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Recent experimental observations of anisotropic conductivity in stretched polymer electrolyte films of the
poly(ethylene oxide) family are discussed. The main experimental observations, enhancement of the ionic
diffusion and conductivity in the stretch direction, and decrease in these transport coefficients in the normal
direction are interpreted in terms of an effective two-phase model. This two-phase model is based on the idea
that a highly conducting phase is associated with oriented molecular structures which are surrounded by
poorly conducting boundary regions. This model is evaluated within the framework of differential effective
medium theory (DEMT). Under stretching these regions change from spherical to prolate-spheroidal shapes.
The computed dependence of the DC conductivity tensor and its AC counterpart on the stretch parameters is
in good agreement with experimental results.

1. Introduction

Ionically conducting polymers such as polyethers containing
alkali metal salts have been under investigation for more than
two decades because of their unique combination of mechanical
and electrical properties.1,2 The continuing quest to improve the
electrical transport properties of these materials is driven by
their potential technological importance for electronic and
energy storage devices. At the same time these materials have
been subjects of intense theoretical interest focused on the
mechanism underlying their ionic transport properties.3

Long time ago it has been proposed by Armand4,5 that the
helical structure of polyether chains may provide a framework
for ion transport in crystals of these materials. This suggestion
as been subdued by the mounting evidence that long-range
transport of ions is inhibited in crystalline phases of the host
polymers and that ionic mobility in such systems is intimately
connected to the host segmental motions (see, e.g., ref 1). Recent
experimental and theoretical results have reopened the issue,
also in conjunction with transport in the amorphous phase. First,
using X-ray diffraction (XRD) spectroscopy, Bruce and co-
workers have shown that in some stoichiometries of crystalline
poly(ethylene oxide) (PEO) alkali cations are indeed enclosed
within helical chains6,7 or other directed structures8,9 of the host,
while being coordinated by oxygen atoms that belong to
consecutive monomers in the host chain. Mechanisms for the
temporal evolution of the cations' first coordination shells and
the ensuing cation diffusion have been proposed on the basis
of molecular dynamics simulations by Mu¨ller-Plathe et al.10

These studies also indicate strong interactions between a chain
and its ions and weak interchain interactions.11 Second, in a
series of recent articles Golodnitsky and co-workers12-15 have
shown that stretching films of PEO-Li complexes results in a

profound effect on their ion transport properties. In particular,
the observed enhancement by more than an order of magnitude
of the DC conductivity of such films along the stretch direction
is consistent with a picture of ions moving along molecular
chains (e.g., helices) that become preferably oriented along the
stretch direction. This increased conductivity is accompanied
by increasing stiffness, showing an apparent correlation between
host stiffness and ion mobility that is contrary to what is
commonly assumed.

Following is a more detailed summary of relevant experi-
mental observations on these systems. The published results12-14

are for LiI:PEO polymer electrolytes with Li+/O ratio 1:n, cast
as films of width 300µm and length 15 mm (before stretching)
in the stretch direction. The sample thickness in the third
perpendicular direction was about 8 mm.

(a) Films withn ) 20 subjected to a load that exceeds 450-
500 N/cm2 begin to “flow” in the load direction. The film length
in this direction increases by a factor of 3-6, whereas its
thickness decreases by a factor of about 4. The DC conductivity
in the stretch direction increases by a factor of 5-8 atT ) 40
°C and by factors 11-20 at T ) 60 °C. Both the stretching
response to load and the resulting change in conductivity depend
also on the ionic content measured byn, and forn ) 7 stretching
at 60°C was found15 to cause conductivity increase by a factor
of 40.

(b) Li+ diffusion constants measured by the (7Li) pulsed
field gradient NMR technique show marked sensitivity to
stretch.15 The following results were obtained atT ) 60 °C for
n ) 9 films that were stretched at the same temperature:D(Li+)
= 7.6‚10-8 cm2/s for the unstretched film andD||(Li+) = 1.1
× 10-7 cm2/s; D⊥(Li+) = 2.8 × 10-8 cm2/s for the stretched
film ( || and ⊥ refer to directions parallel and normal to the
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stretch, respectively). After the stretched film was annealed at
77 °C then cooled toT ) 60 °C, D|| became 8× 10-8 cm2/s.

(c) Scanning Electron Microscope (SEM) micrographs of the
stretched samples show a fibrous-like structure in the stretch
direction, indicating the formation of long-range structural
anisotropy in the system. XRD data similarly indicate that
oriented, presumably helical, microphases lie preferably along
the stretch direction.

(d) Similar long-range anisotropy is seen from the angular
dependence of the7Li NMR spectrum. The unstretched sample
shows no angular dependence of the line width, whereas the
stretched sample exhibits a pronounced (3cos2θ - 1)-depend-
ence (θ is the angle between the field and the stretch direction)
that characterizes second-rank tensor interactions in systems with
axial symmetry.

(e) The chemical shift in the7Li NMR spectrum is consider-
ably larger in stretched than in unstretched samples, indicating
that short-range effects, in this case a decrease in the nearest
neighbor Li-O distance in the stretched sample, also exist.

(f) Infrared spectra change with stretching, again demonstrat-
ing short-range structural consequences of the configurational
change.

(g) The stretched films appear to be stiffer than the un-
stretched samples. This is seen in the temperature dependence
of the 7Li NMR line width. The onset of motional narrowing
with increasing temperature, which is associated with enhanced
segmental motion in the host polymer16,17 is shifted to higher
temperatures (by about 25 K) in the stretched system relative
to the unstretched one.18 Similarly it has been recently ob-
served15 that the glass transition temperature of then ) 20
system is shifted by 20 K to higher temperature upon stretching.
This increase inTg is considerably weaker in the concentrated
rubber like systems withn ) 7,9.

(h) The spin lattice relaxation time (T1) is longer in stretched
than in the unstretched samples, reflecting differences in the
local relaxation dynamics that again indicate short-range changes
in the Li coordination. (It should be noted, however, that a shift
of the minimum in theT1 vs T-1 plot to higher temperature,
expected perhaps for the stretched samples if they are indeed
more rigid, is not observed).

(i) Nyquist plots of the AC resistivity in the direction
perpendicular to the stretch direction show marked differences
between the stretched and unstretched samples. In particular
the high-frequency arcs of these plots, attributed in ref 14 to
“grain boundary resistance”, including presumably the boundary
between different molecular chains, are very different in the
two cases. Room-temperature conductivities of stretched LiI-
(PEO)20 and LiI-(PEO)7 deduced from the low-frequency
intersections of these arcs with the real resistivity axis, are about
half the corresponding values measured in the unstretched
films.15

In this paper, we present a theoretical model for the effect of
stretching on the conduction properties of polymer electrolytes
of the kind considered above. This model is based on the
assumption that ionic conduction in such systems is governed
by two mechanisms: One is associated with ion transport along
directed molecular structures such as the helical chains in PEO.
The other, strongly dependent on the host segmental motions,
is controlled by ion hopping between such structures. Because
the unstretched host is macroscopically isotropic, the average
molecular shape in it is spherical by symmetry. Upon stretching,
this average shape is distorted, becoming (again on the average)
a prolate spheroid whose aspect ratio depends on the extent of
the stretch. We show that this change in internal geometry leads

to changes in conduction properties of the magnitude observed
experimentally.

Following a presentation in section 2 of a primitive model
for the observed phenomenon, we proceed in section 3 to present
the above model in more detail and suggest a variant of effective
medium theory that seems to be best suitable for this model. In
section 4, we present numerical results for the behavior of the
DC conductivity and discuss their applicability for the observa-
tions described above. Section 5 applies the suggested model
to the analysis of the conductivity measured in AC experiments.
Although a simple extension of our model can account for these
observations, applying effective medium theory to AC conduc-
tion of microscopically inhomogeneous media raises funda-
mental questions whose resolution still remains an open
question. In section 6, we conclude and outline the future
research on this phenomenon.

2. Primitive Model
Consider the simple model for stretching displayed in Figure

1. This figure shows anxy projection of a sample in which
conduction takes place by two mechanisms: a fast transport
within the volume of each cell shown, and slow crossing across
cell boundaries represented by the dividing lines in the figure.
In what follows, we use|| and ⊥ to denote the stretch (x)
direction and the perpendicular (y,z) directions respectively, so
that the original size of a unit cell isdx × dy × dz ) d||(d⊥)2.
Upon stretching, under the restriction that the volume remains
constant, these dimensions change tod||λ, d⊥/xλ, whereλ is
the parameter characterizing the stretch. The sample cross
sectional areaAR perpendicular to theR direction scales such
as A|| ∼ λ-1, A⊥ ∼ xλ, and the sample lengthDR in the R
direction scales likedR. Under the assumption that the volumes
within the cells conduct well and that the crossing of cell
boundaries are rate determining, carrier transport may be thought
of as a hopping process controlled by the slow crossing rates.
In this picture, stretching changes the displacement of an
elementary hopping event in the corresponding direction, while
the elementary hopping time is not affected. The conductivities
therefore scale withλ like

whereas the conductancesGR ) ARσR/DR are unaffected. Note
that this simple picture also predicts (trivially) thatσy and σz

are affected in the same way by the stretching in thex direction.
More important, it predicts thatσ||σ⊥

2 is not affected by this
stretching. In section 3, we shall come back to this primitive
model, which already accounts for several main features, e.g.,
a nearly constant conductanceG|| observed in the experiment.
A more detailed description, however, requires a refined
modeling.

3. Effective Medium Model
As described in the Introduction, a variety of experimental

methods have revealed structural ordering effects on different

Figure 1. Primitive model for the effect of stretching on transport.
The system is divided into cells that are distorted by the stretching as
shown. The process of crossing the cell boundary lines is assumed to
be rate determining.

σ|| ≈ λ2; σ⊥ ≈ λ-1 (1)
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length scales in streched PEO samples. These include a preferred
orientation of micron-sized domains as well as ordering on the
molecular level, namely alignment and modification of the
helical PEO-structure. Fast ion motion along helical chains, as
suggested in refs 6-8, will then facilitate ion diffusion and
enhance long-range conduction parallel to the stretch direction,
but this process obviously cannot be rate-determining because
long-range conduction implies transfer of ions between different
chains as well as transport across inhomogeneities introduced
by the more macroscopic domain structure.

In what follows, we consider a simplified picture of this
situation which combines those two aspects, fast transport inside
aligned oriented regions of finite spatial extent and inefficient
transport between those regions. To implement this picture, we
introduce an effective two-phase model which, in the unstretched
state, consists of a dense distribution of highly conducting
spheres which are embedded in a low conductivity “host”
medium. Stretching the polymer film will be represented in this
coarse-grained picture by stretching the spheres, transforming
them into prolate spheroids whose long axis lies in the stretch
direction. For our subsequent treatment, the actual identification
of those regions with structural units in the PEO-sample is
unimportant because the effective medium theory used below
is not sensitive to the length scale associated with the inhomo-
geneous conductivity. Note that on this level of treatment it is
irrelevant whether cations or anions are the more mobile charge
carriers.

Clearly, the macroscopic properties of the system described
will depend not only on the relative volume fractions of the
differently conducting phases, but also on their topological
arrangement. To account for the latter characteristics, we note
that a similar approach has been successfully used by Cohen
and co-workers19,20 to describe conduction properties of sedi-
mentary rocks.21,22The conductivity of such rocks results from
interconnected water (i.e., conducting electrolyte solution)-filled
pores in the rock, whereas the rock itself is a nonconducting
solid. Because the pore space in such rocks remains inter-
connected down to very low values of the porosityφ, there is
no percolation threshold as a function ofφ. Our system is
geometrically similar. The molecular chain entities (repre-
sented in our models by the spheres that transform to prolate
spheroids upon stretching) correspond to the rock grains, and
the highly entangled and winding space between them stands
for the water-filled pores. The conduction properties interchange-
in our case it is the space taken by the molecular entity that is
highly conducting, whereas the intermolecular space is rela-
tively insulating. Still, the methodology developed in refs 19,
20 may be used. Effective medium theory and its differential
version introduced by Cohen and co-workers are briefly
reviewed next.

A calculation of the effective response of an inhomogeneous
medium to an external field starts by dividing this response into
the average property and the fluctuations from it. The electric
field, for example, is computed as a sum of the incident field
propagating in a homogeneous medium of dielectric constant
ε0 and the fields scattered by the local fluctuationsε(r ) - ε0.
The latter are calculated by multiple scattering theory. In a
mixture of n phasesε(r ) is characterized by the intrinsic
dielectric function of thei-th phase and by the position and
shape of the corresponding spatial regions and the internal
interfacial boundaries. In the single site approximation, one
considers a single particlei characterized by a dielectric function
εi and subjected to a local fieldEi that has been averaged over
the local configuration of all other particles, and calculates the

macroscopic polarization in terms of the particle’s polarizability
and the local field. For a two-component system characterized
by spherical geometry this yields the effective dielectric constant
in the form (see, e.g., 22, 19)

wherefi (i ) 1,2) is the volume fraction of phasei. Here, the
background dielectric responseε0 is not yet defined. For a
system in which a small concentration of spherical particles of
phase 2 are distributed in the host 1, it is reasonable to choose
ε0 ) ε1. This yields the Maxwell-Garnett23 generalization of
the Clausius-Mossotti-Lorenz-Lorenz approximation,24 and
is sometimes known as the average t-matrix approximation
(ATA). If the two phases are equivalent, a self-consistent
approximation is obtained by takingε0 ) εe, leading to an
equation forεe due to Bruggeman,25 ∑ifi(εi - εe)/(εi + 2εe)-1

) 0. Here, the two phases are treated symmetrically, however,
the topological structure of having spherical inclusions is still
maintained. When this result is obtained as an approximation
employed in multiple scattering theory, it is referred to as the
“coherent potential approximation” (CPA). The same result is
obtained from “effective medium theory” (EMA) that starts from
the requirement that the average response<E(r )E(r )> (where
E(r ) andE(r ) are the local dielectric tensor and electric field,
respectively, and where< > denotes an ensemble average over
the system disorder) is given byEe<E(r )>, i.e.

In what follows, we will limit our considerations to the effective
conductivity of the inhomogeneous medium. In this case the
symmetric EMA reads25

which can be derived from the analogue of 3

Equation 5 implies that the local fluctuation in the current
density, associated with the deviation of the local conductivity
from the effective conductivity, vanishes on the average. When
applied to ellipsoidal particles with conductivity tensorσi, eq 5
leads to the following generalization of eq 4 (see ref 26)

whereΛi is a matrix associated with the phasei that depends
in general onσe. It is defined as follows: Let the matrixB
define the ellipsoidal shape according to

Define the matrixR to affect the transformation that diagonalizes
the matrixσe

1/2Bσe
1/2 according to

εe ) ε0

(1 + 2∑
i)1

2

fi
εi - ε0

εi + 2ε0
)

(1 - ∑
i)1

2

fi
εi - ε0

εi + 2ε0
)

(2)

〈(E(r ) - Ee)E〉 ) 0 (3)

∑
i)1

2

fi
(σi - σe)

(σi + 2σe)
-1

) 0 (4)

〈(σ(r ) - σe)E〉 ) 0 (5)

∑
i)1

2

fi(σi - σe)[1 + σe
-1/2Λiσe

-1/2(σi - σe)]
-1 ) 0 (6)

∑
R,â)1

3

BRâxRxâ ) 1 (7)
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so thatlR are the corresponding eigenvalues. Finally, define the
diagonal matrixL by LRâ ) δRâLR where the “depolarization
factors” LR (R ) 1, 2, 3) are given by

Then

For spherical geometry we haveB ) R ) 1, lR ) σe
-1/2 andLR

) ΛR ) 1/3 (R ) 1, 2, 3). Equation 6 then yields eq 4.
As already mentioned, this “conventional” EMA is not

suitable for describing the model outlined above for stretched
polymer conductors for two related reasons. First, as already
noted, it treats the two phases symmetrically, whereas in our
picture, the low-conductivity medium always surrounds regions
of the highly conducting phase. Second, whenσ2 ) 0, standard
effective medium theory predicts a “percolation threshold” at a
finite volume fraction of the conducting phase, whereas again
our model implies that in this limit the DC conductivity vanishes
for all system compositions.

To overcome this problem, we employ thedifferential
effectiVe medium approximation(DEMA) of Cohen and co-
workers. In this approximation, the composite material and its
conductivity are built in infinitesimal stages. Using the index 1
for the surrounding phase of poor conductivity and the index 2
for the highly conducting phase, at the k+1-th stage a small
volume,dυ, of phase 2 is added to the effective medium that
was obtained after thek-th stage. The conductivityσe,k+1 of the
effective medium of thek + 1-th stage is then computed using
eq 6 withσ1 replaced byσe,k, and the volume fractionsf2 and
f1 replaced bydυ/(υ1+υ2,k) and 1 - dυ/(υ1 + υ2,k) = 1,
respectively.27 Expressing the resulting effective conductivity
σe,k in terms of the volume fractionf2,k of phase 2 after thek-th
step by

leads for the following differential equation forσe

This equation is integrated as an initial value problem, with the
initial condition σe(f2 ) 0) ) σ1, up to the desired value off2.

4. Results and Discussion

It is important to keep in mind the limitations of our model
resulting from its coarse grained nature as well as from the
heuristic way in which we introduced a two-phase system. This
makes it difficult for a given material to assign volume fractions
and local conductivities to those phases. For this reason, we
cannot hope to account quantitatively for any observation. Our
aim is therefore to check whether the model introduced above
can account for the qualitative observations in a consistent way.

Again || and⊥ denote the directions parallel and perpendicular
to the stretch direction, respectively. In particularσe,|| (λ), σe, ⊥
(λ) andσe ) σe, ⊥ (λ ) 0) ) σe,|| (λ ) 0), denote the effective
conductivities computed in the parallel and perpendicular
directions, and the conductivity of the unstretched sample,
respectively. As before,σ1 andσ2 denote the conductivities of
the surrounding phase and of the ellipsoidal phase, respectively,
and σe is the computed effective conductivity. The stretch
parameterλ is the ratio between the long and the short axis of
the ellipsoids,28 with the long axis lying in the| direction. We
display conductivities in relative units, takingσ2 ) 1.

Figure 2, parts a-c, shows the effective conductivity com-
puted for the isotropic case (Figure 2a) and for the stretched
sample withλ ) 4 (Figure 2b forσe,||; Figure 2c forσe,⊥), as
function of the volume fractionf2 of the enclosed phase and
for several values ofσ1. In all casesσe approachesσ1 for f2 f
0. Forf2 > 0 σe,⊥ varies withf2 similarly asσe in the unstretched
sample, whereas the behavior ofσe,|| is quite different. Note in
particular the change in the curvature, which implies that, for a
given stretchingλ, σe,|| increases very strongly withf2 for small
f2. Figure 3 shows the ratiosσe,||(λ)/σe (right panel) andσe,⊥(λ)/
σe (left panel) as functions of the stretch parameterλ for the
choiceσ1 ) 10-4 and for several values off2. In an intermediate
range off2-values, 0.7e f2 e 0.9, the initial slopes (dσ/dλ)λ)1

are of the order predicted by the primitive model of section 2,
see eq 1. Indeed, some similarity between DEMA-theory and
the model of section 2 is to be expected for smallσ1 and large
volume fractionsf2, as long as the poorly conducting regions
dominate the overall conduction. Note that this last condition
obviously requires parametersσ1 andf2 such thatσe(λ ) 1) ,
1. This is satisfied withσ1 ) 10-4, f2 ) 0.9, but is no longer
fulfilled when f2 ) 0.95, as seen from the lowest curve in the

(R - 1σe
1/2Bσe

1/2R)Râ ) δRâlR
-2 (8)

LR ) (1/2)P(0)∫0

∞ dµ
(lR

2 + µ)P(µ)

P(µ) ) [∏
R)1

3

(lR
2 + µ)]1/2 (9)

Λ ) RLR-1 (10)

f2,k )
υ2,k

υ1 + υ2,k
(11)

dσe

df2
) 1

1 - f2
(σ2 - σe)[1 + σe

-1/2Λσe
-1/2(σ2 - σe)]

-1 (12)

Figure 2. Effective conductivities of the unstretched film (a) and of
a stretched film with stretch parameterλ ) 4. (b-conductivity in the
stretch direction, c-conductivity in the normal direction) as functions
of the volume fractionf2. Full line: σ1 ) 0.1, Dashed line:σ1 ) 0.01,
Dotted line: σ1 ) 10-4.
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right panel of Figure 3, which deviates from the expected
proportionality ofσe,|| to λ2.

Clearly, the present model is more complex than the primitive
model which does not include the volume fraction of the better
conducting phase as a parameter, whereas the present model,
when comparing results for different values off2, shows a
correlation between a stronger dependence onλ in the parallel
direction and a weaker dependence onλ in the perpendicular
direction. Moreover, in the primitive model bothσe,⊥ andσe,||
scale with the inverse of the “hopping time”τ that is governed
by the low conductivityσ1. Accordingly, the primitive model
cannot make predictions how the stretching effect onσe,⊥ and
σe,|| is influenced by the conductivity ratio between the two
phases. The DEMA, by contrast, includesσ1/σ2 as a parameter.
The dependence of the effective conductivitiesσe,⊥(λ) (left
panel) andσe,||(λ) (right panel) on this parameter is shown in
Figure 4. We see that for decreasingσ1, the enhancement of
σe,|| with stretching becomes stronger than the corresponding
reduction ofσe,⊥.

We should emphasize at this point that the experimental work
to date has not provided sufficient data about the dependence
of the observed NMR and transport properties on the stretch
parameterλ, and that such data is highly needed in order to
assess the merit of the model presented here. Preliminary

experimental data29 does show a superlinear dependence ofσe,||
on the stretch parameterλ after the polymer film commences
its flow.

In agreement with experimental observations,15 our model
shows that stretching the polymer sample enhances the con-
ductivity in the stretch direction, whereas conduction in the
perpendicular directions is inhibited. The magnitude of the
effect, and the detailed way in whichσ|| andσ ⊥ depend onλ
are sensitive both to the volume fractionf2 and the conductivity
ratio σ1/σ2. As detailed in section 1, the experimental results of
refs 14 and 15 point to another way in which stretching may
affect the conduction properties of the polymer electrolyte-by
increasing the stiffness of the polymer chain thereby inhibiting
segmental motion. In our model, this will reduce the conductivity
of the “surrounding medium”. To demonstrate this possible
effect, we show in Figure 5σ|| andσ⊥ as functions ofλ, both
for the model used in Figure 3 for volume fractionf2 ) 0.86
and for the same model modified so thatσ1 is assumed to scale
like λ-1, whereasσ2 remains as before. We see that introducing
such a dependence ofσ1 on λ enhances the difference between
σ|| andσ⊥: both are reduced relative to their values in Figure
4, but σ⊥ is understandably affected more strongly thanσ||.

Finally consider the frequency dependent conductivity.
Golodnitsky and co-workers14 have presented Nyquist plots for
(σ⊥(ω))-1for stretched and unstretched PEO/LiI films (O:Li)
20:1), that show a marked dependence on stretching. Similar
studies in the parallel direction have not yet been done. To model
the dispersive properties of the effective conductivity in our
model we assume that the complex dielectric response of phases
1 and 2 may be written as

and compute the components of the effective dielectric response
tensor,εe,|| (ω) and εe,⊥ (ω) from eq 12 withσ replaced byε
everywhere. The frequency dependent conductivity is then
calculated from

Figures 6 and 7 depict the dispersion properties of the resistivity
computed by our model. We use dimensionless units defined
by ε1

∞ ) 1 andσ1 ) 1 so thatω is measured in units ofσ1/ε1
∞.

In these figures, we have usedε2
∞ ) 1 and σ2 ) 10-4 and

Figure 3. Ratio between the conductivities of the stretched film in
the stretch direction (right panel) and in the perpendicular direction
(left panel) and the conductivity of the unstretched film as functions
of the stretch parameterλ for several values of the volume fractionf2
andσ1 ) 10-4. The initial slopes atλ ) 1 are, in the order of increasing
f2, (dσe,⊥/dλ)λ)1 ) 0.59, 0.88, 0.89, 0.85, 0.68, and (dσe,||/dλ)λ)1 ) 1.14,
2.00, 2.03, 1.98, 1.49.

Figure 4. Same as Figure 3, now for different values ofσ1 (σ2 is taken
1) andf2 ) 0.86. Note that the full lines (σ1 ) 10-4) here are identical
to the dashed lines (f2 ) 0.86) in Figure 3.

Figure 5. Parallel and perpendicular conductivities of the stretched
sample as functions of the stretch parameterλ for the original model
(full lines), and for a model in whichσ1 ≈ λ-1 (dashed lines).σ1(λ )
1) is taken 10-4. The lines with positive slopes correspond toσe,|| and
the others- to σe,⊥.

εi(ω) ) εi
∞ - 4πi

ω
σi (13)

σe,R(ω) ) - ω
4πi

(εe,R(ω) - εe,R(∞)); R ) ||, ⊥ (14)
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volume fractionf2 ) 0.86. Figure 6 shows the real and imaginary
parts of the complex impedance,ze,R(ω) ) σe,R

-1(ω); R ) ||, ⊥
plotted vs frequency for the unstretched polymer and for the
stretched polymer withλ ) 2. Figure 7 shows the Nyquist plots,
Im(z) against Re(z) for the same systems. The slightly depressed
semicircles associated with the unstretched polymer and with
the stretched polymer in the perpendicular direction show the
same trends observed in the experimental plots.14 In particular,
the low frequency (right) cutoff of these semicircles show again
the effect of stretching on the DC resistivity, while the high
frequency (left) cutoff is not sensitive to the stretching. We
should keep in mind that the AC response of such systems may
be influenced by factors such as boundary effects and inhomo-
geneous distribution of crystalline and amorphous phases that
are not contained in our model, so final judgment concerning
the interpretation of the available data should remain open until
more experimental results are available.

5. Final Remarks

In this paper, we have presented a simple model that
qualitatively accounts for recent observations of the conduction
properties of stretched polymer electrolyte films. The essential
characteristics of our model are (a) the existence of two transport
processes in ionically conducting polymers of the PEO type: a
relatively fast process whose spatial extent is finite, and a slow
rate-determining process that connects between the regions
covered by the fast process, and (b) the distortion of the former
regions when the polymer sample is macroscopically stretched.
Other details of our model, e.g., describing the stretching-
induced anisotropy as a transition from spherical to spheroidal
shapes of the highly conduction regions, are helpful for the
mathematical description but should not be considered critical
components of the theory. In particular, we note that an
alternative model that takes the highly conducting regions to
be spheroids (or cylinders) whoseorientational distribution
changes from isotropic to nonisotropic upon stretching is
probably more appropriate for cases, where e.g., oriented
microphases already exist without stretch and provide the main
cause of a heterogeneous conductivity. It would be interesting
to consider this alternative (and technically more involved)
model in future work.

Other assumptions made in our model remain to be tested
by future experiments. Controlled measurements of the film
conduction properties as functions of the stretch parameterλ in
the parallel and perpendicular directions will be critical in this
respect. In this context, it is important to mention again the
difference that may exist between the macroscopic and micro-
scopic distortions. Macroscopic distortion always implies a
change of shape. We have assume that such shape change takes
place also on the microscopic molecular scale, but one can
envision a later stage of the stretch process in which the
macroscopic shape changes due to redistribution of already
elongated structural units in space, without further changes in
their shape. Again, such possibilities should be considered in
future work if warranted by further experimental data.
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