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Abstract

The effect of a thermal environment on electron (or hole) transfer through molecular bridges and on the electron

conduction properties of such bridges is studied. Our steady state formalism based on an extension of the Redfield

theory [J. Phys. Chem. B 104 (2000) 3817; Chem. Phys. 268 (2001) 315] is extended in two ways: First, a better de-

scription of the weak-coupling limit, which accounts for the asymmetry of the energy dependence of the quasi-elastic

component of the transmission is employed. Secondly, for strong coupling to the thermal bath the small polaron

transformation is employed prior to the Redfield expansion. It is shown that the thermal coupling is mainly charac-

terized by two physical parameters: the reorganization energy that measures the coupling strength and the correlation

time (or its inverse – the spectral width) of the thermal bath. Implications for the observed dependence of the bridge-

length dependence of the transmissions are discussed. It is argued that in the intermediate regime between tunneling

behavior and site-to-site thermally induced hopping, the transport properties may depend on the interplay between the

local relaxation rate and the transmission dynamics. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The investigation of electrical junctions in
which single molecules or small molecular assem-
blies operate as conductors connecting ‘tradition-
al’ electrical components such as metal or
semiconductor contacts constitutes a major part of
what has become the active field of molecular
electronics. Their diversity and versatility and
amenability to control and manipulation make
molecules and molecular assembly potentially im-
portant components in nano-electronic devices.
Indeed basic properties such as single electron

transistor behavior and current rectification have
already been demonstrated. At the same time
major difficulties lie on the way to real techno-
logical applications. These difficulties stem on one
hand from problems associated with the need to
construct, characterize, control and manipulate
small molecular structures at confined interfaces
with a high degree of reliability and reproducibil-
ity. On the other hand lie issues of stability of such
small junctions. One cause for concern is heat
generation and dissipation in these systems [1,2].
In this paper we discuss this issue using simple
models for molecular bridges connecting two me-
tal contacts.

It has long been recognized that tunneling
electrons interact, and may exchange energy, with
nuclear degrees of freedom in the tunneling
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medium. One realization of such processes is in-
elastic electron tunneling spectroscopy [3]. Inelas-
tic electron tunneling may also cause chemical
bond breaking and chemical rearrangement in the
tunneling medium, either by electron induced
consecutive excitation or via transient formation
of a negative ion [4–7]. 1 The phenomenology of
inelastic electron transmission is also closely re-
lated to other electronic processes in which tran-
sient occupation of an intermediate state drives a
phonon field [8]. Intramolecular vibrational exci-
tation in resonant electron scattering [9], phonon
excitation in resonant electron tunneling in quan-
tum-well heterostructures [10] and electron in-
duced desorption [11,12] can all be described on
within this framework.

Nuclear motion, associated with solvent reor-
ganization about the donor and acceptor sites
upon the change in their charge state, is an es-
sential ingredient of the standard theory of elec-
tron transfer. When the donor and acceptor are
replaced by metal contacts this aspect of the pro-
cess is not crucial anymore, because the metal
environments can supply and drain charge carriers
from the system without nuclear rearrangement. It
is the issue of how thermal relaxation in the mo-
lecular bridge connecting the metals affects the
transport process that becomes central. It should
be emphasized that this is an important, even if
usually overlooked, issue also in ‘regular’ electron
transfer processes, see e.g. [13].

The Medvedev–Stuchebrukhov theory [14]
corresponds to the lowest order correction due to
intermediate state nuclear relaxation for the elec-
tron transfer rate in the so called superexchange
processes where the electron transfer is mediated
by intermediate (bridge) high energy electronic
states. On the other extreme side we find sequential
processes that are best described by two or more
consecutive electronic transitions. Obviously, in-
termediate situations can exist, see e.g., [15–19].

Closely related to this phenomenology is the
process of light scattering from molecular systems

where the donor and acceptor states are replaced
by the incoming and outgoing photons. Elastic
(Rayleigh) scattering is the analog of the 2-state
‘standard’ electron transfer process. Inelastic
(Raman) scattering and resonance Raman scat-
tering involve intermediate states coherently.
Resonance fluorescence is the process that takes
place after thermal relaxation and dephasing oc-
curred in the intermediate state manifold.

The importance of dephasing effects in the op-
eration of microscopic junctions has long been
recognized [20,21]. Most of the work on dephasing
effects in mesoscopic solid-state junctions follows
the work of B€uuttiker [22] who has introduced phase
destruction processes by conceptually attaching an
electron reservoir onto the constriction connecting
the metal contacts. A different origin of dephasing
is implied by the random coupling model for long-
range electron transfer of Bixon and Jortner
[23,24]. Recent applications of hopping models for
electron transfer processes in DNA [25–27] assume
that dephasing predominates these processes.
While coupling to the thermal environment is im-
plicit in these treatments, several groups have re-
cently discussed models for electron transport with
explicit coupling to phonons [28–34]. These works
provide exact numerical solutions of simple mod-
els: one-dimensional tight binding transport model,
only a few harmonic oscillators and essentially zero
temperature systems. An alternative approach uses
the machinery of non-equilibrium statistical me-
chanics, starting from a Hamiltonian for the sys-
tem, bath and system–bath interaction and
projecting out the bath degrees of freedom [35–43].
The resulting reduced equations of motion for the
electronic subsystem contain, in addition to
the deterministic part that describes transport in
the isolated system, also dephasing and energy re-
laxation rates that are related explicitly to proper-
ties of the thermal and the system–bath coupling. A
recent development of this approach [44] makes it
possible to examine the final energy distribution of
the transmitted electron for a given incident energy.
Such final energy resolution is not an observable in
this kind of electron transmission experiments (in
contrast to, e.g. photoemission where the final state
of the emitted electron is directly observable),
however this information is needed for evaluating

1 While our language refer to electron transport and electron

tunneling, hole transport and nuclear excitation via transient

positive ion formation are equally possible.
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the current at finite voltage drop across the junc-
tion, and can be also used to evaluate the heat ‘left
behind’ in the bridge, an important element in es-
timating heating effects in electron transmission
through molecular junctions [45].

These works, that lead to reduced equation of
motion for the density operator in the electron–
molecule subsystem, treat the molecule–thermal
bath interaction in the weak-coupling limit, using
variants of the Redfield approximation [46,47] that
describes this coupling using second order pertur-
bation theory. The other limit, with full thermal
relaxation assumed at any bridge site occupied by
the electron has been anticipated in classical hop-
ing models that were recently used for, e.g., DNA-
bridge mediated electron transfer [25–27,48]. A
general treatment that can in principle reduce to
these two limits have been presented only for the
three-level system (including the donor and ac-
ceptor levels), i.e. where the bridge involves only
one intermediate electronic state [17,18] or, using a
path integral approach, for thermal relaxation ef-
fects in tunneling through continuous potential
barriers [49,50], see also [51].

The present paper supplements our recent study
of thermal relaxation effects in steady state elec-
tron transmission through a molecular bridge.
Section 2 reintroduces the model: a tight binding
model for the bridge, with coupling on the left and
on the right to continua representing metal elec-
trodes. For the weak-coupling limit we present in
Section 3 an analysis that improves the calculation
of [44] of the final energy distribution of the
transmitted electron. In Section 4 we analyze the
strong coupling limit using an approach that
combines the small polaron transformation
[52–54] with the Redfield approximation [46,47].
Section 5 concludes.

2. Model and notations

At the focus of our consideration is a molecular
bridge (M) described by a tight binding model with
N sites associated with a set of states fng, one per
site, taken for simplicity to be mutually orthogonal
with nearest-neighbor coupling. The correspond-
ing Hamiltonian is

HM ¼ H0 þ V ;

H0 ¼
XN
n¼1

Enjnihnj;

V ¼
XN�1

n¼1

Vn;nþ1jnihnþ 1j þ Vnþ1;njnþ 1ihnj:

ð1Þ

This bridge connects two metal electrodes, repre-
sented within the model by continuous manifolds
of non-overlapping states: the ‘left’ continuum (L),
and the ‘right’ continuum (R), which are assumed
to couple only to the first (1) and last (N) bridge
states, respectively. In what follows these contin-
uous manifolds are sometimes denoted collectively
by J, i.e., J ¼ ðL;RÞ. These manifolds are charac-
terized by their density of states, qLðEÞ and qRðEÞ.
The corresponding Hamiltonians and couplings
are written in the forms

HJ ¼
X
l

Eljlihlj þ
X
r

Erjrihrj; ð2Þ

HJM ¼
X
l

Vl þ
X
r

Vr;

Vl ¼ Vl;1jlih1j þ V1;lj1ihlj;
Vr ¼ Vr;N jrihN j þ VN ;rjNihrj: ð3Þ

Here flg and frg denote the left and right con-
tinuum states, respectively. Fig. 1 displays a sche-
matic diagram of this system.

Finally, the thermal environment is represented
by the ‘bath’ Hamiltonian HB, and thermal relax-
ation is assumed to be effective only in the mo-
lecular subspace. The molecule–thermal bath
coupling is taken to be of the form

Fig. 1. A schematic diagram of the model used to discuss

thermal relaxation effects in conduction through molecular

bridges. See text for details.

D. Segal, A. Nitzan / Chemical Physics 281 (2002) 235–256 237



F ¼
XN
n¼1

Fn;njnihnj; ð4Þ

where F are operators in the bath subspace. The
exact form of F is not important, but in the present
discussion, we will assume that the coupling to the
thermal environment is weak. The coupling term is
characterized by its correlation function, whose
Fourier transforms satisfy the detailed balance
relationZ 1

�1
dt eixthFn;nðtÞFn;nð0Þi

¼ eb�hx

Z 1

�1
dt eixthFn;nð0ÞFn;nðtÞi; ð5Þ

b ¼ kBTð Þ�1
;

where T is the temperature and kB is the Boltz-
mann constant. For specificity we will sometime
use

hFn;nðtÞFn0;n0 ð0Þi ¼ dn;n0
j
2sc

exp ð � jtj=scÞ ð6Þ

in which j and sc play the roles of coupling
strength and correlation time, respectively. The
RHS of Eq. (6) becomes jdn;n0dðtÞ in the Marko-
vian, sc ! 0, limit.

The Hamiltonian of the overall system (molec-
ular bridge, electrodes, thermal environment and
the corresponding couplings is

H ¼ HM þ HB þ F þ HJ þ HJM: ð7Þ

In general wðtÞ ¼
P

n cnðtÞjni. We consider a stea-
dy state pumped by a particular incoming state j0i
of the L manifold. In the absence of thermal in-
teractions the time evolution of the density matrix
may be obtained from the amplitude equations

_cc0 ¼ �iE0c0; ð8Þ

_cc1 ¼ �iE1c1 � iV1;0c0 � iV1;2c2 � i
X
l 6¼0

V1;lcl; ð9Þ

_ccn ¼ �iEncn � iVn;n�1cn�1 � iVn;nþ1cnþ1;

n ¼ 2; . . . ;N � 1; ð10Þ

_ccN ¼ �iENcN � iVN ;N�1cN�1 � i
X
r

VN ;rcr; ð11Þ

_ccl ¼ �iElcl � iVl;1c1 � ðg=2Þcl; ð12Þ

_ccr ¼ �iErcr � iVr;NcN � ðg=2Þcr; ð13Þ
where in Eqs. (12) and (13) the rate g, which is
taken to 0 at the end of the calculation, is a
mathematical apparatus that insures the outgoing
nature of the states in the L and R continua. �h is
taken 1 throughout our formulation. At long time,
this system approaches a steady state where the
amplitude of each state oscillates according to
cj ¼ Cj e

�iE0t; j ¼ fng; flg; frg. The normalized
steady state transmitted flux is k0!R ¼ g

P
r jCrj2=

jC0j2 and the transmission coefficient for initial and
final energies E0 and E is TelðE0;EÞ ¼ 2pqLðE0Þ
k0!R. (The subscript ‘el’ is used to denote the
elastic character of this transmission process). This
leads to [44]

T0
elðE0;EÞ ¼ dðE � E0ÞTelðE0Þ

¼ dðE � E0ÞTrN GðMÞðE0ÞCðLÞðE0Þ
�

� GðMÞyðE0ÞCðRÞðE0Þ
�

ð14Þ

(we use T0 to denote the differential (per unit en-
ergy range) transmission coefficient, while TelðEÞ
is the elastic transmission coefficient) where GðMÞ

ðEÞ is Green’s function associated with the sub-
space of the molecular bridge

GðMÞðEÞ ¼ ðE � H ðMÞðEÞÞ�1
; ð15Þ

H ðMÞ
n;n0 ðEÞ ¼ Endn;n0 þ Vn;n0 þ Rn;n0 ðEÞ; ð16Þ

and where R is the self energy associated with the
interaction of the bridge states with the metal
electrodes and C is its imaginary part

Rn;n0 ðEÞ ¼ RðLÞ
n;n0 ðEÞ þ RðRÞ

n;n0 ðEÞ;

RðJÞ
n;n0 ðEÞ ¼

X
j

Vn;jVj;n0
E � Ej þ ig=2

¼ KðJÞ
n;n0 ðEÞ �

1

2
iCðJÞ

n;n0 ðEÞ; J ¼ L;R:

ð17Þ

The elastic transmission coefficient TelðEÞ is re-
lated to the zero bias conduction of the junction by
the Landauer formula [21,55]

g ¼ e2

p�h
TelðEFÞ; ð18Þ

where EF is the Fermi energy.
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3. Thermal relaxation effects in the weak-coupling

limit

It is convenient, for notational simplicity to
consider the case of one bridge level, N ¼ 1.
Generalization of the procedure described below
to many bridge levels is straightforward. For
N ¼ 1 Eqs. (9)–(11) coalesce into

_cc1 ¼ �iE1c1 � iV1;0c0 � i
X
l 6¼0

V1;lcl � i
X
r 6¼0

V1;rcr:

ð19Þ

In the presence of thermal interactions the system
has to be described in terms of its density matrix.
The time evolution equations for the density ma-
trix elements qab ¼ cac�b are easily derived in the
absence of thermal interactions from Eqs. (8)–(13).
This should be supplemented by terms arising
from the system–bath interaction. At steady state
this leads to [44] (for N ¼ 1)

q00 ¼ constant; ð20Þ

_qq0;1 ¼ 0

¼ �iE0;1q0;1 þ iV0;1q0;0 þ i
X
j

Vj;1q0;j � i½F ;q�0;1;

ð21Þ
_qq1;1 ¼ 0

¼ �iV1;0q0;1 þ iV0;1q1;0 � i
X
j

V1;jqj;1

þ i
X
j

Vj;1q1;j � i½F ; q�1;1; ð22Þ

_qq0;j ¼ 0

¼�iE0;jq0;j þ iV1;jq0;1 � ðg=2Þq0;j � i½F ;q�0;j; ð23Þ

_qq1;j ¼ 0

¼ �iE1;jq1;j � iV1;0q0;j � i
X
j0

V1;j0qj0 ;j

þ iV1;jq1;1 � ðg=2Þq1;j � i½F ; q�1;j; ð24Þ

_qqj0 ;j ¼ 0

¼ �iEj0 ;jqj0;j � iVj0 ;1q1;j þ iV1;jqj0;1 � gqj0 ;j; ð25Þ

where the index j corresponds to states from both
the left and the right manifolds and where Ea;b �

Ea � Eb. The matrix elements qa;b are now opera-
tors in the bath space. It should be noted that Eqs.
(20)–(25) deviate in important ways from the
standard form obtained from the Liouville equa-
tion dq=dt ¼ �i½H ; q� [44].

In [44] we have described a procedure to
evaluate the energy resolved steady state flux in
this system. This procedure was based on the
simplifying assumption that the terms involving
the thermal interaction F could be disregarded in
Eqs. (23)–(25) that involve the continuous mani-
folds J ¼ fjg. Under this assumption the effect of
these manifolds on the time evolution of Eqs. (21)
and (22) can be represented by appropriate
self energy elements as in Eq. (16), so that Eqs.
(21)–(25) become

_qq0;1 ¼ 0

¼ �i E0

�
� ~EE1

�
q0;1 þ iV0;1q0;0 �

1

2
C1q0;1

� i½F ; q�0;1; ð26Þ

_qq1;1 ¼ 0

¼ �iV1;0q0;1 þ iV0;1q1;0 � C1q11 � i½F ;q�1;1; ð27Þ

_qq0;j ¼ 0

¼ �iðE0 � EjÞq0;j þ iV1;jq0;1 � ðg=2Þq0;j; ð28Þ

_qq1;j ¼ 0

¼ �ið ~EE1 � EjÞq1;j � iV1;0q0;j þ iV1;jq1;1 �
1

2
C1q1;j;

ð29Þ

_qqj0;j ¼ 0

¼ �iðEj0 � EjÞqj0;j � iVj0 ;1q1;j þ iV1;jqj0;1 � gqj0 ;j;

ð30Þ

where C1 ¼ C11ðE0Þ and where ~EE1 ¼ E1 þ K11ðE0Þ.
C11 and K11 were defined in Eq. (17).

Our ultimate goal is to obtain the evolution of
the reduced system’s density matrix r ¼ TrBq. This
trace can be done trivially in Eqs. (28)–(30) that do
not contain the heat bath. At the same time Eqs.
(26) and (27) that, together with the boundary
condition q00 ¼ constant, describe a steady state in
a damped and thermally relaxing two-level system,
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can be handled independently from Eqs. (28)–(30).
In the weak system–thermal bath coupling this is
done using the Redfield approximation, yielding
steady states expressions for the reduced density
matrix elements r1;1, r1;0 and r0;1. Using these in the
reduced forms of Eqs. (28)–(30) yields the desired
energy resolved transmission as described in [44].
For example, for the case of a single bridge level
considered here, and in the strongly off-resonance
case where the energy gap E1 � E0 is much larger
than all other energy parameters in the system, i.e.,
E1 � E0 � jV10j, j, C1 (j is defined in Eq. (6), and
we are considering the Markovian limit, sc ¼ 0) the
differential (final energy resolved) transmission co-
efficient is obtained in the form [44]

T0ðE0;EÞ ¼ TelðE0Þ dðE0

"
� EÞ

þ j=2pð Þe�bðE1�E0Þ

ðE1 � EÞ2 þ C1=2ð Þ2

#
; ð31Þ

where, again, TelðE0Þ is the elastic transmission
coefficient. The final-energy resolved transmission
is seen to consist of an elastic contribution sup-
plemented by an inelastic, thermally activated
terms. 2 However a shortcoming of the approxi-
mation used here is seen in the fact that the elastic
contribution appears to be independent of the
coupling to the thermal environment. In fact we
know that this contribution, the analog of the
zero-phonon peak in optical and Raman spec-
troscopy of molecules embedded in condensed
environments, does contain thermal effects. While
in our present application the expected corrections
are small and probably negligible, in the broader
context of quantum transport theory it is of in-
terest to consider improvements on the approxi-
mation used above.

Such an improvement can be achieved by re-
alizing that the essence of the approach that lead
to Eqs. (8)–(13) and (20)–(25) is to use the in-
coming state j0i as a driving term in the steady
state dynamics. In the context of system/bath
models this is a state that belongs to one of the

baths (e.g. the left metal lead) that, because of its
special role as an incoming state, is left in the
system’s subspace in the reduction process that
leads to equations of motion for system’s vari-
ables. A generalization of this approach is ob-
tained by including also the final (outgoing) state
of the scattering process under consideration, a
state of the accepting continuum (e.g. the metal
lead on the right) in the system’s subspace, again
because of its special role as the state that is fi-
nally detected. 3 Appendix A illustrates both ways
of reducing the description of the system’s dy-
namics for the case of a single bridge level with-
out thermal relaxation effects. In this case both
procedures are shown to yield the same result for
the transmission, and the one that handles the
initial and final states symmetrically does not
have any advantage over the less symmetrical
way taken before. However, this new approach
provides a better route in the presence of thermal
interactions as we now show.

Again we limit ourselves for simplicity to a
model with only a single bridge level. We start
from a set of equations similar to (26)–(30) but
written so as to treat the incoming and outgoing
states symmetrically.

q0;0 ¼ constant; ð32Þ

_qq0;1 ¼ 0

¼ �i E0

�
� ~EE1

�
q0;1 þ iV0;1q0;0 �

1

2
C1q0;1

� i½F ; q�0;1; ð33Þ

_qq1;1 ¼ 0

¼ �iV1;0q0;1 þ iV0;1q1;0 � iV1;fqf ;1

þ iVf ;1q1;f � C1q11 � i½F ;q�1;1; ð34Þ

_qq0;f ¼ 0

¼ �iðE0 � Ef Þq0;f þ iV1;fq0;1

� ðg=2Þq0;f ; ð35Þ

2 These contributions are separable only in the limit described

above Eq. (31).

3 Note that at a later stage of our calculation we may sum

over all initial states of a given incoming energy and over all

final states of a desired outgoing energy.
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_qq1;f ¼ 0

¼ �ið ~EE1 � Ef Þq1;f � iV1;0q0;f þ iV1;fq1;1

� iV1;fqf ;f �
1

2
C1q1;f � i½F ; q�1;f ; ð36Þ

_qqf ;f ¼ 0 ¼ �iVf ;1q1;f þ iV1;fqf ;1 � gqf ;f : ð37Þ

These equations describe scattering from the in-
coming state 0 to the final outgoing state f. All
other states in the continuous manifolds frg and
flg were projected out and consequently the
bridge state j1i acquires a shift and damping
terms. As discussed in Appendix A, in the large
system limit (i.e. when the manifolds L and R
become true continua) these shift and damping are
the same as taken in Eqs. (26)–(30). However, in
contrast to Eqs. (26)–(30) the coupling to the
thermal environment is not disregarded in Eq.
(36).

Next, assuming weak system–thermal bath
coupling, the Redfield approximation is invoked to
reduce Eqs. (32)–(37) into equations for the den-
sity matrix elements ri;j in the ‘system’s ’ subspace
ði; j ¼ 0; 1; f Þ as outlined in Appendix B. The re-
sulting equations for r0;1, r1;0, r1;1, r0;f , rf ;0, r1;f ,
rf ;1, rf ;f yield rf ;f , and consequently the final-
energy resolved flux grf ;f .

Even for this simple case, and certainly in the
case of a general bridge where the state j1i is re-
placed by a set of bridge states fjnig, the resulting
expression for the transmission is two cumbersome
to display and discuss analytically. Instead we
show some numerical results that compare the
result of the present computational scheme with
that employed earlier [44]. Two general observa-
tions are of interest:

(a) On the technical side, our present approach
employs different reduction schemes for different
final states. This arises from the fact that the
‘system’ associated with the effective Hamiltonian,
Eq. (B.1), that needs to be diagonalized in the
Redfield scheme depends on the particular final
state observed. Consequently, the steady state sum
rule g

P
r rr;r ¼ CðRÞ

1 r1;1 that states that the differ-
ential flux integrated over the R manifold is equal
to the rate at which the bridge supplies population
into that manifold, provides a non-trivial consis-

tency check on this procedure. We find that this
sum rule is indeed satisfied in the large system limit
(X ! 1 where X is the normalization volume),
where V1;r ! 0 while qR ! 1 so that CðRÞ

1 ðEÞ ¼
2p
P

r jV1;rj
2dðE � ErÞ is finite.

(b) Taking care to consider the proper scatter-
ing (X ! 1) limit, our earlier calculation [44]
provides a reasonable approximation for the en-
ergy resolved transmission. In particular, when the
energy and coupling parameters allow the sepa-
ration of the tunneling and activated fluxes, the
activated component obtained in the present ap-
proach is practically the same within the numerical
accuracy of our calculation as that obtained be-
fore. The consequence of this observation is that
the conclusions of our earlier work [42–44] con-
cerning the temperature and bridge-length depen-
dence of the transmission, in particular the
prediction of transition from tunneling to acti-
vated transmission at increasing temperature and
bridge length remain intact. As an example, Fig. 2
shows the transmission probability at T ¼ 300 K
as a function of bridge length N in the model of
Fig. 1, using the model parameters DE ¼
3000 cm�1, V � Vn;nþ1 ¼ 200 cm�1 (same for all
levels of the L and R manifolds), j ¼ 10 cm�1 (the
thermal bath is assumed Markovian, i.e. sc ¼ 0)
and CðLÞ ¼ CðRÞ ¼ 160 cm�1. The transition from
an exponential dependence on N to transmission
that is practically N independent 4 marks the onset
of the activated transmission. This behavior has
been recently observed in electron transfer through
DNA bridges [56].

Fig. 3 shows the energy resolved transmitted
flux obtained from this calculation for the model
of Fig. 1 characterized by the parameters: N ¼ 3,
DE ¼ 3000 cm�1, V ¼ 200 cm�1, j ¼ 10 cm�1 (the
thermal bath is assumed Markovian, i.e. sc ¼ 0)
and CðLÞ ¼ CðRÞ ¼ 160 cm�1. For obvious technical
reasons the width parameter g cannot be taken
zero in the numerical calculation, and g ¼ 0:1
cm�1 is used here. Fig. 3(a) compares the results
obtained for temperature T ¼ 300 K using the
method described above (full line) and the earlier

4 As shown in Refs. [42] and [43], the transmission depends on

N as ða1 þ a2NÞ�1, where often a1 � a2.
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approach of [44] (dashed line). Energy is measured
relative to that of the incident state. The thermally
activated component at about E ¼ 3000 cm�1

shows three peaks (corresponding to the three
bridge levels) and is practically the same in the two
calculations. The difference between the present
and the earlier approaches affects mainly the
quasi-elastic transmission component about E ¼ 0.
While the earlier approach yields a temperature-
independent elastic peak of zero width (the width
of the dashed line in Fig. 3 results from using a
finite g in the numerical calculation), we now have
a quasi-elastic peak of finite width that shows a
characteristic asymmetry about E ¼ 0. This is seen
in Fig. 3(b) which shows the energy resolved
transmission in the neighborhood of the quasi-
elastic peak at T ¼ 0 K (full line) and T ¼ 300 K
(dashed line). The temperature dependence of the
quasi-elastic peak is shown in more detail in Fig. 4.
The peak becomes increasingly asymmetric as the
temperature decreases and at the same times shifts
to lower energies; both effects resulting from the
increasing domination of phonon emission pro-
cesses. Fig. 5 depicts TðEÞ=Tð�EÞ as a function
of the final energy E, measured relative to the
energy of the incident state, showing that this

asymmetry indeed arises from the Boltzmann
factor. In fact, the slope of the semi-logarithmic
plots is in accord with the given temperature T ¼
300 K.5

Finally, consider the dependence of the trans-
mission on the thermal coupling strength j. Fig.
4 shows that the elastic peak decreases with in-
creasing temperature, indicating that the coupling
to the thermal environment causes a decrease in
the elastic transmission due to the increasing
importance of inelastic channels. On the other
hand, examining the dependence of the elastic
transmission on the thermal coupling strength j
reveals a more complex picture. Fig. 6 shows that
while at finite temperature the elastic ðE ¼ 0Þ
transmission decreases with increasing j, at T ¼ 0
the opposite is true. This last observation is in
accord with recent works [32,51], that show that
in electron-transmission models where coupling
to a phonon bath is affected only in the barrier
region, such coupling enhances the elastic (and
therefore the overall) transmission flux at low
temperature, and may be traced to the fact [57]
that when a static barrier to transmission be-
comes amenable to structural relaxation (an at-
tribute of coupling to phonons), the dominating
effect at T ¼ 0 is lowering the barrier to trans-
mission.

To conclude this section it should be empha-
sized again that in the context of our present
discussion of electron transmission through mo-
lecular bridges the effect of coupling to the ther-
mal environment on the quasi-elastic component
of the transmission is not very important because
(a) the final energy spectra as seen in Figs. 3–6
cannot be resolved in such experiments, and (b)
the effect of the correction obtained by the pre-
sent calculation on the important issue of heat
release on the molecular bridge during the
transmission is small. In this sense the approxi-
mation used in [44], which accounts for the bulk

Fig. 2. The transmission coefficient as a function of number of

bridge sites calculated for the model of Fig. 1 with DE ¼ 3000

cm�1; CðLÞ ¼ CðRÞ ¼ 160 cm�1, V ¼ 200 cm�1, T ¼ 300 K, j ¼
10 cm�1. (g ¼ 0:1 was used in this and the following calcula-

tion, however the result does not depend on this particular

choice).

5 For this demonstration we use g ¼ 10�5 cm�1. Such a small

width parameter is required here, otherwise the lineshape is

distorted by the Lorentzian tail associated with the unphysical

width parameter.
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of the inelastic part of the transmission, is ade-
quate.

4. Thermal relaxation effects in the strong coupling

limit

The Redfield approximation employed in the
previous section is a second-order expansion in

the system-thermal bath coupling. Furthermore,
this coupling is assumed not to change the equi-
librium distribution in the bath. While the latter
assumption may be sometimes justified on the
basis of size (small system, macroscopic bath) the

Fig. 5. A semi-logarithmic plot of the asymmetry in the dif-

ferential transmission, computed for the resonance case DE ¼
0 cm�1. Other parameters are C ¼ 160 cm�1, V ¼ 200 cm�1,

j ¼ 10 cm�1 and T ¼ 300 K. See text for more details. This

calculation is sensitive to numerical artifacts resulting from

using finite g, and g ¼ 10�5 was used here after testing for in-

sensitivity to g in this range.

(a) (b)

Fig. 3. The energy resolved transmission calculated for the model of Fig. 1 with DE ¼ 3000 cm�1, CðLÞ ¼ CðRÞ ¼ 160 cm�1, V ¼ 200

cm�1, j ¼ 10 cm�1, N ¼ 3. (a) T ¼ 300 K. The full line is the result of the present theory. The dashed line results from the theory of

[44]. (b) A closeup on the quasi-elastic peak computed using the present theory for the same model parameters. Full line: T ¼ 0 K.

Dashed line: T ¼ 300 K.

Fig. 4. Same as Fig. 3(b) for the choice of parameters DE ¼
2000 cm�1,CðLÞ ¼ CðRÞ ¼ 160 cm�1,V ¼ 200 cm�1,j ¼ 50 cm�1

and N ¼ 3, shown for three temperatures.
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low order expansion is necessarily a weak-cou-
pling approximation. When the coupling is strong
one needs to account for distortions in the ther-
mal bath that couple to the electronic transitions.
In treatments of some models for electron–pho-
non coupling in infinite systems this is done
within polaron or soliton theories. Here we pre-
sent such a calculation for our problem of elec-
tron transmission through a finite molecular
bridge. The importance of local distortion of the
nuclear configuration in the process of electron
transmission through molecular junctions has
been recognized for some time [28,29,31–
33,51,58–64].

Our model is the same as that presented in
Section 2, however we now limit ourselves to a
thermal environment represented by a set of Har-
monic oscillators

HB ¼
X

a

p2a
2ma



þ 1

2
max

2
ax

2
a

�
; ð38Þ

where pa, xa, ma and xa are respectively the mo-
menta and coordinates operators, the masses and
the frequencies of the harmonic bath modes fag.
Also, the molecule–bath coupling is now taken to

be linear in the phonons coordinates, i.e. Eq. (4) is
replaced by the explicit form

F ¼
XN
n¼1

X
a

1

2
cnaxajnihnj: ð39Þ

Disregarding the metal electrodes for now we
consider the molecule–thermal bath system de-
scribed by the Hamiltonian

HMB ¼ HM þ HB þ F ð40Þ

and apply to it the unitary transformation known
as the small polaron transformation [52–54]

~HH ¼ UHU�1; ð41Þ

U � U1U2; . . . ;UN�1UN ; ð42Þ

where

Un ¼ expð�ijnihnjXnÞ; Xn ¼
X

a

Xn;a; ð43Þ

and where

Xn;a ¼
cnapa

2max2
a

: ð44Þ

The transformed Hamiltonian takes the form [54]

~HH ¼
XN
n¼1

Enjnihnj þ ~FF þ HB þ Hshift; ð45Þ

where

~FF ¼ V
XN�1

n¼1

jnihn
�

þ 1jeiðXnþ1�XnÞ

þ jnþ 1ihnjeiðXn�Xnþ1Þ
�
; ð46Þ

and where

Hshift ¼
XN
n¼1

Bnjnihnj; ð47Þ

with

Bn � � 1

8

X
a

ðcnaÞ
2

max2
a

: ð48Þ

In an infinite system, where all sites n are equiv-
alent, Bn is the same for all n. The uniform shift
defined by Eq. (47) may therefore be disregarded.

Fig. 6. The energy resolved quasi-elastic transmission peak

shown for different temperatures and thermal-coupling

strengths. Other parameters are DE ¼ 2000 cm�1, C ¼ 160

cm�1, V ¼ 200 cm�1, N ¼ 3. The results are insensitive to the

choice of g (here taken g ¼ 0:1 cm�1).
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In the present application the situation is different
for two reasons. First, for sites close to the metal
interfaces phonon reorganization may be different
than for sites in the interior of the molecular
bridge. For future reference we shall denote Bn ¼
Bþ dBn where B is the value of Bn for an interior
bridge site far from the bridge-electrode inter-
faces. Secondly, the (negative) shift B effectively
changes the position of the bridge energies rela-
tive to the Fermi energies of the metal leads, thus
affecting the electron transmission in an essential
way.

The shift Bn is a special case of the reorganiza-
tion energy characterizing shifted Harmonic po-
tential surfaces. Generally, the reorganization
energy associated with the electronic transition
n $ n0 between states characterized by such sur-
faces is

Eðn;n0Þ
R ¼

X
a

xaðkðn;n0Þ
a Þ2 ¼

X
a

ðcna � cn
0

a Þ
2

8max2
a

; ð49Þ

where

ðkðn;n0Þ
a Þ2 ¼ ðcna � cn

0
a Þ

2

8max3
a

: ð50Þ

In terms of the spectral density

Jn;n0 ðxÞ ¼ p
2

X
a

ðcna � cn
0

a Þ
2

maxa
dðx � xaÞ: ð51Þ

Eðn;n0Þ
R is given by

Eðn;n0Þ
R ¼

Z 1

0

1

4px
Jn;n0 ðxÞdx: ð52Þ

Next rewrite ~FF in the form ~FF ¼ h ~FF i þ ð ~FF � h ~FF iÞ.
Including also the coupling to the metal leads,
the transformed Hamiltonian takes a form
analogous to (7). Assuming again that only lev-
els j1i and jNi of the bridge are coupled to the
continuous manifolds that represent the metal
leads we get (again J � ðL;RÞ denotes the metal
leads)

H ¼ �HHM þ HB þ �FF þ HJ þ �HHJM ð53Þ
with

�HHM ¼ �HH0 þ �VV ; ð54Þ

�HH0 ¼
XNþ1

n¼0

�EEnjnihnj; �EEn ¼ En þ Bn; ð55Þ

�VV ¼ V
XN
n¼0

jnihnð þ 1jhHn;nþ1i þ jnþ 1ihnjhHnþ1;niÞ;

ð56Þ

HJ ¼
X
l

Eljlihlj þ
X
r

Erjrihrj; ð57Þ

�HHJM ¼
X
l

�VVl þ
X
r

�VVr; ð58Þ

�VVl ¼ Vl;1Hl;1jlih1j þ V1;lH1;lj1ihlj;
�VVr ¼ Vr;NHr;N jrihN j þ VN ;rHN ;rjNihrj;

ð59Þ

�FF ¼ V
XN
n¼0

jnihnf þ 1jdHn;nþ1 þ jnþ 1ihnjdHnþ1;ng;

ð60Þ

where jN þ 1i is the level jf i of the R manifold
and j0i is the incoming state in the L manifold,

Hn;n0 ¼ e�iðXn�Xn0 Þ; dHn;n0 ¼ e�iðXn�Xn0 Þ � e�iðXn�Xn0 Þ
D E

ð61Þ

and where, in evaluating Eq. (59) and the corre-
sponding terms in (60) one should keep in mind
that, in our model, the left and right manifolds are
not associated with phonon shifts, i.e. Xl ¼ Xr ¼
X0 ¼ Xf ¼ 0. The averages hHn;n0 i that appear in
Eqs. (53)–(61) are over the distribution of the
phonon bath, that is assumed here to remain
thermal, i.e.

hHn;n0 i ¼ TrBðe�bHBHn;n0 Þ=TrBðe�bHBÞ:

Note that in distributing the coupling terms be-
tween F and V in Eqs. (56), (58)–(60) we have
opted not to impose the separation H ¼
hHi þ dH on the terms appearing in Eqs. (59) so
that Eq. (60) does not contain terms (like dH1;l

and dHN ;r) associated with the coupling of the
bridge to the electrodes. It is easy to show that if
the continua of flg and frg states are smooth
and uniform in an energy range large relative to
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the reorganization energies associated with the
1 ! flg and N ! frg transitions, respectively,
the corresponding self energies are not affected
by H. 6

Comparing Eqs. (53)–(60) to (1)–(4), (7) we see
a similar structure, except that the tight binding
coupling, Eq. (60) is now dressed by thermal terms
hhi and the thermal coupling, Eq. (60), connects
different electronic states in the local fng repre-
sentation of the bridge. The important point is that
in the transformed Hamiltonian the thermal cou-
pling term �FF is small as long as V is small, and with
this assumption the Redfield procedure can be
used to find equations of motion for the (reduced)
density matrix of the system. We use the reduction
procedure described in Section 3 and Appendix B,
whereupon the system consists of the bridge states
together with the incoming state j0i of the flg
manifold and an outgoing state jf i of the frg
manifold. As discussed in [42], the Redfield pro-
cedure should be carried out in the representation
that diagonalizes �HHM ¼ �HH0 þ �VV , and we should
carry out this diagonalization, find the Redfield
equations in this diagonalized representation, then
transform back to the original local representa-
tion. This leads to 7

_rrn;n0 ¼ 0

¼ �i½ �HH0 þ �VV ; r�0n;n0 þ
�
� 1

2
CRðdn;N þ dn0 ;N Þ

� 1

2
CLðdn;1 þ dn0;1Þ

�
rn;n0 þ

X
m

X
m0

Rn;n0 ;m;m0rm;m0

n; n0 ¼ 0; 1 . . .N ; f ðnþ n0 6¼ 0Þ; ð62Þ

where CR and CL are defined as before, Eq. (17), 6

and where Rn;n0 ;m;m0 are linear combinations of
transforms of correlation functions such as 8Z 1

0

ds dHm0 ;l0 ðsÞdHl;mð0Þ
D E

e�i �EEl;m0 s; �EEa;b ¼ �EEa � �EEb:

ð63Þ

The thermal functions hHi and hdHðsÞdHð0Þi
that enter in Eq. (62) are readily calculated for the
harmonic bath model used here. Considerable
simplification may be achieved by invoking the
local mode approximation [19,65–67], which relies
on the local nature of the electron-phonon cou-
pling in order to assume that different sets of
modes are shifted for different electronic states in
the local site representation. Under this approxi-
mation each site n is associated with a distinct set
of modes fang whose equilibrium positions are
shifted when the excess electron is localized on that
site. In this case the operators Xn and Xn0 commute
for n 6¼ n0.

Consider first the renormalized coupling ele-
ments �VV that contribute to the coherent part of the
evolution. Standard calculation yields ([54, pp.
533–550])

hHn;n0 i ¼ exp
�
� Sn;n0

�
; ð64Þ

Sn;n0 ¼
1

2

X
a

kðn;n0Þ
a

� �2
ð2�nna þ 1Þ; ð65Þ

�nna ¼ exa=kBT
�

� 1
��1

;

hHn;n0 i is the averaged Franck–Condon factor for
transitions between electronic states n and n0 with
thermally equilibrated nuclear populations. In the
classical limit kBT � �hxa

SðclÞ
n;n0 ¼

X
a

kðn;n0Þ
a

� �2
kBT=xa: ð66Þ

In terms of the spectral density Jn;n0 ðxÞ, Eq. (51),
we find

6 For example, consider the width CN , aN ¼ 2p
P

r

P
ar jVNrj

2

haN jHNrjarij2dðEN ;aN � Er;ar Þ of a particular vibronic level

ðN ; aN Þ due to its coupling to the vibronic continuum ðr; arÞ.
Here aN and ar denote vibrational states on the N and r
electronic states, respectively. Since the electronic manifold frg
is itself broad, the sum over r in this expression effectively

eliminates the d-function, leaving the sum over final nuclear

states
P

ar haN jHNrjarij2 ¼ 1, irrespective of the details of HNr.
7 Eq. (62) is the same as Eq. (108) of Ref. [44]. The restriction

n� n0 6¼ 0 in that reference is in error and should be, as here,

nþ n0 6¼ 0.

8 The indices and energies that enter in Ref. (63) correspond

to the eigenstates and eigenenergies of �HHM ¼ �HH0 þ �VV and not to

the local site levels and energies of Eq. (55), as discussed above

Eq. (62) and in Ref. [42].
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Sn;n0 ¼
1

8p

Z 1

0

Jn;n0 ðxÞ cothðx=2kBT Þ
x2

dx ð67Þ

and

SðclÞ
n;n0 ¼

kBT
4p

Z 1

0

Jn;n0 ðxÞ
x3

dx: ð68Þ

The following comments are in order: First, in the
local mode approximation where different sets of
modes are shifted for different electronic states we
have

ðcna � cn
0

a Þ
2 ¼ ðcnaÞ

2 þ ðcn0a Þ
2;

where for any given mode a, at least one of the
terms on the right vanishes. In this case Jn;n0 ðxÞ
becomes

Jn;n0 ðxÞ ¼ JnðxÞ þ Jn0 ðxÞ; ð69Þ

JnðxÞ ¼ p
2

X
a

ðcnaÞ
2

maxa
dðx � xaÞ; ð70Þ

Sn;n0 ¼ Sn þ Sn0 ; ð71Þ

Sn ¼
1

2

X
a

ðkðnÞ
a Þ2ð2�nna þ 1Þ

¼
Z 1

0

dx
JnðxÞ
8px2

2�nnðxÞ
�

þ 1
�
;

ðkðnÞ
a Þ2 ¼ ðcnaÞ

2

8max3
a

; ð72Þ

and similarly

Eðn;n0Þ
R ¼ EðnÞ

R þ Eðn0Þ
R ;

EðnÞ
R ¼

X
a

ðkn
aÞ

2xa ¼
Z 1

0

1

4px
JnðxÞdx:

ð73Þ

Secondly, a standard model for the bath spectral
density is [68]

JðxÞ � xse�x=xc ; ð74Þ
where the cutoff xc corresponds to the upper
bound on the phonon frequency. For s < 2; Sn;n0
diverges due to the x ! 0 divergence of the inte-
grand, therefore �VVn;n0 ¼ 0 for all n and n0 and this
contribution to the coherent transport will be
completely damped. We expect however that this
observation is not relevant to the present case

because due to the local character of the electron
phonon interaction, the coupling ðcnaÞ

2
should go

to 0 at least as fast as x when x ! 0. Noting also
that the phonon mode density behaves as x2 as
x ! 0 we get sP 2 in Eq. (74).

Even if sP 2, Eqs. (56), (64) and (65) imply that
the local relaxation of the nuclear configuration
about each electronic state leads to damping of the
direct coupling term �VV and strongly reduces its
contribution to the coherent transmission. As seen
above, the amount of this damping is strongly
sensitive to the low frequency cutoff of JðxÞ. In the
calculations described below we have used a spe-
cial case of (74) in the form

JðxÞ ¼ 2pERðscxÞ3e�scx; sc ¼ ðxcÞ�1
; ð75Þ

where the constants in front of x3e�scx were cho-
sen such that Eq. (73) is satisfied. In (75) xc

measures the width of the spectral function and sc
is the associated correlation time. In the classical
limit this choice leads to

SðclÞ
n ¼ kBT

4p

Z 1

0

JnðxÞ
x3

dx ¼ kBTER

2x2
c

: ð76Þ

This special-case result is less important than the
general observations: (a) The damping factors hHi,
which are essentially thermally averaged Franck–
Condon factors, diminish strongly when the tem-
perature increases above the characteristic mode
energies. (b) In a system in which the electronic
transition is strongly coupled to many low fre-
quency modes (e.g in a polar solvent) the �VV term in
Eq. (62) may be disregarded for room temperature
processes. (c) In the Markovian limit, xc ! 1,
S ! 0 so �VV retains its bare value V. (d) The par-
ticular choice of the low frequency cutoff in JðxÞ
does not affect correlation functions such as (63)
(see below).

To obtain the time evolution according to Eq.
(62) we also need to evaluate the correlation
functions Ck;l;m;n � dHk;lðsÞdHm;nð0Þh i that enter
the rates R. Again, such averages can be evaluated
using standard harmonic oscillator algebra. [54,69]
Explicit expressions for R and for these correlation
functions are given in Appendix C, where we show
that in the local mode approximation they can be
expressed in terms of functions KnðtÞ defined for
the local bridge states
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KnðtÞ ¼ exp
X

a

eixasðkðnÞ
a Þ2�nna

h(
þ e�ixasðkðnÞ

a Þ2ð1þ �nnaÞ

� ðkðnÞ
a Þ2ð1þ 2�nnaÞ

i)

¼ exp



�
Z 1

0

JnðxÞ
4px2

ð2�nnðxÞ
h

þ 1Þ � �nnðxÞeixt

� �nnðxÞ
�

þ 1
�
e�ixt

i�
: ð77Þ

To gain tractable physically significant models it is
useful to consider also the correlation function
associated with the phonon operators Fn;n defined
in Eq. (4), which for the model (39) takes the
form

Fn;n ¼
X

a

1

2
cnaxa: ð78Þ

In the local mode approximation hFn;nðtÞFn0 ;n0 ð0Þi ¼
dn;n0CnðtÞ where

CnðtÞ ¼
X

a

ðcnaÞ
2

8maxa
ð�nna

h
þ 1Þe�ixat þ �nnae

ixat
i

¼ 1

4p

Z 1

0

dxJnðxÞ

� �nnðxÞ
�h

þ 1
�
e�ixt þ �nnðxÞeixt

i
ð79Þ

and in the classical limit, kBT � x;

CnðtÞ ¼ kBT=2pð Þ
Z 1

0

dx cosðxtÞJnðxÞ=x: ð80Þ

This is essentially a Fourier transform of a func-
tion, JnðxÞ=x, whose width is of order xc � s�1

c .
Furthermore, using Eq. (73), we get

Cnðt ¼ 0Þ ¼ 2kBTE
ðnÞ
R : ð81Þ

For example, to approximately accommodate a
model like Eq. (6) with these restrictions we need
to take CðtÞ ¼ 4kBTERsccðtÞ, where cðtÞ ¼ ð1=2Þ
xce

�xcjtj becomes dðtÞ in the Markovian limit. Note
however that the spectral density JðxÞ associated
with this model (given by Eq. (86) below) leads to
S ¼ 1 in (72). On the other hand, modifying JðxÞ
by simply imposing a low frequency cutoff,
JðxÞ ¼ 0 for x < xL on (86) does not appreciably
affect the time dependence of CðtÞ provided that
xL � xc.

A link between the models used in the weak
thermal coupling limit (Section 3 and [44]) is ob-
tained from the easily verified relationship [70]

KnðtÞ ¼ exp

�
� it
Z 1

0

1

4px
JnðxÞdx

�

� exp

�
�
Z t

0

dt1

Z t1

0

dt2Cnðt2Þ
�

¼ exp

�
� itEðnÞ

R �
Z t

0

dt1

Z t1

0

dt2Cnðt2Þ
�
: ð82Þ

Thus, the Markovian weak-coupling case (sc ! 0
limit of Eq. (6)), CnðtÞ ¼ jndðtÞ leads to 9

KnðtÞ ¼ exp
h
� iEðnÞ

R t � ð1=2Þjnjtj
i
; ð83Þ

where, up to a numerical factor of order 1, jn ¼
kBTE

ðnÞ
R sc. Another model for KnðtÞ is obtained by

considering the strong coupling limit of Eq. (77).
[71] In this limit KnðtÞ, which vanishes at t ! 1, is
assumed vanishingly small already for t short en-
ough to justify expansion of the exponent in (77)
to order t2. This yields (using (73))

KnðtÞ ¼ exp

�
� iEðnÞ

R t � 1

2
D2

nt
2

�
; ð84Þ

where

D2
n ¼
Z 1

0

dx
JnðxÞ
4p

2�nnðxÞ
�

þ 1
�

!kBT�x
2kBTE

ðnÞ
R :

ð85Þ

The forms (83) and (84) are obtained as limiting
cases of a model [70] that uses a spectral density of
the Debye form

JnðxÞ ¼ 8EðnÞ
R

scx

1þ ðscxÞ2
HðxÞ: ð86Þ

In the classical limit (80) of Eq. (79) it yields
[70] 10

9 The appearance of jtj in (79) results from the easily proven

identity

Knð�tÞ ¼ exp

�
itEðnÞ

R �
Z jtj

0

dt1

Z t1

0

dt2Cnð�t2Þ
�
:

10 In fact (86) with the high T limit of (79) yields

CnðtÞ ¼ e�t=sc ð2EðnÞ
R kBT � iEðnÞ

R s�1
c Þ, where the second term was

neglected in (87). Keeping this term and using (82) leads to (83)

without the EðnÞ
R term in the exponent. Again, this makes little

difference in the high T limit.
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CnðtÞ ¼ 2EðnÞ
R kBT e�t=sc : ð87Þ

Using this in (82) leads to (83) with jn ¼ kBTE
ðnÞ
R sc

in the limit ð2ERkBT Þ1=2sc � 1, and to (84) with
D2

n ¼ 2kBTE
ðnÞ
R in the opposite limit ð2ErkBT Þ1=2

sc � 1. Again the model (86) implies Sn ! 1. In
the spirit of the discussion below Eq. (81) it is easy
to show that the forms (83) and (84) for Kn remain
intact in the Markovian ðxc ! 1Þ and the strong
coupling limits, respectively, if a small low fre-
quency cutoff is imposed on the Ohmic model.

Having found explicit expressions or computa-
tional procedures for the elements of �VV and R in
Eq. (62) we may proceed to solve the set of kinetic
equation (62) for the transmitted current, as de-
scribed in Section 3. The energy resolved trans-
mission is again given by limg!0 grff and the total
transmission is obtained by summing this result
over all final states in the frg manifold.

The discussion of Fig. 6 above has referred to
the effect of coupling to phonons on the elastic
component of the electron transmission flux. Next
we use the computational scheme outlined above
to study the effect of this coupling on the overall
transmission. Fig. 7 displays the transmission co-
efficient out of a particular energy level E0 in the
left electrode, plotted against the reorganization
energy ER that represents the strength of coupling
to environmental modes. Recalling the form of the
electron–phonon coupling in our model, Eqs. (4)
and (39), there are two principal ways in which this
coupling affects the electron transmission. First,
this coupling causes a relative vertical shift of the
parabolic potential surfaces associated with the
different electronic states, (cf. Eqs. (47) and (39)).
Secondly, it leads to a relative horizontal shift of
these surfaces, effectively decreasing the interstate
coupling by the corresponding Franck–Condon
(FC) factors; j �VV j < jV j in, e.g., Eq. (56). The
combination of both effects leads to the appear-
ance of ER in the activation factor,

FC � exp
�
� ðEDA � ERÞ2=4kBTER

�
ð88Þ

in the semiclassical electron transfer rate [72,73].
Qualitatively these two effects can be designated
as a renormalization of the potential surfaces and
as phonon-induced friction, respectively. It is

useful to study these effects separately as is often
done in theoretical studies of friction effects on
chemical reactions. This is done in Fig. 7, where
the dashed and full lines correspond to the
transmission obtained from the calculation de-
scribed above, while the dotted and dashed-dotted
lines are obtained from a similar calculation using
a model in which Hshift of Eq. (47) is set to zero.
Here and in Fig. 8 the factor S, Eq. (72), was
computed using the spectral density (75). The
dashed and dotted lines were calculated using
xc ¼ 1000 cm�1 that corresponds to the Marko-
vian limit, Eq. (83), while the full and dashed-
dotted lines were computed in the strong coupling
limit, Eqs. (84) and (85).

Consider first the dashed line of Fig. 7. When
the bare energy gap DE is small enough, the pho-
non induced vertical shift may bridge the lowest
bridge levels into resonance with the incoming
energy E0, leading to the observed resonance
structure. This structure corresponds to the four

Fig. 7. The transmission coefficient plotted against the elec-

tron-phonon interaction strength expressed by the reorganiza-

tion energy ER, for a system with N ¼ 4 bridge levels

characterized by CL ¼ CR ¼ 160 cm�1, V ¼ 200 cm�1, DE ¼
1000 cm�1 and T ¼ 300 K. The dashed and dotted lines were

computed using xc ¼ 1000 cm�1 in the Markovian limit, Eq.

(83). Note that for large ER the condition for validity of the

Markovian limit, ð2ERkBT Þ1=2sc � 1, may not hold. The full

and dashed-dotted lines were computed with xc ¼ 10 cm�1,

using the strong coupling expression (84). For the calculation

that yields the dotted and dashed-dotted lines the vertical shift

associated with the reorganization, Hshift (Eq. (47), was set to

zero.
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coupled electronic sites of the molecular bridge
used in this calculation. Because the vibrational
spectrum (e.g., Eq. (75)) used in our model is dense
and relatively smooth, no further structure is seen,
and the lack of dependence of the dashed line on
ER for ER P 1300 cm�1 reflects the fact that in this
range the initial energy faces this smooth contin-
uum of phonon states. When the vertical shift is
absent (dotted line) so that the effective energy gap
retains its bare value DE, the rise and subsequent
fall of the transmission coefficient with increasing
ER reflect both the effect of the nuclear degrees of
freedom on the effective activation energy and
their role as a dissipative medium, that in the
semiclassical (kBT � �hxc) limit combine to yield
the thermally averaged Franck–Condon factor,
Eq. (88). The parameters used in the other two
(full and dash-dotted) lines correspond to this
limit. Overall, it is seen that, as in the standard
theory of electron transfer coupling to the envi-
ronment can either enhance or inhibit the electron
flux. At this point it is perhaps worthwhile to
emphasize the obvious fact that unlike in the
standard molecular electron transfer processes,
electron transmission between two electrodes can
take place without coupling to the nuclear envi-
ronment.

5. Discussion and conclusions

This paper has developed a framework for
evaluating electron transmission through models
of molecular bridges in the presence of thermal
interactions. We have considered two approaches,
both based on the Redfield approximation. The
first assumes that the thermal coupling is weak and
employs the Redfield procedure on the given
Hamiltonian in which the coupling between the
system and its thermal environment is represented
by terms of the form (4) with the thermal bath
operators Fn;n satisfying Eq. (6). The second starts
with a similar model, specialized to the case of a
harmonic thermal bath and F linear in the phonon
coordinates and applies the small polaron trans-
formation leading to a set of Eqs. (53)–(61) similar
to that used in the first approach but with renor-
malized coupling coefficients. In particular the

tight binding coupling V in Eq. (1) is replaced by
the renormalized coupling �VV , Eq. (56) and the
thermal coupling operator (4) is replaced by Eq.
(60). An important, and sometimes doubtful in-
gredient in both approaches is the assumption that
the thermal bath remains in Boltzmann equilib-
rium during the steady state electron flow through
the system. In the first approach this assumption is
a reasonable consequence of the assumed weak
system–thermal bath coupling. In the second ap-
proach that allows strong thermal coupling this
approximation has to rely on another assumption,
that nuclear thermal relaxation at each electronic
state is fast on the timescale of any electronic
transition. The latter assumption is often valid in
the hopping regime, where the bridge electronic
levels are physically populated and transport
proceeds predominantly by electronic transitions
between sites with thermally relaxed nuclear dis-
tributions. It is however questionable in situations
where the electron injection energy is not in reso-
nance with the bridge levels.

Obviously, the equivalence of the two schemes
for the case of a harmonic thermal bath coupled
linearly to the electronic transition implies that the
dephasing process associated with the term (4) of
the Hamiltonian (7) in the first approach is related
to the reorganization energy (49). This equivalence
can be established quantitatively using Eq. (82) as
discussed in Section 4. On the qualitative level it is
of interest to see to what extent the two compu-
tational schemes can reproduce the transition from
coherent transport to incoherent hopping as the
bridge length increases (Fig. 6 and Refs. [42,56]).
Fig. 8 shows the transmission coefficient plotted
against the number of bridge sites N for different
values of the thermal coupling j (and the corre-
sponding reorganization energy ER, assuming the
relation j ¼ 4kBTERsc, same for all bridge sites). It
is seen that both computational schemes lead to
the same qualitative dependence on N, however
they quantitatively differ in the hopping regime by
a factor of up to an order of magnitude for large
thermal couplings. It should be kept in mind that,
while it is usually assumed that the hopping pro-
cess is characterized by full thermal relaxation in
each local site (a picture adopted in the polaronic
model of Section 4), the validity of this assumption

250 D. Segal, A. Nitzan / Chemical Physics 281 (2002) 235–256



is not a-priori obvious (see below). The opposite
limit, where the mean free path of the electron
motion is larger than the distance between two
bridge sites, is better described by the weak-cou-
pling model of Section 3. A more advanced theory
(see below) is needed to bridge between these
limits.

While the formulation of Section 4 obviously
reduces to the weak-coupling limit of Section 3 in
the proper limit, the intermediate case is not
properly described by this theory that assumes that
the thermal bath is in equilibrium with the in-
stantaneous local electronic state. A full theory of
the transition between these two limits should take
into account the timescale associated with this re-
laxation [19]. To see how this timescale may be
taken into account consider for simplicity a model
with one bridge state connecting the two contin-
uous manifolds that represent the electrodes. The
transmission amplitude T in this case is propor-
tional to ðD �EE � iC=2Þ�1

where C is the total width
of the bridge level due to its interaction with the
continua and D �EE ¼ DE � Eeff

R ðsÞ is the relaxed en-
ergy gap between the bridge state and the incom-
ing energy, modified by the effective reorganization
energy Eeff

R ðsÞ. (As before DE ¼ E1 � E0 is the bare

energy gap). The transmission time associated
with competing relaxation processes in the bridge
is [74]

s ¼ jT j�1joT =oDEj

¼ DE
�h

� Eeff
R ðsÞ

�2 þ ðC=2Þ2
i�1=2

: ð89Þ

A typical timescale of the thermal environment
was set by xc. Using the ansatz for the time evo-
lution of the effective reorganization energy

Eeff
R ðsÞ ¼ ER 1½ � e�xcs�; ð90Þ

where ER is, as before, the reorganization energy
associated with the fully relaxed intermediate state,
gives an equation for s that, once solved, gives via
(90) the value of the effective reorganization energy
associated with the finite traversal time of the
electron through the intermediate level. As an ex-
ample, Fig. 9 shows Eeff

R ðsÞ as a function of DE for
a model with full reorganization energy ER ¼ 200
cm�1 and for two values of xc. As is intuitively
clear, we see that the effective reorganization en-
ergy rapidly decreases with increasing DE, so that
for bare energy gaps exceeding 0.25 eV, say, we
quickly approach the weak-coupling limit. 11 This
physics is missing in the theory presented in Sec-
tion 4, and will be addressed in future work.

The existence of an intermediate regime, where
electron transmission is dominated by thermally
induced propagation through the bridge but clas-
sical hopping that relies on full local thermal re-
laxation (i.e. local reorganization) at each bridge
site is still not valid, may have important conse-
quences. For example, it may be the reason for the
difficulty to account quantitatively for the experi-
mental results of [56] by purely kinetic schemes, as
discussed by Bixon and Jortner in this issue [75].
Notwithstanding possible other factors, e.g. con-
figurational changes following electron (or hole)
injection into the bridge, the possibility that the
bridge propagation is affected by another physical

Fig. 8. The transmission coefficient vs. bridge length N for

different values of the thermal coupling. The other system pa-

rameters are CðLÞ ¼ CðRÞ ¼ 160 cm�1, V ¼ 200 cm�1, DE ¼ 1500

cm�1, xc ¼ 800 cm�1 and T ¼ 300 K. The thin lines represent

results obtained from the weak-coupling approximation of

Section 3. The heavy lines were obtained using the small po-

laron transformation of Section 4 in the Markovian limit.

11 The fact that Eeff
R goes through a maximum in Fig. 10

results from the fact that s, the solution to Eqs. (89) and (90)

goes trough a maximum in the vicinity of s ¼ C�1 as a function

of DE.
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parameter, essentially the mean free path of the
charge carrier, cannot be ruled out at this point.

Of lesser conceptual significance, but very im-
portant for actual calculation is that the phonon
spectral density employed in this work corre-
sponds to intermolecular nuclear motions and
should be substantially modified to include high
frequency vibrational modes. Such modes cannot
be treated semiclassically, and, being strongly un-
derdamped, cannot be assumed to be in thermal
equilibrium throughout the transmission process.
Including such modes specifically in the calcula-
tion requires explicit consideration of the vibronic
levels involved as was done in Ref. [42].

Finally, it should be kept in mind that our
nearest-neighbor coupling model has to be modi-
fied when realistic chain configurations are con-
sidered, since exclusive ‘through bond’ transfer
does not necessarily dominates the electron trans-
fer process [76].
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Appendix A

Here we consider two methods to describe res-
onance transmission between two continuum
manifolds flg and frg through a bridge, repre-
sented for simplicity by a single level j1i. Method
A, which focuses on the incoming state as the
driving force that keeps the system in a non-
equilibrium steady state, is identical to the route
taken by us before [44]. Method B treats the in-
coming and outgoing states symmetrically as
shown below.

A.1. Method A

A steady state driven by an incoming state j0i is
described by the set of equations equivalent to (8)–
(13)

_cc0 ¼ �iE0c0; ðA:1Þ

_cc1 ¼�iE1c1 � iV1;0c0 � i
X
l6¼0

V1;lcl � i
X
r

V1;rcr;

ðA:2Þ

_ccl ¼ �iElcl � iVl;1c1 � ðg=2Þcl; ðA:3Þ

_ccr ¼ �iErcr � iVr;1c1 � ðg=2Þcr: ðA:4Þ
At steady state all coefficients satisfy ckðtÞ ¼
Cke

�iE0t; k ¼ 0; 1; l; r with

0 ¼ �iðE1 � E0ÞC1 � iV1;0C0 � i
X
l 6¼0

V1;lCl

� i
X
r

V1;rCr; ðA:5Þ

0 ¼ �iðEj � E0ÞCj � iVj;1C1 � ðg=2ÞCj; j ¼ l; r:

ðA:6Þ
Solving (A.6) for Cl and Cr in terms of C1 and
inserting the results in (A.5) leads to

C1 ¼
V1;0C0

E0 � ~EE1 þ ði=2ÞC1ðE0Þ
; ðA:7Þ

Fig. 9. The effective reorganization energy computed from

Eqs. (89) and (90) for a model with one bridge level, with

C ¼ CL þ CR ¼ 100 cm�1, T ¼ 300 K and ER ¼ 200 cm�1.
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where C1ðE0Þ ¼ CðLÞ
1 ðE0Þ þ CðRÞ

1 ðE0Þ and ~EE1 ¼ E1 þ
KðLÞ

1 ðE0Þ þ KðRÞ
1 ðE0Þ with C and K defined fromP

r jVr;1j
2= E0 � Er þ ig=2ð Þ ¼ KðRÞ

1 ðE0Þ � ð1=2ÞiCðRÞ
1 ðE0Þ

(and similarly for L). Using Eq. (A.7) in (A.6) and
taking the limit g ! 0 yields

gjCrj2

jC0j2
¼ 2pjVr;1j2dðEr � E0Þ

� jV1;0j2

ð ~EE1 � E0Þ2 þ ðC1ðE0Þ=2Þ2
; ðA:8Þ

which leads [44] to the (differential) transmission
coefficient

T0ðE0;EÞ ¼
CðLÞ

1 ðE0ÞCðRÞ
1 ðE0Þ

~EE1 � E0

� �2
þ C1ðE0Þ=2ð Þ2

dðE � E0Þ:

ðA:9Þ

A.2. Method B

In this alternative approach we handle the in-
coming and outgoing states in a more symmetrical
fashion. To this end we consider again Eq. (A.5)
written in the form

0 ¼ �iðE1 � E0ÞC1 � iV1;0C0 � iV1;f Cf

� i
X
l 6¼0

V1;lCl � i
X
r 6¼f

V1;rCr; ðA:10Þ

where jf i is one particular final state in the frg
continuum. Again using solutions of (A.6) in
(A.10) we get

0 ¼ �ið ~EE1 � E0ÞC1 � iV1;0C0 � iV1;f Cf

� ð1=2ÞC1ðE0ÞC1: ðA:11Þ

It is important to keep in mind that because the
states 0 and f are unbounded continuous states, the
coefficients C0 and Cf scale like X�1=2 where X is the
normalization volume (X ! 1 should be taken at
the end of the calculation), therefore C1 and K1

remain as before (these quantities remain finite
when X ! 1 because they contain products such
jV1rj2qR with qR being the density of states in the R
manifold that scales like X). Eq. (A.11) together
with Eq. (A.6) written once for j ¼ 0 and once for
j ¼ f constitute three coupled linear equations for
C0;C1 and Cf that may be solved to yield

1

2
4 þ jV1;f j2

~EE1 � E0 � i=2C1ðE0Þ
� �

E0 � Ef þ ig=2
� �

3
5Cf

¼ Vf ;1V1;0C0

E0 � Ef þ ig=2
� � 1

E0 � ~EE1 þ i=2C1ðE0Þ
� � :

ðA:12Þ

The second term in the brackets on the LHS
vanishes in the limit X ! 1. The remaining terms
lead to a result of the form (A.8) (with f replacing
r) in this limit. We conclude that in the thermo-
dynamic limit the two methods lead to identical
results.

Appendix B

To reduce the set (32)–(37) to a set of steady
state equations for the system’s density matrix r in
the Redfield approximation [36,46,47] we follow
the procedure of Ref. [44]. The ‘system’ consists of
the set of bridge states j1i; . . . ; jNi (here this set
consists only of a single level j1i) together with the
initial and final continuum states j0i and jf i. The
Redfield expansion needs to be carried in the
representation that diagonalizes the effective sys-
tem’s Hamiltonian that includes now, in addition
to the bridge state j1i also the incident state j0i
and the final state jf i

H eff
0 ¼

E0 0 0
V1;0 E1 � iC1=2 V1;f
0 Vf ;1 Ef

0
@

1
A: ðB:1Þ

The procedure therefore starts with a transfor-
mation to the representation which diagonalizes
this Hamiltonian, following the Redfield proce-
dure in this representation then transforming back
to the representation defined in terms of states
j0ij1i and jf i. It yields [42,44]

_rrn;n0 ¼ 0

¼ �i½H0 þ V ; r�0n;n0 �
1

2
C1 dn;1

�
þ dn0;1

�
rn;n0

þ
X
n1

X
n2

Rn;n0;n1;n2rn1;n2 ;

n; n0 ¼ 0; 1; f ; ðB:2Þ
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where the prime on the commutator denotes that it
has been modified by eliminating the terms in-
compatible with a steady-state driven by state j0i
as discussed under Eq. (25) (see also Ref. [44]), and
where the tetradic elements Rn1;n2;n3;n4 may be ex-
pressed in terms of the correlation function hF1;1ðtÞ
F1;1ð0Þi. Also, the sums in (B.2) are over n1,
n2 ¼ 0; 1; f . Solving (B.2) for the steady state de-
fined by a fixed q0;0 finally yields the steady-state
values of r0;1, r1;0, r1;1, r0;f , rf ;0, r1;f , rf ;1, rf ;f .

Appendix C

As discussed in Section 4, the reduced density
matrix evolves according to Eq. (62). The tensor R
is obtained by (numerically) transforming the
tensor �RR

�RRm;m0;l;l0 ¼
Z 1

0

d �HHl0 ;m0 ð0Þd �HHm;lðsÞ
D E

e�i �EEl;m0 sds

þ
Z 1

0

d �HHl0;m0 ðsÞd �HHm;lð0Þ
D E

e�i �EEm;l0 sds

� dl0;m0

X
k

Z 1

0

d �HHm;kðsÞd �HHk;lð0Þ
D E

e�i �EEk;l0 sds

� dm;l

X
k

Z 1

0

d �HHl0 ;kð0Þd �HHk;m0 ðsÞ
D E

e�i �EEl;ksds;

ðC:1Þ

where d �HHm;lðtÞ (in the basis that diagonalizes the
bridge Hamiltonian) is a linear combination of
terms Vn;mdHn;m (in the basis of local site states) in
line with the procedure discussed above Eq. (62).
In Eq. (C.1), �EEi;j are differences between eigen-
values of the same bridge Hamiltonian. The
operators dH are defined by Eq. (61). The diago-
nalization leads to the fact that the tensor R cou-
ples sites that are not nearest neighbors. The
correlation functions that appear in (C.1) have the
form

Ck;l;m;n � dHk;lðsÞdHm;nð0Þh i
¼ eiðXkðsÞ�XlðsÞÞeiðXmð0Þ�Xnð0ÞÞ
� �
� eiðXk�XlÞ
� �

eiðXm�XnÞ
� �

: ðC:2Þ

Explicit expressions for these functions may be
found by using standard harmonic oscillator op-
erator algebra [54]. We get

eiðXkðsÞ�XlðsÞÞeiðXmð0Þ�Xnð0ÞÞ
� �

¼ exp
X

a

eixaskðk;lÞ
a kðn;mÞ

a �nna

�(
þ e�ixaskðk;lÞ

a kðn;mÞ
a

� ð1þ �nnaÞ �
1

2
ðkðk;lÞ

a Þ2
h

þ ðkðn;mÞ
a Þ2

i
ð1þ 2�nnaÞ

�)

ðC:3Þ

and

eiðXk�XlÞ
� �

eiðXm�XnÞ
� �

¼ exp

(
� 1

2

X
a

ðkðk;lÞ
a Þ2

h
þ ðkðn;mÞ

a Þ2
i
ð2�nna þ 1Þ

)
;

ðC:4Þ

where

ðkðn;mÞ
a Þ2 ¼ ðcna � cma Þ

2

8max3
a

: ðC:5Þ

These results can be simplified by invoking the
local mode approximation introduced in Section 4.
Eq. (C.5) then becomes

kðn;mÞ
a

� �2
¼ kðnÞ

a

� �2
þ kðmÞ

a

� �2
ðC:6Þ

with

ðkðnÞ
a Þ2 ¼ ðcnaÞ

2

8max3
a

: ðC:7Þ

Note that under this approximation cna and cma
cannot be both non-zero for the same a and m 6¼ n,
therefore one of the terms on the RHS of Eq. (C.6)
is zero. Eqs. (C.3) and (C.4) now take the simpler
forms

eiðXkðsÞ�XlðsÞÞeiðXmð0Þ�Xnð0ÞÞ
� �

¼

exp � Sk � Sl � Sm � Snð Þ; k 6¼ n 6¼ l 6¼ m
KlðsÞKkðsÞ; k ¼ n; l ¼ m 6¼ k
KkðsÞ exp � Sl � Smð Þ; k ¼ n; l 6¼ m 6¼ k
KlðsÞ exp � Sk � Snð Þ; l ¼ m; k 6¼ n 6¼ l
exp � Sm � Snð Þ; k ¼ l; n 6¼ m
exp � Sk � Slð Þ; k 6¼ l; n ¼ m
�KKmðsÞ �KKlðsÞ; k ¼ m; l ¼ n 6¼ k
�KKmðsÞ exp � Sn � Slð Þ; k ¼ m; l 6¼ n 6¼ m
�KKlðsÞ exp � Sm � Skð Þ; l ¼ n; m 6¼ k 6¼ l

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðC:8Þ
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and

eiðXk�XlÞ
� �

¼ exp � Sk � Slð Þ; k 6¼ l;
1; k ¼ l;

�
ðC:9Þ

where Sn is given by Eq. (72) and where

KnðtÞ ¼ exp
X

a

eixasðkðnÞ
a Þ2�nna

h(
þ e�ixasðkðnÞ

a Þ2

� ð1þ �nnaÞ � ðkðnÞ
a Þ2ð1þ 2�nnaÞ

io
;

�KKnðtÞ ¼ exp
X

a

h(
� eixasðkðnÞ

a Þ2�nna � e�ixasðkðnÞ
a Þ2

� ð1þ �nnaÞ � ðkðnÞ
a Þ2ð1þ 2�nnaÞ

io
:

ðC:10Þ
The correlation function (C.2) then takes the form

Ck;l;m;n

¼

0; k 6¼ n 6¼ l 6¼ m
KkðsÞKlðsÞ � exp � 2 Sk þ Slð Þð Þ;
k ¼ n; l¼ m 6¼ k

KkðsÞ exp � Sl � Smð Þ � exp � 2Sk � Sl � Smð Þ;
k ¼ n; l 6¼ m

KlðsÞ exp � Sk � Snð Þ � exp � Sk � 2Sl � Snð Þ;
l¼ m; k 6¼ n

0; k ¼ l; n 6¼ m
0; k 6¼ l; n¼ m
�KKmðsÞ �KKlðsÞ � exp � 2 Sm þ Slð Þð Þ;
k ¼ m; l¼ n 6¼ k

�KKmðsÞ exp � Sn � Slð Þ � exp � 2Sm � Sn � Slð Þ;
k ¼ m; l 6¼ n 6¼ m

�KKlðsÞ exp � Sm � Skð Þ � exp � 2Sl � Sk � Smð Þ;
l¼ n; m 6¼ k 6¼ l

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðC:11Þ

(In our numerical calculation we neglect the cor-
relation functions associated with the last three
lines of (C.11), since they are smaller than the
other nonzero terms). Finally, in a model where
the coupling coefficient kðnÞ

a (and consequently Sn)
do not depend on the electronic site n, the non-
zero terms of (C.11) take the very simple forms
Ck;l;m;n ¼ KðsÞ2 � expð�4SÞ for k ¼ n, l ¼ m and
Ck;l;m;n ¼ KðsÞ expð�2SÞ � expð�4SÞ for k ¼ n,
l 6¼ m or k 6¼ n, l ¼ m.
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