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Dynamic percolation theory for particle diffusion in a polymer network
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Tracer-diffusion of small molecules through dense systems of chain polymers is studied within an
athermal lattice model, where hard-core interactions are taken into account by means of the site
exclusion principle. An approximate mapping of this problem onto dynamic percolation theory is
proposed. This method is shown to yield quantitative results for the tracer correlation factor of the
molecules as a function of density and chain length provided the non-Poisson character of temporal
renewals in the disorder configurations is properly taken into account. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1481763#
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I. INTRODUCTION

Atomic charge or mass transport processes in conde
systems often take place in a dynamically disordered h
medium, whose microscopic structure fluctuates on a t
scale of the order of the atomic hopping time. An example
current interest in materials science are polymer
conductors.1 These are solutions of ionic salts in a pol
polymer that can possess significant ionic conductivities.
well known that ionic motions in these materials are stron
coupled to motions of polymer chain segments, a situa
which may be viewed as implying a continuing rearrang
ment of preferred ionic diffusion pathways through the h
medium. At the glass transition temperatureTg , large scale
segmental motions get frozen, suppressing long-range i
diffusion. Other systems where atoms diffuse in a reorga
ing host medium include permeation of small molecu
through polymer films2,3 or ionic motions through protein
channels passing biological cell membranes.4

Important progress in calculating the diffusion coef
cient of a random walker in a dynamically changing enviro
ment emerged from dynamic percolation theory~DPT! and
its generalizations. In its original form due to Drugeret al.5,6

one considers the random walk in a bond percolation mo
where configurations of open and blocked bonds are
domly renewed at a given ratel. An important outcome of
this model is the fact that the frequency-dependent diffus
ity D(2 iv,l) can be obtained by analytic continuation
the diffusivity D0(2 iv)5D(2 iv,0) in the absence of re
newals

D~2 iv,l!5D0~2 iv1l!, ~1!

irrespective of the precise form of the functionD0(s) to be
derived from a system with only static disorder.6 The same
result ~1! was independently obtained by Harrison a
Zwanzig within effective medium theory7 assuming indepen
dent random renewals of individual bonds rather than glo
renewals as in Ref. 6, and also by Hilfer and Orbach.8 Sub-
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sequent work on polymer ion conductors was focused on
identification of the central parameter of this theory, the
newal rate l, from experimentally observed polyme
viscosities9 and more recently from dielectric relaxatio
spectroscopy.10 In parallel, the theory was generalized co
siderably to off-lattice hopping,11 spatially correlated
renewals,12 cases with distinct kinds of migration steps13

and, in particular, to non-Poisson renewal processes cha
terized by some waiting-time distributionc(t).11 In that case
the zero-frequency diffusivity ind53 dimensions is given
by

D5
1

6

*0
`dtc~ t !^r 2~ t !&0

*0
`dttc~ t !

, ~2!

where^r 2(t)&0 is the mean-square displacement of the ra
dom walker in a frozen environment.14 Note that in the case
c(t)5l exp(2lt) Eq. ~2! reduces to the zero-frequenc
limit of ~1!.

While DPT or, generally, dynamic disorder hoppin
theory11 was developed as a framework for diffusion of sm
guest molecules in a fluctuating disordered host envir
ment, it was also recognized that the basic idea underly
these dynamically disordered hopping models can provide
approximation to many-particle effects in transport proces
in interacting lattice gases.15 A ~pointlike! tracer particle in
an interacting lattice gas can hop to a neighboring site p
vided the other particles have arranged such that this
tempted site is vacant and that energetic conditions for
hop are fulfilled. The fact that the time scales for the cha
ing environment and the tracer motion are interconnec
offers a way to establish an effective dynamic bond perco
tion model for the tracer, involving a time constantl. l can
be determined either self-consistently or by an ansatz ba
on the lattice coordination number. A many-particle effecti
medium theory for diffusion in interacting lattice gas
emerges in this way.15

Besides these investigations for a lattice gas of po
particles it seems that DP theories, although motivated
processes in polymer electrolytes, have never been te
© 2002 American Institute of Physics
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quantitatively in the context of statistical polymer mode
While the renewal processes associated with a system
point particles are sufficiently characterized by a single r
constantl entering Eq.~1!,15 we expect this equation to fa
for the problem of diffusion through a polymer network b
cause of the inherent distribution of relaxation times char
terizing the chain motion. This should result at least in
more complicated form of the waiting-time distributio
c(t). The question now is how far Eq.~2! can describe the
diffusion coefficient, whenc(t) is defined in a suitable way
in terms of the actual dynamics of the polymer network.

To elucidate this question, we investigate in this arti
an athermal lattice model, defined in Sec. II, which cons
of lattice chains with varying density and chain length an
sufficiently dilute system of point particles. Both chains a
point particles undergo diffusion via elementary stocha
moves. This model is a special case of a more general la
model of chains and point particles with specific interactio
used previously to describe the influence of temperat
pressure and salt content on diffusion and network relaxa
properties of polymer electrolytes.16,17

In the present work, we first obtain diffusion coefficien
from dynamic Monte Carlo simulation of our model. The
results serve as a reference with respect to the subseq
approximation method based on dynamic percolation the
To implement this theory, we determine by simulation~i! the
waiting-time distributionc(t), which we define in terms o
the occupational correlation function of a site next to a fix
point particle and~ii ! the mean-square displacement^r 2(t)&0

of point particles for static disorder~frozen chains!. These
steps are computationally much less demanding than the
simulation. Comparison of both methods via Eq.~2! provides
a sensitive test for the applicability of DP theories to diff
sion in a fluctuating polymer host. We find excellent agre
ment between the tracer correlation factors as a function
density and chain length, as obtained from those two m
ods. Temporal correlations, reflected in the nonexponen
character ofc(t), are found to be crucial in this analysis.18

In Sec. III we specialize to a chain lengthr 51 which
corresponds to a system of point-particles only, before
present in Sec. IV our full analysis for chains up to a leng
r 520. Some further conclusions are drawn in Sec. V.

II. SIMULATION METHOD AND IMPLEMENTATION OF
THE DYNAMIC PERCOLATION CONCEPT

Consider a system of lattice chains on a thre
dimensional simple cubic lattice of spacinga. The chains are
made of beads, assigned to lattice sites, and linearly c
nected via nearest-neighbor bonds. Apart from site exclus
which mimics a hard-core repulsion, no explicit interactio
between beads are assumed. ForM chains each withr beads
in a box of linear sizeLa, the concentration of occupie
lattice sites is simply given byc5Mr /L3. In addition, our
system contains pointlike tracer particles, again subjecte
site exclusion, with a concentrationct!1 sufficiently small
so that correlations among them are negligible. Most of
simulations were carried out withL510, r 51 to 20, ct

51022, and periodic boundary conditions are employed. A
ter preparation of the system with the desired number
Downloaded 25 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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chains, equilibration and the subsequent dynamics at equ
rium are based on the generalized Verdier–Stockmayer a
rithm, which employs end-bond motions, kink-jumps a
crankshaft rotations.19–21 Point-particles individually per-
form nearest-neighbor hops. In the special caser 52 ~mov-
ing dimers! only the end-bond motion is active, which then
a 90 degree rotation of the dimer about one of its end-poi
As usual, introducing

D~s!5
s2

6 E
0

`

dte2st^r 2~ t !&, ~3!

we can obtain the diffusion coefficient of point-particles,D
5 lims→01D(s), from their simulated mean-square displac
ment ^r 2(t)&. To separate the average effect of blockin
contained in a factor 12c, one introduces the tracer corre
lation factor f (c)<1 according to

D5D ~0!~12c! f ~c!, ~4!

whereD (0)5Ga2 denotes the diffusion coefficient for infi
nite dilution (c→0), with G the bare hopping rate.

Our aim is now to map the complete system dynam
onto a disordered single-particle model, where disorder c
figurations are globally renewed according to some appro
ate waiting-time distributionc(t). In order to test the valid-
ity of this idea against full simulations, we have to extra
the input quantities to Eq.~2!, ^r 2(t)&0 and c(t), from our
polymer model. Whilê r 2(t)&0 can be obtained in a straigh
forward manner from separate simulations with froz
chains, there is no unique~rigorous! route to determinec(t)
so that we have to employ some physical arguments.
indicated already in the Introduction, we propose to de
mine c(t) from the local occupational correlation functio
^ni(t)ni(0)&, whereni(t) is the occupation by chain bead
of a site i adjacent to a fixed tracer position. To simula
^ni(t)ni(0)& chains were first equilibrated while keeping th
tracer fixed. Such a procedure is perfectly in the spirit
dynamic percolation theory based on renewals as ‘‘seen’
the tracer in its immediate neighborhood.

At this point let us recall some relationships from r
newal theory. Letf(t) with t.0 be the probability density
for the first renewal event, when the foregoing renewal to
place at an arbitrary timet0,0. Then

F~ t !512E
0

t

dt8f~ t8! ~5!

is the resulting probability that there is no renewal within t
interval @0,t#. Following Refs. 11 and 22,

2
df

dt
5l̄c~ t !, ~6!

where l̄215(f(0))215*0
`dttc(t) denotes the mean re

newal time.
Our basic idea is now to identify renewal events w

occupational changes at sitei next to a fixed tracer. We argu
that with probabilityF(t) the occupation at sitei does not
change within@0,t# so that the stochastic variableni(t) ~with
possible values 0 or 1! preserves its initial value,ni(t)
5ni(0) andni(t)ni(0)5(ni(0))25ni(0). Conversely, with
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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probability 12F(t), one or more renewals occur withi
@0,t#. Then, since configurations are randomly reassign
ni(t) can be replaced by its average,c. Hence, in this case
ni(t)ni(0)5cni(0). Averaging in addition over the initia
occupationni(0), weobtain for the correlation function

^ni~ t !ni~0!&5c@F~ t !1c~12F~ t !!#. ~7!

This can be rewritten as

F~ t !5
^ni~ t !ni~0!&2c2

c~12c!
, ~8!

consistent with the requirementsF(0)51 andF(t)→0 as
t→`. Combination of~5!, ~6!, and~8! yields

c~ t !5l̄21F9~ t !5@ l̄c~12c!#21
d2

dt2
^ni~ t !ni~0!&. ~9!

After insertion into~2! the prefactors drop out. Equation~9!
completes the implementation of DP theory to our ma
particle model. In the next sections we test the performa
of this approximation scheme to a simple hard-core lat
gas and to a polymeric system.

III. HARD-CORE LATTICE GAS

As a first application let us briefly examine the spec
case of nonconnected beads,r 51, which is identical to the
conventional hard-core lattice gas of point-particles. T
tracer correlation factorf (c) in that case is known to a hig
degree of accuracy via dynamic pair approximations,23–25

giving

f ~c!5
11^cosU&

12@~3c22!/~22c!#^cosU&
, ~10!

and through simulations.26 In Eq. ~10!, which becomes exac
as c→1, the quantitŷ cosU& characterizes the average d
rectional change in two consecutive steps of the tracer du
the presence of one vacancy. For a simple cubic latt
^cosU&.20.209. An effective-medium approximation t
f (c) was obtained recently15 from dynamic percolation
theory using the Harrison Zwanzig approach.7

In what follows we apply the approach outlined in Se
II to the same problem.̂r 2(t)&0 is obtained from simulating
a single mobile particle in the frozen configuration of t
background particles.F(t) is deduced from Eq.~8! where
^ni(t)ni(0)& is obtained from a short time simulation of
lattice gas with one fixed tracer particle, as described ab
These simulations were carried out within a cubic box
length L510 and periodic boundary conditions. Note th
collective properties of a hard-core lattice gas with symm
ric transition rates show a relaxational behavior independ
of concentration.27,28 The functionF(t) as determined from
~8! is thereforec-independent and thus can be determin
from single particle random walk theory. Within that fram
work F(t) can be interpreted as time-dependent probab
of return of a single random walker to sitei, taking into
account that one site adjacent toi is blocked by a fixed tracer
In Appendix A we briefly indicate howF(t) can be calcu-
lated exactly or how one can generate efficient analytic
proximations.
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Results forF(t) obtained both from Monte Carlo simu
lation and from these approximations are plotted in Fig.
As seen from the figure, the main decay ofF(t) at short
times is fairly well represented by an exponential with dec
rate

l052~dF/dt! t505~ 5
6!G. ~11!

The factor 5
6 simply arises from the fact that one of the s

bonds in the simple cubic lattice connected to sitei is
blocked by the tracer. The actual decay ofF(t) is ap-
proached gradually by continued fraction approximants
increasing orderN, which were derived according to Appen
dix A. The asymptotic decay ofF(t) at long times is gov-
erned by diffusion, givingF(t)}(Gt)23/2, which, however,
cannot be accounted for by a finite continued fraction. N
ertheless, for the purpose of practically evaluating~2! we
find that it is sufficient to approximateF(t) in terms of a
superposition of three exponentials.

Figure 2 shows thec-dependent tracer correlation facto
obtained in this way. The agreement of data points from
DPT with the full curve representing the dynamic pair a
proximation Eq.~10! is quite satisfactory. For completene
we also included Monte Carlo data for the full hard co
lattice gas. The DPT result forc51 with value f .0.6802
was obtained analytically, see Appendix A, whereas the ex
value is f (1)5(11^cosU&)/(12^cosU&).0.654. Also
shown are diffusion constants calculated from the effect
medium approximation as described in Ref. 15, which
based on only one time constant for renewal events. W
l5l0 as given by~11! this theory yields the dashed curv
whose deviations from Eq.~10! in the high-concentration
regime are larger than the deviations of our DP theory.@On
the other hand, merely fittingl to the exact value off (1),
giving l.0.62G, turns out to give very good agreeme
with Eq. ~10! in the whole concentration range.#

FIG. 1. Semilogarithmic plot of the functionF(t) @see Eq.~8!# for the
hard-core lattice gas. Monte Carlo data are obtained by simulating the p
ability of return of a single random walker starting next to a blocked s
Dashed–dotted line: single exponential approximation as determined b
initial slope @see Eq.~11!#. The other lines represent continued fractio
approximants up to orderN56 ~see Appendix A!. Here and in subsequen
plots we takeG51 for the bare hopping rate.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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These results confirm the conclusion in Ref. 15 that
namic percolation theory can reasonably describe diffus
in many-particle systems. At the same time our results in
cate that the theory significantly improves when the n
Poisson character of renewal processes is taken into acc
For the problems in the next section this last aspect
become much more important.

IV. LATTICE POLYMERS

For the hard-core lattice gas (r 51) the procedure de
scribed obviously bears no computational advantage over
isting methods. The situation changes, however, when we
over to r .1. The correlation factorf (c) now depends onr
and no analytic approximation equivalent to Eq.~10! is
available for this case. At the same time full simulations
the diffusional dynamics become more demanding beca
of the internal degrees of freedom of the host molecules
the larger statistical errors connected with the small conc
tration of tracer particles. Here our approximate DPT-ba
computational scheme is potentially useful. In this sect
we examine the performance of this scheme.

Figure 3 summarizes our MC simulation results, ag
represented in terms of the correlation factorf (c), Eq. ~4!,
for different chain lengthsr up to r 520. The full lines are
fits to the simple functional formf (c)5„12a(r )c…/„1
2b(r )c… with fit parametera, b that depend on the chai
lengthsr. These results will be used as a basis for asses
the performance of the approximate DP-based approach
discussed above, this approach is based on evaluating
waiting time distributionc(t) according to Eq.~9! and the
mean-square displacement^r 2(t)&0 of a tracer in the pres
ence of a frozen solvent. Figure 4 shows typical results
the function F(t), see Eq.~8!, obtained for chains with
lengthr 510 for several concentrations, while our simulati
results for̂ r 2(t)&0 are shown in Fig. 5 for the samer-values
as in Fig. 4. Substitution of these results into Eqs.~2! and~4!
yields our DP-approximation for the correlation factorf (c),
which is shown in Fig. 6 together with the ‘‘exact’’ MC

FIG. 2. Tracer correlation factorf (c) of the hard core lattice gas again
concentration, obtained by different methods~see text!. Full curve@Eq. ~10!#
and MC simulation data serve as reference for the performance of
present DP theory and the EMA as described in Ref. 15.
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results of Fig. 3.~For clarity, only the full lines from Fig. 3,
representing the fitted data as discussed above, appear in
6.! Evidently, the DP approximation agrees very well wi
the full simulation for allr. Some further observations ar
noteworthy:

~a! From the MC simulation results forf (c) ~Fig. 3! an
interesting picture emerges concerning the effect
host connectivity on the tracer diffusion. Focusing fir
on chains withr>5 we see that forc&0.8, f (c) and
hence the diffusion constant are larger than in the ha
core lattice gas~Sec. III!.29 Thus, in this density range
chain connectivity facilitates diffusion of tracer pa
ticles relative to the hard core lattice gas (r 51) with
the same average site occupationc. For larger site oc-

he

FIG. 3. Simulated tracer correlation factorf (c) for different chain lengths
r 52, 5, 10, and 20. Full lines refer to the fit functionf '(12ac)/(1
2bc), where for r 55, 10, and 20 the fit parameters areb51 and a
51.057, 1.062, and 1.071, respectively. This implies that the diffusion c
stant ~4! is approximately linear inc, D(c).D0(12ac). On the other
hand, forr 52 we find a50.391 andb50.318. For comparison we also
show simulation data forr 51 ~hard core lattice gas! together with Eq.~10!
~dashed–dotted line!.

FIG. 4. F(t) for chains of lengthr 510 for three different concentration
c50.8, 0.1, and 0.4~from above!. Also shown is the short time behavior o
the c-independent functionF(t) for r 51 ~dashed-dotted line!, reproduced
from Fig. 1.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cupations, however, correlation factorsf (c) for lattice
polymers seem to drop below those of the hard c
lattice gas (r 51).

~b! These findings forr>5 are in contrast to the behavio
found for r 52, which is a special case concerning t
allowed elementary moves~see Sec. II!. For all con-
centrationsc considered,f (c) now remains larger than
0.9; see Fig. 3. Dimers therefore induce only min
backward correlations in the tracer motion. Intuitive
from the point of view of the tracer, only one monom
of the dimer molecule effectively suppresses tracer f
ward motion by a nearest-neighbor hop, while its s
ond monomer is shielded.

~c! The main feature seen in Fig. 4 is the highly nonexp
nential decay of the functionF(t) for the chain sys-
tems, indicating the importance of temporal corre
tions in the associated renewal processes. Furtherm
in contrast to the caser 51 with c-independentF(t),
we observe forr 510 a decay ofF(t) that depends on

FIG. 5. Mean-square displacement^r 2(t)&0 of walkers in a frozen chain
network. Network parameters are as in Fig. 4. Forc50.4 a comparison is
made with the caser 51.

FIG. 6. Comparison of tracer correlation factors from DP theory for cha
of different lengths~data points! with results from full simulations. Full lines
represent fit functions for the simulation data, reproduced from Fig
Again, the dashed–dotted lines represents Eq.~10!.
Downloaded 25 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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c. Two opposing trends seem to be the reason fo
nonmonotonousc-dependence. First, we argue that
an intermediate concentrationc50.4 the relaxation is
faster than forc50.1 because of the more homog
neous distribution of monomers in the surroundings
the tracer, allowing enhanced occupational fluctuatio
Second, going to higher concentrations, all polym
modes slow down and thereby diminish the decay
F(t) ~see the casec50.8 in Fig. 4!. The final result for
f (c), however, remains monotonous inc because of
the strongerc-dependence of̂r 2(t)&0 ~see below!. For
dimers (r 52) we have found thatF(t) decays even
somewhat faster than in the caser 51 and is only
weakly c-dependent. To eludicate in this context th
role of the fixed tracer, we have performed addition
simulations for the correlation function̂ni(t)ni(0)& (0)

in the absence of the tracer, which follows from th
unperturbed polymer dynamics. The correspond
functionsF (0)(t), see Eq.~8!, generally show a similar
but somewhat faster decay thanF(t). We have found
that usingF (0)(t) instead ofF(t) in calculating f (c)
causes deterioration of the good quantitative accur
of the DPT scheme.

~d! The mean square tracer displacement^r 2(t)&0 in a fro-
zen host, plotted in Fig. 5, shows with increasingc a
crossover from diffusive behavior,^r 2(t)&0;t, to a lo-
calized random walk̂ r 2(t)&0→const ast→`, as ex-
pected for a percolative network. It is expected that t
crossover takes place at some critical concentra
ccrit . A precise determination of the percolation thres
old ccrit(r ) for walks through a frozen network o
chains of lengthr is beyond the scope of this article
yet rough estimates are presented in Appendix B
two- and three-dimensional systems. Ind53 dimen-
sions,ccrit appears to increase withr, indicating again
that for givenc the frozen chains are less prohibitive
tracer diffusion than a frozen background of indepe
dent monomers. For example, forr 510, the concentra-
tion c50.8 clearly exceedsccrit(r 510); see Fig. 5 and
the estimates in Appendix B.

~e! As already noted, the DP approximation agrees v
well with the full simulation for allr ~see Fig. 6!. This
remains true even in the special case of lattice dim
(r 52). In particular, following the analysis containe
in Figs. 4 and 5, it is easy to understand the mark
drop in f (c) for largec, i.e., near and above the perc
lation threshold, shown by the data forr *5. Because
of the absence of diffusion in the frozen lattice withc
.ccrit ~see Fig. 5!, long-range tracer motion solely re
lies on network fluctuations which, however, becom
slow in that regime~see Fig. 4!. The r-dependence (r
*5) of our results in Fig. 6 follows from the fact tha
the dynamics in high-density lattice polymer system
slow down further asr increases at constant densi
c.30

V. SUMMARY AND OUTLOOK

A method has been proposed how to map particle dif
sion through a fluctuating network of polymer chains on

s

.
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dynamic percolation theory~DPT!. As input quantities this
theory requires the particles’ mean-square displacem
^r 2(t)&0 in the frozen network and the waiting time distrib
tion c(t) for network renewals. We proposed to relatec(t)
to the occupational correlation function of a site next to
tracer particle so that it reflects the temporal distribution
pathway openings seen by the fixed tracer. In contrast to
standard hard core lattice gas,c(t) decays in a highly non-
exponential fashion when longer chains are considered.
feature of the fluctuating network appears to be crucia
implementing dynamic percolation theory to chain system
When properly taken into account, the DP model gives qu
accurate results for the tracer correlation factor in its va
tion with concentrationc and chain lengthr. We have veri-
fied this by comparing the results of DPT with Monte Ca
simulations of the complete system dynamics. Thereb
turns out that the DPT scheme saves about one orde
magnitude in computing time relative to full simulations.

Our studies so far are limited to an athermal system
therefore are not yet in the position to make a direct co
parison with experiments or molecular dynamics~MD! stud-
ies of diffusion through real polymer systems. Under t
aspect it would be very interesting to extend our studies
applying DP theory with non-Poisson renewals to interact
systems as a first step in approaching real materials.
method in principle can also be applied to questions of d
persive transport.

Information on the mean-square displacement of gu
molecules in a frozen polymer matrix with Lennard-Jon
interactions has recently been obtained from MD simu
tions, and has been utilized in building a model to interp
experimental diffusion data for noble gases in polymer31

Tentatively, from the point of view of the present theory, w
can regard̂ r 2(t)&0 to be known for that system, while in
formation onF(t) is lacking. For purely qualitative purpose
we may assume a single renewal ratel and employ Eq.~1!
(v50). Comparison with the measured diffusion const
yields a renewal timel21, which turns out to be of the orde
of magnitude of the crossover time, beyond which the me
square displacement in the model of Ref. 32 reflects lo
time diffusion.33 This apparent consistency with Refs. 31 a
32 supports our conclusion that the DP concept could
come a promising tool in studies of diffusion through re
polymeric systems.
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APPENDIX A: HARD-CORE LATTICE
GAS-SUPPLEMENTARY RESULTS

Regarding the hard-core lattice gas, the quantityF(t)
given by~8! is equal to the probability of return to sitei after
time t in the case of a single random walker. Here sitei is
next to a site blocked by a fixed tracer. In calculatingF(t),
Downloaded 25 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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the effect of the blocked site can be taken into account
standard defect matrix theory.34 This yields an expression fo
F(t) in terms of the solution of a 333 matrix equation,
whose coefficients are determined by unperturbed lat
Green functions up to third-neighbor distances. The calcu
tion is straightforward and will not be reproduced here.

In the present context it is sufficient to obtain an accur
approximation forF(t) only until it decays to about 1022.
Computationally it is then advantageous to represent
Laplace transformF̂(s) as a continued fraction of the typ
F̂(s)5a0„s1b12a1(s1¯)21

…

21, generated by a shor
time expansion ofF(t).35 Time derivativesF (n)(t50) with
0<n<2N21 are easily obtained by enumerating clos
paths of the walker which avoid the blocked site. Spec
cally, we use

F~ t !5 (
n50

`

Fn

~Gt !n

n!
e2Gt, ~A1!

where Fn is the probability of return to the origin aftern
steps.

At stageN the continued fraction is terminated such th
F̂(0) agrees with the exact result from defect matrix theo
~see above! which, at s50, is determined in terms o
Watson-type integrals. Figure 1 contains a plot of t
Nth-order approximants forF(t) up to N56. ForN56 the
simulations are accurately represented up toGt.15.

Finally we comment on the limitc→1, where the corre-
lation factor from DPT can be evaluated analytically. Ob
ously, the mean-square displacement^r 2(t)&0 of a tracer in a
frozen lattice is determined in that limit by successive e
changes with one neighboring vacancy. This gives^r 2(t)&0

5ba2(12c)(12exp(22Gt))/2, where G is the jump fre-
quency. From~8! together with the above-mentioned resu
for F(t) we obtainf (1)50.6802 as given in Sec. III.

APPENDIX B: PERCOLATION IN A FROZEN NETWORK

Calculation of the diffusion constantD from ~2! requires
knowledge of the mean square displacement^r 2(t)&0 of a
tracer particle in a frozen network on time scales of the or
of the decay time ofc(t). In this Appendix we estimate the
critical concentrationccrit(r ) for percolation of a monome
particle through a frozen network of chains, which disti
guishes diffusive from localized behavior of^r 2(t)&0 at long
times. To our knowledge, this problem of correlated perco
tion has not been investigated before for general chainlen
r. We do not, however, attempt any precise determination
ccrit(r ); rather we would like to point out some major qua
tative trends inccrit(r ) as a function ofr in d53 andd52
dimensions.

In d53, equilibrated chain configurations were prepar
by the same algorithm as described in Sec. II, while ind
52 we used the algorithm by Siepmannet al.36 For systems
of varying sizeL, increased in stepsDL, we determined the
probabilitiesP(r ,c,L) of occurrence of a spanning cluster
vacant nearest-neighbor sites. For fixedr, we obtained points
of intersection of successive curvesP(r ,c,L) and P(r ,c,L
2DL) versusc, which give successive approximations f
ccrit(r ).37 Estimates forccrit(r ) were deduced from calcula
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tions withL-values up to a maximumLmax, to be adapted to
r. For example, ind52 we went up toLmax5200 for r
520, whereasLmax580 for frozen dimersr 52. These val-
ues appeared sufficient to achieve reasonable converge
In the limit r 51 we find ccrit.0.41 for d52 and ccrit

50.69 for d53, which reasonably agree with values 12pc

given by the well-known thresholdspc for site percolation on
square and simple cubic lattices, respectively. The qualita
r-dependence ofccrit(r ) is shown in Fig. 7. Ind53, ccrit(r )
monotonously increases withr, which we interpret as a re
duction of blocking of open pathways through the connec
ity of chains. The most pronounced increase occurs alre
when going from monomers tor 52. In d52 this argument
again applies to the step fromr 51 to r 52, but blocking
becomes more effective for longer chains so thatccrit(r ) de-
creases, withccrit(r ),ccrit(1) for r *12. For long chains,
especially ind52, it might be interesting to studŷr 2(t)&0

near criticality on different length scales above and bel
the radius of gyration of chains, but this goes beyond
scope of this work.

Generally, for sufficiently long times and sma
uc2ccritu such that the correlation length becomes larger t
the size of chains, one expects^r 2(t)&0 to follow the stan-
dard scaling forms for noncorrelated percolation, which i
ply associated scaling forms for the frequency-dependent
fusivity D0(2 iv) as v→0. In applications of DP theory
where the analytic continuation rule~1! holds at least for
small l, one can immediately predict the asymptotic form
of the long-time diffusion constantD5D0(l) of a walker in
the presence of slow (l→0), Poisson-type network
renewals.38 The resulting scaling expressions forD are
straightforward to write down from the corresponding e
pressions forD0(2 iv) given in Ref. 39. Notable specia
cases depending on different limits in the scaling variablz
5(c2ccrit)l

2k/(2n2b) are

D;H l12k, z!1,

l~c2ccrit!
2n2b; c.ccrit ; z@1,

~B1!

wheren andb are the conventional static percolation exp

FIG. 7. Estimates for the critical concentrationccrit(r ) vs r for percolation of
a monomer particle through a frozen network of chains of lengthr on a
simple cubic (d53) and a square (d52) lattice.
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nents for the correlation length and the order parameter,
spectively, andk is the dynamic critical exponent for anoma
lous diffusion in a percolation system at criticality.37
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