envisioned, among the most important advantages =1, .zr—Ir_. =qA(e #Es~#)— e AEsrR)):
of molecular junctions is the combination of small size with 2)
versatile and controlled structure. On the other hand this MR ML=],

small size implies small heat capacity, and possible heatm%hereA is the pre-exponential of the barrier crossing rate
may undermine the junction’s structural integrity. This makes '

the understanding of heating effects in molecular conductors. the potent|al_ blas,_anq |32 the carner charge. Fou¢
o <kgT, Eq.(2) yields|=ABqg“¢, which implies

a crucial issue.

In this'paper we study'this issue using.a simple model G=R !=Apq% (3
that combines an electronic system comprised of two con-
tinuous manifolds of states that represent the metal leads, Bhus the potential barrier is associated with a resistance in
tight binding chain representing a molecular bridge that conthis classical transport process, however the heat dissipation
nects between these leads and a thermal phonon bath ttgven by Eq.(1) should be considered more carefully. First,
couples to the molecular bridge. This model is similar tothe net power ¢ dissipated during this process is only a
those used by us earlfef to study the effect of coupling to small fraction of the energy accumulated and then released
a phonon bath on the nature of the conduction process, @S €ach carrier traverses the barrier. Second, this net dissipa-
particular interplay between tunneling, activation and hopdion does not necessarily fall on the barrier. In fact, in the
ping transmission processes. Lake and Baithave used a common case wheris derived from transition state theory,
different approach based on the nonequilibrium Greendriction is assumed to play a negligible role on the barrier
function formalism to study heat release in junction characand the powet ¢ is dissipated in the side reservoirs rather
terized by simple barrier or double barrier structures. than on the barrier. A similar phenomenon occurs in tunnel-

When a classical Ohmic conductor characterized by dng junctions where the Landauer conductatic¥,
resistanceR carries a current the heat produced per unit o2
time isRI%. This translates into G(Ep)= %ﬂEF) (%)

JZ
w=—, (1) (eis the electron charge] is the transmission coefficient,
andEg is the Fermi energyarises from elastic transmission

whereW is the heat produced per unit time and voludiés  and is not associated with any dissipation in the barrier. In
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FIG. 3. A schematic view of the model described by E@-—(9) and the
accompanying text.

the potential bias isu;— u,=¢. The linear rampA;A,,
represents a commonly made assumption for metal—

x=0 x=L molecule—metal junctions with a strong chemical bonding of
FIG. 1. A classical barrier separating two particle reservoirs witk@und the. mOIe_CU|e to both metals. Altemat'vely’ In a scanning _tun'
with (b) the applied bias. neling microscop€STM) experiment, a common assumption

is that the electrostatic potential on the molecule is pinned to
that of the substratdead 1 say so that the entire potential
both cases the net powét is dissipated in the leads, far drop occurs between the molecule and the(lgad 2, lead-
from the barrier that represents the molecular junction. ing to profileA;CA,. Because the molecule is a polarizable
For practical issues regarding heating effects on junctiorobject we expect that the linear ramp potential should be
stability, the question where and how much heat is beingeplaced by the dashed line in the figure, that is sometimes
released during conduction is of utmost importance. Energgpproximated by the profil&,B;B,A,.2%??
dissipated as heat in the metal leads is expected to move A typical molecular junction carrying a current of 1 nA
away from the molecular junction relatively rapidly. On the through a potential drop of 0.5 V, say, can deposit a power of
other hand, energy released on the molecular bridge can pap to 3- 10° eV/s into the junction region. Such magnitude of
tentially cause a large temperature increase due to the corheat power dissipated on a molecular bridge would pose a
bination of relatively inefficient heat conduction away from serious problem with regard to the bridge’s structural integ-
the molecule with a relatively small heat capacity of the mol-rity. The discussion above implies thiap is only an upper
ecule itself. The Landauer formul@) corresponds to the bound, and that only a fraction| ¢ (a<1), is dissipated on
limit where dissipation of electronic energy on the barrier isthe bridge itself. Estimating is thus a central issue of our
absent, while dissipation in the metal is admitted only im-study.
plicitly as discussed above. In reality, the coupling of elec- In Sec. Il we introduce our model and notations. Section
tronic and nuclear degrees of freedom provides a mechanisiti discusses a classical version of our problem where the
for heat dissipation on the bridge itself. In the present papemolecular bridge is represented by a potential barrier sepa-
we provide a framework for discussing this issue and forrating two reservoirs of classical independent charge carriers
estimating the expected temperature rise on the bridge.  (Fig. 1) that move under the influence of stochastic noise and
A crucial element of any analysis concerning heat re-damping. Section IV discusses the quantum problem intro-
lease on the bridge is the distribution of the electrostaticdduced in Sec. Il, using for the molecular bridge a tight bind-
potential drop on it. This issue has been discussed recentiyig model supplemented by a thermal bath and by a system-—
by several workers)=?2 however no firm conclusions exist bath coupling. This model has all the ingredients of the
for any realistic system. Figure 2 shows several possible scelassical model and also involves issues of coherence,
narios of the potential profiles between leads 1 and 2 whedephasing and tunneling that are missing in the classical ana-
log. In Sec. V we discuss local aspects of the heating process
and provide an approximate method to compute the heat re-
Az Ho leased at any local site of the bridge. In Sec. VI we estimate
the temperature rise on the molecular bridge under typical
operating conditions, using a classical model for the heat
conduction away from the bridge. Section VII concludes.

1 Il. MODEL AND NOTATION
A C

We use the same model that was used before to analyze
FIG. 2. Several possible scenarios for the potential drop profile across H1€ th_ermal eﬁe_CtS n eIeCt_ron transm!ssmn through molecu-
molecular junction. See discussion in text. lar bridges. This modelFig. 3) consists of a molecular
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bridge (M), two metal lead§J=L,R for the left and right in which x and 7, play the roles of coupling strength and
lead, respectively a thermal bath(B) and interactions be- correlation time, respectively. The rhs of Ed1) becomes
tween bridge and leads and bridge and thermal bath. Fats(t) in the Markovian,7.—0, limit.
details, see Sec. Il of Ref. 4. The bridge is described by a Our model is then characterized by the bridge leridth
tight binding model withN sites and one state localized on the energy ga@\E, the intrabridge coupliny/, the bridge-
each site. These states will be numberednisyl,...N and leads coupling expressed be the damping rdtesnd the
taken for simplicity to be mutually orthogonal with nearest- thermal-coupling parameteksand .. Previous uses of such
neighbor couplings. The left and right metal leaisL,R  model have yielded reasonable fits to the performance of
are represented by continuous manifolds of stdtgss{l}, = actual molecular junctions takiny of order 10,AE in the
{r}. The corresponding Hamiltonian is range of a few thousands wave numbers, "rehdI” in the
range 100—-1000 cnt. Some information on the thermal

H=Hu+Hg+F+H;+Hu, (5) coupling parameters associated with any given molecular site
where Hg is the Hamiltonian for the thermal environment can be obtained using the formal relationship to the site re-
and where organization energ§g, «=kgTEgr7/%.2*In the model cal-

culations described below we have used for simplicity the

Hu=HotV, Markovian limit, kg T 7. /2 <1, and have taker in the range

N (6) xk=0.1-0.01Eg. (Typical reorganization energies are in the
_ . range of~0.5 eV)
Ho_nzl EnlnXn; In the absence of thermal interactions this model léads

to the following expression for the differentigber unit of
the final energy rangdransmission for an incoming electron
with energyE,:

T'(Eg,E)=6(E—Eq)7(Eo)

N—1
V= n; Vil D(N+1[+ Vo ln+1)n],

HJ:Z E|||><||+§r: Eer)rl, @) = 8(E—Eg) Try(GM(En)T V)
X(Eq)G™MM(Eg)T®(Ep)). (12
HJM:Z V'+§r: Ve, [We useT’ to denote the differential transmission coeffi-
®) cient, while7 is the (dimensionlesselastic transmission co-
V=V, 4| (L] + V| 1), efficient] In Eq. (12), Try is a trace over the subspafrg of
molecular bridge states, a@&™)(E) is the Green’s function
Ve =V nIDN[+ Vi [INX(r], associated with this subspace,
N GM(E)=(E-H™(E)) 1, (13
F=2, Fnaln)nl. ) o
n=1 Hn’n,(E)ZEn(‘)‘n’n,—i-Vn’n,-i-En’n,(E), (14

In the calculation presented below we consider a particulawith X being the self-energy associated with the interaction
version of this model in whiclv, ,.,=V are the same for of the bridge states with the metal electrodes &ni its

all nearest neighbors, and also all bridge enerdigs(n imaginary part,

=1,...N) are taken equalE,=Eg, in the unbiased case. L R

This model is depicted in Fig. 3, which also shows a particu- 2”'“’(E)zzﬁ,;’(E)J’Eiw)l’(E)’

lar incident statg0) of the left manifold with energyE, VoV, (15
=Eg—AE, as well as the coupling to the thermal bdih sV (E)= #JJH/Z
This coupling is taken to be of the for(8), where agaifn} J i

is the set ofN bridge states in the site representation and 1

whereF, , are operators in the bath subspace. These opera- =A£]J‘21,(E)— EiFS;,(E); J=L,R.

tors are characterized by their time correlation functions ) o o )
The elastic transmission coefficiel{E) is related to the

zero bias conduction of the junction by the Landauer for-
mula, Eq.(4).

As mentioned in Sec. |, the electrostatic potential profile

_ phe | i ot . o -1 along the biased junction is an essential element in our

© fﬁmdte (Fo i (OF (V) B=(keT) ", analysis. We do not determine this distribution in the present

(10 paper. Ir!stead, we wiI_I cons_ider_two mod_els that correspond

to the situations depicted in Fig. 2. UsingE to denote
whereT is the temperature arig; is the Boltzmann constant. Eg—Eg in the unbiased junction, model A is defined so that

f:dteiw%Fn,n(t)Fnr,n'(O»

For specificity we sometimes use pmL=Er+(12)edp; ur=Eg—(1/12)e¢; E=E+AE
+(1/4)e¢; Ey\=Er+AE—(1/4)e¢ and a potential drop of
E. (DF (0))=5 ,—exo(— |t/ 11 (1/2)eq is distributed linearly along the bridge between sites
(Frn(OF o0 (00)= 60 27¢ Pt 7o) ) 1 andN, i.e., E,=E,_;—ed/[2(N-1)]; n=2,..N—1. In
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UNBIASED (R(1))=0 and<R(t1)R(t2)>:27kaT5(t1_t2)-( )
1
When the potential biagp=(u —ur)/(—¢€) is distributed
o PN - uniformly over the barrier we have
e ] Be Hr X e¢

Ux)=—esr; F (18

o
We will consider this situation, which is the classical analog
of model A of Fig. 4. A classical treatment of transmission
problem that analyzes the bridge lendtl) dependence of
the transmission probability was recently provided by Her-
shkovitz and Pollak®
1 Note that by starting the particles on top of the barrier at
——mie S x=0 [Fig. 1(b)] we disregard the energy needed to get there
in the consideration of heat release along their descent. The
question is simply what fraction of the available potential
------------------------------------------------------------ energyeq¢ that the electron loses as it traverses the distance
betweenx=0 andx=L is dissipated as hean the barrier
g Obviously a—1 asL—o, but it will be smaller forL of the
order of, or smaller than the relaxation distarge(the dis-
tance, of ordefF/my?, beyond which the descending par-
ticle assumes constant velogity
MODELB We will not dwell here on the full solution of this sto-
chastic transport problem and will limit ourselves to the
iy - simple zero temperature case. Equatib6) for this casex
=— yx+F/m, yields v (t)=vqexpy)+(F/my)(l
N —exp(=n)) and X(t) =xo+vol (1—exp(=n))/y]+(F/my)
________________________________ E . = BN X{t—[(1—exp(1))/v]}, wherex,=0 andv, are the initial
position and velocity. The time to reach the end of the slope
is the solutiont* of the equation,

L=vo[(1—exp—yt*))/v]

* __ _ _ *
FIG. 4. Different models for the potential distribution along a model mo- + (F/my){t [(1 exp(— 1t ))/7]}' (19)
lecular bridge. See text for details.

Taking for simplicityv =0, the fraction of energy dissipated
into heat on the slope is obtained from

model Bu, , ur, E;, andEy are the same as in model A o ed— (1/2)mv2(t*)

and the other bridge levels are taken independenp,dt, . (20)
=Er+AE; n=2,...N—1. Figure 4 shows schematic views ed

of these two models. In the limit yt<1 we find

lll. HEAT RELEASE: THE CLASSICAL ANALOG th=\2mUF=\2mLe¢, (21)

The following classical model contains the essential in-and the corresponding condition for this limit,
gredients of our problem: The molecular bridge is repre-
sented by a potential barriéFig. 1), and the transmission is yv2mL/ep<1. (22
a classical process of barrier crossing. Any particle thaWhen this condition is satisfied we find from Eq®0) and
traverses the barrier from left to right starts its trip on the(21)
barrier atx=0 and ends it as it leaves the barrier at the point™ ™"
x=L. The particles are assume independent and their motion om
a(L)y=yL~\/ g

is governed by the Newton equation supplemented by a (23
Langevin white noise,
1 1 In the opposite high-friction/long-conductor limit(t*) as-
X=—yx+ EF+ ER(U’ (16)  sumes its saturation value(t*)=F/(ym) and Eq. (20)
yields
whereF=—-dU(x)/dx is the force derived from the poten- s
tial barrier and where the frictiory and random forceR _._ _*
satisfy a(L)=1 2my°L%" 24
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We conclude that in the low friction limftEq. (22)] a(L) is
proportional toyL, while in the opposite limita(L) ap-
proaches unity with a correction that vanishes liké.] 2. o0.9F

IV. AQUANTUM CALCULATION OF HEAT RELEASE

Model A (Fig. 4) depicts a version of our quantum me-
chanical model that is analogous to the classical system dis= | = ~. JPPT AR
cussed above. In the quantum case the incoming $@ate %7 = “~~., -en 1
pumps the system, leading to a final energy distribution char-
acterized by a quasielastic tunneling component and a ther- e
mal component resulting from propagation on the bridge. 0'6"‘1,, i
These contributions are distinct from each otlsze, e.g., e e
Fig. 3 of Ref. 4 only when the incoming enerdy, is well ;
separated from the energy of the bridge levels. Such situa- 0.02 5.0 0.06 0.08 o
tions are not expected to be of concern with regard to heating ef [eV]

problems, and we study them first as a matter of theoretical
interest. FIG. 5. The fractionx [Eq. (25)] of the available energy that is released as

e . . . heat on the bridge, plotted against the potential kiefsr different bridge
To be specific, consider the case where the InCOmln(‘ﬁ%ngths N and thermal coupling parameték$. Full line: N=10, k=200

energy is considerably below the bridge levels. The thermal,, =1 pashed lineN=5, k=200 cni™, Dotted line:N=10, k=50 ™.
component in this case is the analog of the classical processshed—dotted lineN=5, k=50 cm . For other system parameters, see
discussed in Sec. lll. It can be envisioned as a process ii§xt

which the electron starts on the ley&} with energyE; and

is emitted into the right manifold with a lower average en- o

ergy (E)r. The differenceE; —(E)t is the amount of heat Results based on Eq&5)—(27) are shown in Figs. 5
released on the bridge. The fractianof available energy and 6. In these calculations the bridge and the bridge-leads

that is released as heat on the bridge is then couplings are characterized by the choice of paraméters
=200cm ! andI' =I'r=160cm !, where the other pa-
a=\ Ei—(E)r (25) rameters are varied as indicated below. Figure 5 shows the
ep '’ fraction « plotted against the voltage differengefor AE

=3000cm !, T=300K, bridge lengthaN=5 or 10 and

where\ is the fraction of the flux that is transmitted by the thermal coupling strengths=50 or 200 i’ (the thermal

thermally activated route and whedeis the potential drop, bath is assumed to be Markovian=0). Note thatx here is

e¢=E,~Ey. Note that as written, the numerator in Eg. the analog of the frictiony used in Sec. Ill. The fact that

(25)is the heat released on the bridge per transmitted elej\-\ese gquantities are proportional to each other can be seen
tron. Again, the thermal energy needed to place the electro . . e 1
g 9y P rom their relation to the diffusion constam,= (Bmy) ! in

?;kézeint;gdsceéovg:ﬁ: ;Eepng?n’?s dOQUSt) gff '[cte left lead, is nOtj[he clgssigal case of Sec. I.II arﬁlul~|2khop with I2 bei.ng the

A framework for evaluating the energy distribution of a Intersite distance on the bridge akgh,= 4V2/K- Still, the
transmitted electron in a model exemplified by Figs. 3 and 4€havior displayed in Fig. 5 shows an interesting difference
has been described in Refs. 4 and®2&or an incoming state
of energyE, this calculation yields the thermal analog of the
differential transmission coefficienf” (Eq,E), Eq. (12), 25318
which contains both elastic and inelastic contributions to the
transmission. The average energy associated with the therma
flux is then given by 2r

[+T"(Eq,E)EdE

O T BaE 20 gt
while the factor\ is given by B
T’ (Eq,E)dE 3T
_ fT ( 0 ) (27) [

- [*.T'(Ey,E)dE’

where [ denotes an integral over the thermal part of
7' (Ep,E). Obviously, these quantities can be defined only
when the tunneling and the thermal component of the trans- \ . , ; . . .
mission flux are well separated on the final energy axis. In- 0 0.5 1 w2 25 3 3.5 a
terestingly, we have found that in this case the facty ( K fem™] x 10

—(E)7)/(e¢) of Eq. (25 depends only very weakly on the pig_ 6. ¢l(1— a) plotted againsk? for different bridge lengths. From bot-
incoming energyEg. tom to top:N=4,5,6,7,8.

0.5p
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from the classical results of Sec. Il in that a minimum ap- x 10"
pears in thex(¢) curve. Such a minimum is not indicated by
the limiting expression$23) and (24), that show both a de-
crease inx with increasinge.?® Furthermore, for the param- 2f
eters used in Fig. & is very close to 1, and the displayed
dependence og is essentially a property of the factoE{
—(E)1)/ed. 5T

The correspondence to the classical model of Sec. Ill is
seen also in Fig. 6, wherg/(1—a) is plotted againsi?,
with T=800K, AE=1000cm !, and ¢=200 cm?, for
several bridge lengthdl. As « increases this dependence
becomes linear, in agreement with the classical high friction
limit, Eq. (24). In the opposite, low friction limit we find that
a depends linearly o as seen also in Eq23), however a
closer examination reveals that in the quantum case this lin- , , .
ear behavior is dominated by Eq. (27), which was already 02 04 o4 [6V] 06 08 1
shown to depend linearly ok for small «.2

We emphasize again that, while the above discussion iBIG. 7. Current vs voltage in models(Aull line) and B(dashed lingof Fig.
of general interest as a problem in quantum transport, thé for a four-site bridge. See text for the system parameters used.
limit considered is not very relevant to the problem of heat-

ing in current carrying molecular conductors. Next we tuM cached the top of the barrier at enefgy, and are rolling
to the more interesting case where the current is dominate&%/vn on the slope associated with the potential bias. Such
b_y resonance transmission through the bridge, i.e., by_'njecf)articles injected with energf, (a fraction\ of the total
tion energies close to the bridge levels. Here the elastic anﬁumber transmittechave to gain energy of the ordEx—E,
thermal fluxes cannot be energetically distinguished, and thﬁ.I order to start this process, but this energy gain is not taken

total current is given &Y into account in the computed energy balance. In contrast, Eq.

l/e [1/sec]

e (= % (29) is a simple balance between the incoming and outgoing
I= %J’ dEof dE[7|r(Eo,E, ¢)f(Eo)(1—f(E particle energies. When applied to situations where the cur-
” o rent is strongly activated, it will predict that the net heat
+ed))—Th(Eo.E,¢)f(Eqt+edp)(1—f(E))]. release is negative in situations where the average energy of

the incoming particles is lower than that of the outgoing

(28) particles(such situations may arise because transmitted par-
In analogy, the heat left on the bridge per unit time is giventicles must be thermally activated to enter the bayriér
by*° Appendix A we show that with suitable handling based on
1 these considerations, the res(®9) reduces to(25) in the
l=—— dEof dE[ T} a(Eq.E, &) F(Eo) limit pf large gap b_etweenEo and the bridge levels. In Ap-
7h )= —w pendix B we examine the dependencd pbn the potential

bias ¢. Specifically we show that,(¢) satisfies the obvious
condition |,(0)=0 and, furthermore, that for smallp
X (1~ f(E))J(E~Ey). (29 In(®)~¢*.

We next consider some numerical examples based on
Here f is the Fermi-Dirac function7| and 7, are the Eqs.(28)—(30). The results shown below are obtained using
transmission coefficients in the left-to-right and right-to-left the model of Fig. 3 with the parametefsE=2000cm
transmission and the dependence on the finite voltagedirop v=200cm *, T{"'=r{P=160cm*, k=50 cm?, 7,=0
across the junctiofthat makes7| s and 7, potentially dif-  and T=300K.
ferent from each othg¢mwas written explicitly. The differen- In Fig. 7 the current, Eq. (28), calculated for models A
tial transmission coefficient§” (Eq,E) were introduced in  and B of Fig. 4(see Sec. )l for an N=4-site bridge, is
Ref. 4, and are the thermal analogs of E&2). The heat displayed against the voltage drgp Note that the structure
released on the bridge per transmitted electron is now obof our model corresponds to transmission through either oc-

X(1-f(E+ed))+Tr(Eo,E,¢)f(Eoted)

tained from Eqgs(28) and (29), cupied or unoccupied levels of the bridge so only one side of

_ the potential bias is considered. Including both electron and
w=lnell. (30 LT . .

hole transmission in the model will not change the consider-

It is important to realize that the result®5) and (29—  ations involving heat release in any essential way. The cal-

(30) arise from different approaches to different physicalculated current—voltage characteristic shows marked sensi-
situations and are not equivalent. The re$28) corresponds tivity to the potential drop profile on the bridge as already
to a quantum treatment of the process that underlies the cladiscussed in Ref. 20. Figure 8 shows bbtls ¢ andl, vs ¢

sical discussion of Sec. lll. In this case the process that givefor models A and B wititN=4, and Fig. 9 showw, Eq.(30),

rise to heat release on the bridge is activated, and the hefdr both models, plotted against the applied bias. The ratio
release itself is associated with the flux of particles that hadv/e¢, which is a measure of the fraction of available energy
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FIG. 8. The electron curreriup) and the heat release per secqddwn)
computed for a system with 4 bridge units in modekfall line) and B
(dasheglline. System parametefsee text are as in Fig. 7.

that is released as heat on the bridge, the analagdfEg.
(25), is shown in Fig. 10. Figures 14 and 11b) display for
models A and B the electron current and the ratie¢ as
functions of the bridge lengtN for two values of the applied
voltage, below resonancg=0.1 V and above it$p=0.5 V.
Figure 12 shows the ratiw/e¢ as a function of the thermal
coupling strengthc for several choices of molecular param-
eters in models A and B.

The following observations can be made:

(1) Both the currentl|, and the heat release ratg, depend
on the model used for the potential drop profile on the
bridge, however both models yield similar orders of
magnitude for these quantities. As intuitively expected

w/(eo)

0.15}F

0.05¢
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0.2f

0.1f

0.2 0.4 0.6 0.8 1
et {eV]

FIG. 10. The fractiow/(e¢) of available energy that is released as heat on

the bridge, computed in the framework of E¢88)—(30) for a system with
4 bridge units, for models Afull line) and B(dashed ling System param-

eters(see text are as in Fig. 7.

)

the heat release per electron is higher for model A that i§4)

characterized by a linear potential drop along the bridge
(2) The fractionw/e¢ of the available energy released as
heat on the bridge, which is the analogmbf Eg. (25

0.25

0.2f

w [eV]

0.1f

0.05p

0.5 07 08 09
e¢ [eV]

02 03 04 0.6
FIG. 9. The heat release per transmitted electron,(89), computed for a
system with 4 bridge units in model@ull line) and B(dashed ling System

parametergsee text are as in Fig. 7.

®)

and Sec. lll, increases as the transmission assumes in-
creasing resonance character. For the parameters used in
Fig. 10 we see a marked increase in this ratio as the
voltage increases towards and beyond the resonance
transmission thresholé~0.3 V.

This fraction also increases with increasing bridge
length, and on general grounds is expected to approach
unity for large N. Still, for moderate bridge lengthy,
<10, and for the(reasonable parameters used in our
calculation, only~10% of the available energy is dissi-
pated on the bridge. This translates to a heat release of
the order 0.1 eV per transmitted electron or
~10%eV pers for currents in the nA range.

For resonance transmission the bridge length depen-
dence of botH andl, reflects specific properties associ-
ated with bridge levels going in and out of resonance
with the injection energy range, on top of generic phe-
nomenology discussed in our earlier wérkThe oscil-
latory dependence on the bridge lendthseen in the
dashed lines in Fig. 11 is a manifestation of the first
issue; the transmission probability changes as bridge lev-
els get in and out of resonance with the injection energy.
Increasing the bridge length may bring more levels of
the bridge into resonance, leading, at intermediate bridge
length to a counter intuitive increase of conduction with
N, as seen in the dashed and dotted line of Figa)l At

the same time, the difference between thdependence

at T=300K andT=200K is associated with the fact
that at room temperature and for the parameters used
transmission is dominated by thermal activation into the
bridge, while at the lower temperature and small voltage
the I/N dependence at smalN shows the exponential
behavior typical to tunneling, which crosses over to an
algebraic dependence for lart?

As stated abovésee Appendix B at smallg, Egs.(28)

and (29) yield the expected Ohmic behavibr ¢ and

I~ ¢2. This is an important check on our formalism
because it is not immediately obvious that E29) in-
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FIG. 12. The fraction of heat released on the bridge per transmitted electron
plotted against the thermal coupling strengtfor different choices of mod-

els and molecular parametetSE=2000cm !, V=200cm!, ¢=0.5V,
T=300K. Model A results: line with circledN=8, I'=160 cm %; dotted

line, N=8, '=2500 cm'%; line with squaresN=4, =160 cm %, dashed—
dotted line, N=4, T'=2500 cm®. Model B results: dashed liné\=8,
I'=160 cm % full line, N=4, '=160 cm %,

V. LOCAL ASPECTS OF HEAT RELEASE

In the previous section we have shown how the heat
release rate associated with electron transmission through a
molecular junction can be computed within a simple model
for the bridge. It is also of interest to ask where on the bridge
S this heat is released. For a bridge uniformly made of identi-

N cal repeat units and attached symmetrically to two identical

FIG. 11. The electron curretié) and the heat release per transmitted elec- electrodes one may expect that heat generation will be uni-

tron (b) plotted against the bridge length for AE=2000cm't, =160  form along the bridge, at least far enough from the molecule-

cm L, V=200cm %, =50 cmi. Full line: model A, =0.1 V; dashed lead surface contacts. It is of interest to consider other situ-

line: model A, ¢=0.5 V; dash—dotted line: model B=0.1V; dotted line:  ations, e.g., the heat generated about an impurity site on the

model B,$=0.5V; all for T=300 K. Line with + marks shows results for bridge structure or at special bonds, e.q., that connecting the

model B at¢=0.1 V andT=200 K. : . .
molecule to the electrode surface. In this section we consider
this issue within the same tight binding bridge model used
above.

Again we consider a steady state pumped by an incom-
deed satisfies,(¢=0)=(dl,/d¢)|4-0=0. As a check ing state|0) in the manifold that represents the left metal
we have verified that our numerical code also shows thisead. Denote byl (E)dE the steady state probability flux at
behavior. bridge sitek in the energy rang&---E+dE. The integrated

(6) The small initial drop seen in the cross€f=200K,  flux,

¢=0.1V) curve of Fig. 11b) reflects the fact that in this

(tunneling dominatedregime the small thermal contri- J=f dEJ(E), (31

bution (whose importance increases with bridge length

causes transmission of particles at energies higher thag obviously the same for all sites. The average energy of the

the injection energysee discussion below E¢R0)]. transmitted flux at sité is given by

With reasonable model parameters and under reasonable (E>k=de|§—Jk(E)_
operating conditions Figs. 8—10 tell us to expect that a sub-
stantial amount of energy 10%-30% of the potential dropKnowledge ofJ,(E) at every bridge sit& therefore suffices
will be released as heat on the bridgee e.g., Fig. 12 and for evaluating the local heat dissipation during electron
recall that a reasonable choice feiis in the range 20—200 transmission: the averaged energy released as heat between
cm ! (see Sec. ). Where on the bridge is this heat releasedsitesk andk+ 1 is simply (E)—(E)ys1.
and what is the expected temperature rise are the next ques- A way to calculatel,(E) is provided by a generalization
tions on our agenda. of the procedur®® that yields 7' (Ey,E)dE, the final-

(32
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FIG. 13. A schematic view of the theoretical construct used to discuss local ¢ 1}
aspect of thermal relaxation on the bridge. Each intermediate bridge level
(herek) is coupled infinitesimally weakly to a fictitious continuous manifold
K, which is used as a local energy probe.

n 5 8 10
energy resolved differential transmission probability into en- site index
ergy rangek---E+dE in the manifold that represents the FIG. 14. Heat released on the bridge between sites Inadiplayed as a
right metal lead. for a given incident energy This gener- function of the site index for a system represented by model&e Sec.
lization(Eig. 1 - d by attaching t h brid that 1. Full line: the computed result for the standard bridgee text for pa-
alization(Fig. 13 '.S .‘?”e y attaching to each bridge state rameterg at T=300 K with a potential bias of 1 eV. Dashed line: result for
(k=1,...N—1) afictitious electrode represented by the con-a system similar to the original, but with an impurity site represented by
tinuous manifoldK in Fig. 13. Only statek of the bridge is  settingEs=Ez—0.125V, whereEg is the energy of all other bridge states
coupled to states in its associated manifold, and this coupling the site representation. Dotted line: same for an impurity characterized by
is taken to be vanishingly small so that the main flux through™~ Ep+0.125V.
the bridge is not effected by it. The same procedure that
yields the energy resolved fluk’ (Eg,E) into the right metal
lead, can be used to get the corresponding fIYXxEg,E)
into the manifoldK. We will now assumethat for a given
incident energ\Ey, [ dEy f(Eg) 7 (Eq,E) andJ,(E) repre-
sent, up to normalization factors, the same quantity,
the normalized energy distribution at skes

into resonance with the adjacent bridge lejg! Setting the
energy scale so that the unbiased value of the Fermi energy is
zero, we have under this biag, =E;=4000cm?!, ug
=—4000cm !, andEyN=0, while the energies of the other
s0 thalrigge levels remails as defined by model B. To simplify
the calculation we limit it to an initial energy equal tq ,

J dEq f(Eg)Tw(Eq,E) i.e., we takef(Eq)=8(Eo—u)=86(Eq—E;) in Eq. (33).

PW(E)= ; (33 Figure 14 shows results for this model, as well as for systems
[ dBo f(Eo)J dETi(Bo,E) with one impurity site, where€Es=Eg is replaced byE;
and the average electron energy on ki =Eg*=1000cm ®. As expected, we see that energy release
occurs predominantly at the regions near the lead-molecule
(E)k:J' dEEPR(E). (34)  contacts that carry the potential drop. The local heat release

(the slope of the lines in Fig. }4nitially increases, then
It should be emphasized the validity of Eq83) and  decreases as the electron traverses a local low energy impu-
(34) is an assumption. Keeping in mind that the transmissiomity (a smaller opposite effect is seen near a high energy
coefficient7’ that appears in Eq:33) corresponds to what impurity) but, except when the impurity is placed near a
was denoted’| o(Eg,E, ¢) in Eq. (28), the integrated flux bridge edge, there is no significant effect on the overall heat

is given by release, i.e., the value &;—(E,q) for the 10-site model
" " studied. It should be emphasized however that this calcula-
J:f dEOJ’ dE[ 7| r(Eo,E,#)f(Ep) tion is done for a given potential bias of 1 eV. We find that
- - the current calculated from E@28) is |/e=1.1010%s 1,
X (1—f(E+ed)) 35 994 10’s ™1, and 9.7210" s~ ¢ for the no impurity case and

o _ - for the cases with Es=Eg—0.125eV and Es=Eg
and depends on the availability of unoccupied states in the-.125 eV, respectively. Thus the presence of either impu-

accepting final manifold. We have no theory for the effect ofrity does increase the apparent junction resistamte)( by
this availability on the intermediate quantitidg(E). It is 1504,

only if f(E+e¢)=0 in the relevant final energy range that
Egs.(33) and(34) are rigorously justified. . VI. ESTIMATING THE TEMPERATURE RISE

As a demonstration of this approach we show in Fig. 14
the computed integrated heat release, i.e., the heat generated We now turn our attention to the temperature rise ex-
between sites 1 analas a function of the site indexfor a  pected in a current carrying bridge molecular conductor. In
system described by model B with the paramefdrs10, making the following estimate we disregard energy that is
AE=(Eg—Eg)=2000cm?, V=200cm? T{=T{  deposited directly into the leads. This assumes that heat con-
=160cm *, 7,=0, k=50 cm %, andT=300K, under a po- duction in the metal lead is efficient and that energy reaching
tential biase=8000cm ! (=1 eV). This bias bringsu, the leads dissipates quickly into the bulk metals. On the other
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FIG. 15. A model for analyzing temperature rise in a current carrying mo-
lecular bridge. The molecule is represented by a cylinder of lehgiimd
cross-section radiuR, connecting between two surfaceshaded areasat
z=0 andz=L on which the temperaturk, is given. Heat is deposited at a
given ratew in on the inner cylinder of radiuR,. On the boundarp

=R, either Neumann or Dirichlet boundary condition is taken according to
the physical situatiorisee texk

303f
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D. Segal and A. Nitzan
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FIG. 16. The temperature distribution in the cylinder representing the mol-

ecule (see tex), obtained from solving Eq(37) using T(z=0)=T(z=L)

=T, and eitherT(R,) =T, (dashed lingor (aT/&p)p=R2:O (full line) as

boundary conditions. The other parameters usedlar@®0 A, R;=4 A,
hand, energy released on the molecular bridge can be tran8:=10A, T.=300K, 1,=10*eV/s, ando,=3.5-10"* calls cm K).

ferred only by nuclear degrees of freedom, i.e., by the pro-
cess known in other contexts as intramolecular vibrational

energy relaxatior{lVR). IVR as a model of energy transfer that should be solved under the given boundary conditions.
in a molecule connecting two metal leads is an interestingon the left and right boundaries we haig¢z=0)=T(z
problem that has not been considered yet, although some®)=T.,. For the heat flow in the direction we consider
related work on heat transport in mesoscopic junctions hawvo situations that give lower and upper bounds on the tem-

been recently published:*1=*°In this paper we limit our-
selves to a much simpler approach based on the classical hetgf
conduction of organic solids. In this rough model we repre-
sent the bridge by a cylinder of length connecting two
planes(the metal surfaceson which the room temperature

T, is given(Fig. 15. Again, this assumes that heat conduc-
tion on the metal leads is very efficient relative to that on the
bridge. This cylinder is comprised of two concentric cylin-
drical regions. The inner cylinder of radi is the current
carrying region, and we assume that heat is generated uni-
formly on this region at a ratqzlh/(rrR'fL) per unit vol-

ume. (In general this heat generation may depend on the
position along the cylinder axigin a way that depends on

the bridge structure and the potential drop profile, but in the
present estimate this is disregardetihe outer cylinder of
radiusR, represents in this model regions on the molecular
bridge on which heat is not deposited. In a microscopic
model energy flows into the region<<L; Ri<p<R, is
caused by redistribution of molecular nuclear enefmy
tramolecular vibrational relaxation, IVVRbut here we will
assume that energy flow in the molecule(®<L;p<R,) is
governed by classical heat conduction characterized by an
assumed known thermal conductivity,. The temperature
equation is then

(b)

o JT
O'hV T+|h:C_,

at (36)

wherec is the heat capacity per unit volume. The tempera-
ture profile at steady-state is determined by the Poisson equa-

perature rise:

The molecular bridge is immersed in a condensed en-
vironment so that heat can be conducted away in the
direction perpendicular to the current flow. A lower
bound on the temperature rise on the bridge may than
be obtained by imposingT(p=R,)=T.. This
amounts to the additional assumption that thermal con-
duction in the surrounding environment is very fast. If
we assume in addition that>R, so that heat is dissi-
pated mostly in the direction normal to the bridge, and
disregard the contribution of heat loss through the elec-
trodes, this yield§Ref. 40, Chaps. 293

(R1)+ 4o, R%
Obviously whenR,—« we can no longer disregard
the heat flux in the parallel direction, and E§8) is no
longer valid.

An upper bound on the temperature rise on the bridge
is obtained for a model that disregards all heat dissipa-
tion in the p direction, i.e., by considering a bridge
suspended between the two metal leads in vacuum, and
disregard all radiative heat losses. In this case we need
to solve Eq.(37) with the Dirichlet boundary condition
T(z=0)=T(z=L)=T, on the bridge-metal inter-
faces, and a Neumann boundary condition
(aT/ap)p:Rzzo on the outer cylinder surface.

iR
T(p=0)=T.+5—In (38

Oh

The Poisson equatiof87) was solved using a standard
, finite difference algorithnisee, e.g., Ref. 40, Chap). Fig-
V2T=— 'n (37) ure 16 shows results obtained from this calculation, using
Oh typical molecular parameters. In particular we note that

tion,
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=10 “call(scmK) is a typical value for the heat conductiv- model is a gross oversimplification that is expected to under-
ity of condensed organic materials. The heat generation ratestimate the temperature rise. Not only does the classical
I,=10'%eV/s is the order of magnitude expected in a junc-theory of heat conduction expected to fail in restricted-
tion carrying a current of 10 nA. We see that the temperaturgeometry systemésee, e.g., Ref. 39the discrete spectrum

in the molecule increases only in a modest way that shouldf nuclear motions in suspended molecular bridges may ren-
not be significant in most situations. Obviously, for largerder vibrational energy transfer relatively slow. A molecular
values ofL, and when no heat flow is possible in the normallevel treatment of vibrational energy transmission is needed
(p) direction, the temperature at the molecular center will beto get a more reliable estimate of temperature rise in current
higher (we getT=450K for L=500 A). While these results carrying molecular junctions.

are gratifying from the point of view of molecular conduc- Finally we note that, while our generic treatment pro-
tors design, the crude nature of our approximations should beides a framework for analyzing heating in molecular junc-
kept in mind. In particular a careful evaluation of vibrational tions, in practical applications one should worry about pos-
energy flow in molecular bridges is highly needed andsible energy accumulation in specific molecular bonds. In

should be the next stage in this study. particular, since much of the potential drop is expected to
occur at the molecule-lead contacts, the possibility of heating
VIl. CONCLUSIONS these particular locations that are critical to the junction sta-

Heating in current carrying molecular junctions is con- glhtyIshogl(tjhb(ihconstl_derlefd. In thekr:cresent patper we ha\_/e
trolled by the combination of at least two factors. First, the eveloped the theoretical framework for Computing approxi-
mately the position dependence of the dissipated power, and

amount, per transmitted electron, of electronic energy di-

rectly deposited on the molecular bridge is of great impor_have shown that one can associate this dependence with the

tance. Second, the rate of heat conduction away from thB”dge structure. Again, molecular level treatment of vibra-

molecular bridge will determine the ultimate temperature risetIonal motions in specific molecular junctions will be needed
assess this issue.

at the junction. In this paper we have presented a frameworp
for discussing these issues and for estimating the amount of
temperature rise _expected in _currfent carrying single m0|eCUIﬁCKNOWLEDGMENTS
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deposited on the bridge is given by the ohmic expressiotute of Theoretical Physics at UCSB for hospitality during
I,=I1¢. In the opposite limit, where electron—phonon inter-the final stages of this work.

actions on the molecular bridge are disregarded, no heat is

deposited directly on the bridge. In intermediate cases only a

fraction of the available energy will be deposited on theAPPENDIX A: THE RELATIONSHIP BETWEEN

bridge. This fraction is expected to be small for large inter-EQS. (25) AND (29)

site electronic coupling, strong bridge-lead coupling, rela-  ~gnsider Eq(29) and letE, be much below the bridge
tively weak electron—phonon interaction and short bridgesayels. We focus on the case where the potential ids

Indeed, for a reasonable range of molecular and relaxatiopsitive so thajur< . and consider only the current from
parameters we have found that this fraction may be substaijss; 1o right. Equation(28) then takes the form

tially smaller than 1, even down to order 0.1, but given that
in a junction that carries 1 nA under a bias of 1 V the total
energy dissipation rate is-10°eV/s, and that<10 eV is

sufficient to dissociate the molecular bridge, the issue of
temperature rise cannot be disregarded. This observation Xf(Eo)(1-f(E+eg)). (A1)

makes it imperative to consider the second factor, the effiwe will also assume thap is much smaller than the gap
ciency of heat conduction away from the junction. This issuépetween the injection and bridge energies. In this case the
was treated in the present paper within a classical heat contifferential transmission from left to right may be approxi-

duction model. For a simple model that represents the momated as a sum of coherent-elastic and thermal components,
lecular bridge as a cylinder characterized by heat conductiv-

ity typical to organic solids, we have found the temperature  TLr(E0,E.#)=A(Eq) 8(Eo—E) +e Fe F0B(Ey,E),

rise in molecular junctions to be in the tolerable few degrees (A2)
range even under the extreme conditions where all the erwhere theA andB terms are the coherent/tunneling and the
ergy associated with the potential bias is assumed to be dectivated components of the transmission, respectively. Un-
posited(uniformly) on the bridge, and where heat is allowed der the approximations made the functB(E,,E), viewed

to escape only through the molecule-lead contact. It shoulds a function of the final enerdy, is peaked in an energy
be emphasized, however, that our classical heat conductiaange substantially highém terms ofkgT) thanE,, there-

e oo o0
I=%LwdonﬂdETﬁR(Eo,E,@
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fore f(Ep) andf(Eg+eA$) may be taken to vanish. In this the differential transmission probability” (Eq,E) is sym-
case Eq(Al) may be written as a sum of a tunneling com- metric in its arguments, i.eJ’(Eq,E)=7"(E,E,). Since

ponent and a thermal component, we are dealing with an equilibrium situation we may further
I =1t liherm (A3) fi\ziume that’ (Ey,E) satisfies the detailed balance condi-
where
6 (= T'(E E):‘A(E—Eo)e‘”E‘EO% E>Eq ©2)
Itun:ﬁf_mA(EO)f(EO)(l_f(EO+eA¢))dEOa ’ A(E—Ep); EsEq

(A4)  with A(X)=A(—x). We take the chemical potentialto be
|merm5ij dEof(EO)efﬂ(Esto)J dEB(E,,E). the zero reference energy, so thiix)=(1+exp(8x)) .
wh J e e Rewriing Eq. (B1) in the form 1,(¢=0)

The result for the heat generation rd®9) under the same —(2/mh) |~ .dEoF(Eo) with

approximation is obtained by modifying the thermal compo- Eo
nent in Eq.(A4), F(Eo)=f(Eo)“_ (1-1(E))A(E-Eo)(E—-Eo)

|h5—ifm dEof(Eo)eileBiEo) *
mh ) +f (1—f(E))e AE-BIA(E—Eg)(E—Ey)
Eo

X foc dEB(Eq,E)(E—Ey—Eg). (A5) (B3)

we will show thatF(Eg)+F(—Eg)=0, thus proving that
Note that in the spirit of our discussion below E&0), the I(¢=0)=0. To this end we use the equalities,
energy balance is computed by comparing the final energy to

the energy of the activated electron at enefgy- Eg. The
heat released per thermally transmitted electron is obtained

ePE

F(Eo)(1-F(B))= o1 oPEF 1"

by inserting expression6A4) and (A5) into Eq. (30). We (B4)
.. . . BE
further assumdas was verified numerically abovéhat, in f(—Eq)(1—f(E))= e
the limit considered, the integrals ovErare practically in- 0 e PRo+1 eFE+ 17
dependent oE,. We therefore get with Eq. (B3) to get
I 2 dEB(Ey,E)(E—Ey—Eg)
h __ i 5 —E,—(E)y, F(Eo)+F(—Ep)
Itherm f—wdEB(EoyE)
(AB) Eo  ePEA(E—Ey)
. = BE BE (E-EpdE
whereE,=E,+ Eg and whergE), is the average energy of —»(€770+1)(e”5+1)
the thermally transmitted electron. This heat release per ther- ~  ePEoA(E—E,)
mally transmitted electron is then multiplied by the fraction j . e 0 (E—Eq)dE
of electrons transmitted thermally E(€770+1)(e”=+1)
I therm f*Eo eBEA(E+ Eo)
M Tt Lo (AT t)L e ey BHEIIE
apd divided by the energy available for releaseg¢, to foo e PEOA(E+E) o EdE -
give the resul(25). _Eo(e—ﬁEo+1)(eﬁE+1)( +Eo)dE. (B5)

APPENDIX B: VOLTAGE DEPENDENCE It is easily shown that on the right-hand side the first and the
OF THE HEAT DEPOSIT RATE .
fourth terms cancel, as do the second and the third terms. For

Here we examine the dependence of the heat generati&xample, by puttinde— E,=x in the first integral we get
rate,l,, Eqg.(29), on the potential biag. First consider the

zero bias case. In this equilibrium calsg$=0) must van- LO e FIA(x)

ish because there should not be net heat dissipation on the ..(e#fo+ 1)(eP**Eol 1 1) *

bridge in this situation. We will show that E(R9), which in .

this limit becomes _ jo e PFoA(x) y
—w(e PEo+ 1) (e AXFED 4+ 1)

dx

dx
2 o 0
Ih(¢=0)=— pury Jideof(Eo) fﬁx(l—f(E))

xdx

X— =X J‘m e_BEOA(X)
XT'(Eq,E)(E—Ep)dE (B1) o (e PEot1)(efX E1)

indeed satisfies this requirement. For simplicity we limit our-which is opposite in sign to what we get by usifgEg
selves to a model where the density of states in the twe=x in the fourth integral. It follows that(Eg) +F(—Ey)
continuous manifolds does not depend on energy. In this case0 and consequently
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