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The absorption of light by some but not all species of a chemical reaction, followed by a radiationless
transition and ultimate conversion of light into heat on a time scale short compared to the chemical
reaction time scale, is shown to give rise to the possibilities of multiple steady states, damped -
oscillations in state variables, hysteresis, and instabilities. All these phenomena are predicted to occur
even for the simplest reaction A=B, where only A absorbs light, and where the rate equation, with
temperature dependent rate coefficients, is coupled nonlinearly to the equation for the rate of change of
temperature. The theory is developed for both stationary and transient experiments. For the cyclic
reaction mechanism A=B=C=A, where again only A absorbs light, damped oscillations occur under
isothermal conditions; the illumination, as described, effectively breaks microscopic reversibility. Both the
kinetic and the thermodynamic analysis show the essential role of light in effectively breaking microscopic
reversibility analogous to the net flux of reactants and of products across the boundary of an open system.
In nonequilibrium relaxation experiments performed on illuminated systems with damped oscillations, both
a frequency and a decay rate may be measured. The application of periodic perturbations leads to resonance

effects.

I. INTRODUCTION

Chemical instabilities have been shown to occur
in reaction mechanisms which are maintained far
from chemical equilibrium and which involve some
type of feedback. '™ In most of the mechanisms
proposed to account for observed instabilities,
multiple stationary states and oscillations in chem-
ical and biochemical systems, nonequilibrium con-
ditions are maintained by continuous addition of
reactants and removal of products, Possible feed-
back mechanisms include homogeneous autocataly-
sis, 2 nonlinearities in kinetic coefficients, !+
variable membrane permeabilities, 5 configuration
changes and cooperative effects.® An example of
the second kind is the nonlinearities caused by the
interaction of enthalpy changes with temperature
dependent rate coefficients in adiabatic systems,”?
Whenever thermal conductivity is small relative to
the rate of heat production during the reaction,
nonlinear effects of this kind may drive the system
unstable provided that it is maintained far enough
from equilibrium. This problem is of interest in
chemical engineering and has been studied in rela-
tion to the question of thermal stability of chemical
reactors. "

In this paper we investigate the role of light in
inducing oscillations, multiple stationary states,
and instabilities in chemical systems. We consider
the effects of light absorbed by a system such that
the system is maintained in a nonequilibrium steady
or transient state. Light has been previously used
in a similar manner to produce and maintain a
nonequilibrium concentration of charge carriers
in semiconductors,® Instabilities in current flow
are then caused in this case by a nonlinear depen-
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dence of the rate of capture of these carriers on
the external electric field.®

In Sec, II we analyze the simple example of an
isomerization reaction in which only one of the
isomers absorbs light of a given frequency followed
by rapid irreversible conversion of electronic en-
ergy into heat. The absorption of light causes an
asymmetric displacement of the isomerization
from equilibrium since the light absorption is pro-
portional to the density of the absorbing molecule
which in turn is coupled nonlinearly to the reaction
through the temperature dependence of the rate
coefficients. The thermodynamic analysis of such
systems, as in Sec. III, shows the necessity for
the asymmetric displacement from equilibrium
for observing the cited effects, which is equivalent
to incorporating a process with the function of
breaking microscopic reversibility. In Sec. IV
we discuss the effect of light absorbed by one spe-
cies only in a cyclic isothermal isomerization of
three species. We conclude in Sec, V with a dis-
cussion of some possible applications,

II. LIGHT INDUCED INSTABILITIES IN A
THERMOCHEMICAL SYSTEM

A. A Model Experiment

Consider a system in which a reaction
L3t
A=B

kg
is taking place which is illuminated by a constant
uniform monochromatic light of a wavelength which
is absorbed by A alone (Fig. 1). The entire sys-
tem heats up due to the conversion of light energy
into heat by radiationless relaxation processes.
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FIG., 1. A schematic description of the experimental

system.,

The system loses heat due to thermal contact with
a surrounding bath at constant temperature, After
a time interval, the system is in a stationary state.
We are now interested in the stability of this state:
When will fluctuations from this reference state in-
crease in time; when will they decay monotonically
or with oscillations? The experimental answer to
these questions is generally obtained by studying
the system’s response to an external perturbation.
We may apply a sudden perturbation on a steady-
state system or on a temporally evolving system
during its heating up period and follow the response
in the temperature or the concentrations., Alterna-
tively continuous methods such as light scattering
or oscillatory variation of the rate coefficients
may be employed.

B. Theory

The system described is analyzed with the follow-
ing assumptions:

(i) The light absorption and the subsequent radia-
tionless relaxation processes occur on a time scale
much shorter than that for the A= B reaction,

(ii) The radiationless relaxation processes are
fast relative to the optical excitation and deexcita-
tion (A + kv A¥) rates, and to the rate of the A*

- B reaction, so that the modification of the rate
coefficients due to this last reaction may be disre-
garded. The rate coefficients %,, k,, thus depend
on the illumination only through the temperature
variation.

(iii) The temperature dependence of the rate
coefficients is taken to be of the simple Arrhenius
type

R(T)=w,exp(-R,/T); i=1,2, (m. 1)

where T is the absolute temperature and « is as-
sumed for simplicity to be constant. The activation
energy for the reaction is expressed here in degrees
Kelvin; the enthalpy change expressedin the same
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units is

AH=R,-R,. (Ir. 2)

(iv) The system is homogeneous in both concen-
trations and temperature, This may be experimen-
tally achieved by an efficient stirring, or, when
fast reactions are studied, by homogeneously dis-
tributing the light beam over the system.!® If a
transient experiment is performed the time scale
may be chosen such that the measurement is done
when inhomogeneities due to the relatively slow
heat conduction have not been yet developed.

(v) The cooling rate of the system is linear in
the temperature difference between the system and
its surrounding bath.

For assumptions (1) and (2) to hold, the molecule
A should be large enough with intra- and intermo-
lecular interactions strong enough to provide very
fast electronic and vibrational radiationless relaxa-
tion processes. For large molecules, and also for
solvated metal ions which behave similarly, the
time scale for the A*— (A + heat) relaxation may be
as short as 107 sec in liquids, or 10™® sec in
gases. Assumptions (3)-(5) are made for mathe-
matical simplicity only and more elaborate models
can be studied by methods identical to that used
here.

With the aid of these assumptions the kinetic
equations which govern the time evolution and the
stability properties of the system may be written
in the form

dA/dt:" (k1+k2)A+k2a ,
dT/dt= A= B(T- T, - dA/dL.

(1. 3a)
(II. 3b)

The symbols denote: A+ B=a=constant; ¢ is a
constant proportional to the light intensity and the
absorption coefficient; 8 is a constant which corre-
sponds to the cooling rate of the system; and 7T, is
the constant external temperature, Finally, 1 is
the temperature variation due to the enthalpy
change which in terms of the activation energies

R, and R, is

A:(Rz_Rx)/e; (1. 4)

where € is a constant proportional to the heat ca-
pacity of the system. (For a system having heat
capacity of ~1 kcal/deg, €~500 mole.) Our first
step in studying the mathematical properties of the
system (II. 3) will be concerned as usual with its
steady-state solutions.

C. Steady State Analysis

When all the time derivatives vanish there result
the equations for the steady state

A=kya/ (kg + 1), (IL 5a)
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FIG, 2. A schematic representation of the function
F(X) [Eq. (M.9)]. X,, Ky, k3, and Ay are defined in the
text.

T=T,+aA/B. (IL. 5b)

The steady state temperature is thus the solution
T, of the equation

To=T,+ (aa/B)[(k,/ k) exp(AR /Tg)+ 117t (IL. 6)

with AR=R, - R;.
variables

X=Tp/aa; X,=T,(f/aa); &r=AR(B/aa) (I1.17)

Defining the dimensionless

we have for the steady state equation (II. 6)

Xo=F(X,) (1L. 8)
with
F(X)=[(ky/ ;) exp(ar/X) + 1] +X,. (1L 9)

A schematic representation of the function F(X) is
given in Fig. 2. F(X) is monotonically increasing
from F(X)=X, at X=0to F(X)~X,+[(k/x,)+ 1]
at X - for Ar >0, and is monotonically decreas-
ing from F(X)=X,+1 at X=0to F(X)=X,+ [(x,/5)
+1]" at X~ = for Ar <0, By inspection we see
that for A» <0 one and only one crossing point with
the straight line y =X exists while for A» >0 one
or three solutions are possible for Eq. (II.8). The
last possibility results from the fact that F(X) has
an inflection point X,,, at which the function

o Ky 1) (A7/X %) exp(ar/X)
P10 = [/ np) expar/X)+ 112

assumes its extremal value. (Note that F'(0)

= F'(«)=0 which implies at least one such extre-
mum, ) From F''(X,)=0 we get the following equa-
tion for X,

(I1.10)

Ky (Av/X,)+2

% (Br/X, )2 (IL.11)

exp(Ar/X,,)=
which has only a single solution. The occurrence
of only one inflection point makes it impossible for
more than three steady states to exist for given
parameters T, and Av,

A straightforward analysis of Eqs. (IL9) and
(I1. 10) (Appendix A) leads to the following neces-
sary conditions for multiple (three) steady states:

R, >R, (exothermic A - B reaction), (11. 12a)
F'(X,)>1, (IL. 12b)
(Kx/’fa) exp(AR/T) <1 (IL12¢)

(wa/B)ar/ T2 oy exp(aR /T)+ 1P

for the two values of T defined by T'=T, and
T=T,+(aa/B)k, /K, +1)",

[(k, /k;)exp(AR/T,)+1F
(k\/Kk,)exp(AR/T,)

>(aa/B)AR/To=1.
(I1. 12d)

The last condition, (II. 12d), results from (II. 12b)
and (II, 12¢). The opposite inequalities are suffi-
cient conditions for uniqueness of the steady state.

D. Occurrence of Hysteresis

The occurrence of multiple steady states suggests
the possibility of noncontinuous transitions between
these states and hysteresis (Fig. 3). For large
enough Ar the system is in a unique steady state A.
On decreasing Ar continuously we change the steady
state continuously through the points B and C until
the tangential point D is reached. A slight addi-
tional decrease of Ar results in a discontinuous
transition to point F and a further decrease of Ay
induces a continuous change to point E, etc. On
reversing the process by increasing Ar, we find
the system to pass through the points E, F, and G
continuously. At the tangential point H a discon-
tinuous jump to point B occurs. The original path
is clearly not reproduced, and hysteresis occurs.
Points of the type I, where F’(X)>1, are never
reached, which suggests that such steady states

are unstable. We ghall return to this point in Sec.
II. E.

F(X)

N

DECREASING_ Ar

\ L

L onm

0 X

FIG, 3, Multiple steady states and hysteresis resulting
for the solution to Eq. (II.8) for Ay >0 (exothermic reac-
tion). The steady state solutions are obtained from the
crossing points of the curves y=X and y=F(X).
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FIG. 4. A schematic description of the hysteresis loop
which corresponds to that in Fig. 3. The points A~I cor-
respond to the steady state solutions displayed in Fig. 3.
When Ay decreases the system evolves along the
ABCDFE path while on a subsequent increase of A the
path EFGHBA is obtained. The unstable state I is never
realized in practice.

A slightly different representation of the hyster-
esis phenomenon is provided by Fig. 4 where the
steady state solution X; is plotted schematically as
a function of 1/Ar. The path ABCDFE is realized
on increasing 1/A» while the path EFGHBA occurs
on reversing the process. Steady states for which
F’(X,)>1 are located on the line HD which are
never realized in practice.

E. Stability of the Steady States

The occurrence of multiple steady states suggests
that some of them may be unstable. For our pres-
ent system we now show that a solution X, with
F’(X,)>1 is unstable while solutions which corre-
spond to the opposite inequality are stable.

The stability problem of the steady states is
most easily approached by utilizing the Liapounoff
theorem'! which states that the conditions for sta-
bility of a given steady solution of a nonlinear dif-
ferential equation are identical to those derived
from that equation linearized around the same
steady solution. Linearizing the system (II. 3)
around a given state solution T,, A, we obtain

d (6A SA
where A=A - A, 6T=T- T, and, where
M :< — (kY + k3) (#34,/ THAR >
; a + E+BDAR/e — (B+ (k?Ao/ﬁ))(AR b ’(II 14)

in which k2, EJ are the steady-states values of the
rate coefficients and € is defined in (II. 4). The
characteristic equation is

224+bz+c=0,

b=B+k+ky+ (RIA/ € THAR?, (IL. 15)

ROSS

c=Bk+ k)~ (ak3A, /THAR ;

one eigenvalue is always negative (as 5 >0). A
necessary and sufficient condition for the other to
be positive (and for instability to set in) is ¢ <0 or

(@Ay/TEAR > B[1+ (K, /1;) exp(= AR/TO)]
which is equivalent to

aa AR (k)/k;)exp(AR/Ty)
B T3 [(ky/Ky)exp(AR/Ty) +1]

5 >1, (m.1s8)
When expressed in the dimensionless variables
(1. 16) takes the form

F'(Xy)>1, (I1. 17)

which provides the proof to the statement that
steady states with F'(X,)>1 are unstable.

Another physical interpretation of this result is
obtained by considering variations 64, 67 in which
the relation (II. 52) is maintained, that is the chem-
ical reaction is always at equilibrium at the instan-
taneous temperature, For such variations Eq.

(I1. 3b) yields

ar_ o d [ 1
- od 1+ (ky/k;) exp(AR/T)

at aT LO&T— peT
(I1. 18)
which in the dimensionless representation (II.7)

takes the form

dsx/dt= BlF'(X,)-1]6X . (I1. 19)

Again F’(X;)>1 means instability (6X grows in
time). Physically the first term in the rhs of Eq.
(11. 18) represents the change in heating rate while
the second term represents the change in the heat
loss due to the variation 67. For F'(X;)>1a
small positive change 87 >0 in the steady-state
temperature increases the heating rate more than
the cooling rate and thus induces a further increase
in the temperature.

F. The Possibility of Oscillations

The linearized Eqs. (II,13) and (IL. 14) of the
nonlinear problem provide the condition for oscil-
latory behavior of fluctuations around the given
steady state, b%<dc, or

[B+ 7Y+ B3+ (RA (/€T HAR?|? < 4B(%1 + K3):
—(4ak)A,/T2)AR . (1L 20)

Some simplifications in limiting cases are possi-
ble. If for example the term k%A,/e T3(A R?) may
be neglected on the lhs (which is reasonable for
many systems) relation (II. 20) takes the form

(%) + kg~ B < - (4034, /TE)AR (IL. 21)
or more explicitly
0
(dakid,) (11. 22)

(] + k3 - BfF <~ ——Qj?[Tﬁ(a/B)Ao AR.
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1t follows from both (II. 20) and (II. 22) that @ #0 and
AR <0 (endothermic reaction A —B) are necessary
conditions for oscillations. This makes it impos-
sible for instability to concur with oscillatory be-
havior, that is, there cannot be any oscillatory de-
parture from the unstable steady state and any os-
cillatory behavior is necessarily accompanied by
decay. Hence there cannot be any limit cycle in
this system. The rhs of inequalities (II. 20) and
(I1. 22) pass through a maximum as a function of @
and go to zero for both ¢ —~0 and ¢~ ». Oscilla-
tions are thus possible only for a limited region of
a. H we assume that at the temperature of inter-
est A, and k) are weakly dependent on temperature
then this maximum is obtained at the approximate
value of & given by aAy=B7,. From this follows
the condition for observing oscillations at some
region of o

[B+R+R3+ (B3A,/AT2)NARF)E - 48R0+ £D)
<~ (B38/T,)AR (11.23a)

or when (II, 22) is valid
(k) + k3 BF <— (R36/T,)AR .

Physically, when a is too small the system will

be too close to equilibrium to exhibit any new fea-
tures. If a is too large, then the steady state tem-
perature is high and the rate coefficients too in-
sensitive to temperature to maintain the feedback
mechanism. The necessity to perform the experi-
ment at low enough temperature will lead us to
consider experiments done on transient systems.

(I1. 23b)

G. Transient Experiments

The restrictions imposed on the steady-state
temperature, namely its bounding below by the
nonequilibrium requirement (7> 7,) and above by
the requirement that the rate coefficients remain
strongly temperature dependent (T,SAR), re-
stricts the scope of practical experimental mea-
surements. In order for the reaction to be far
enough from equilibrium the rate of light absorp-
tion (which corresponds to a) should be at least of
the same order of magnitude as the reaction rates
[as can be seen from (1I.22)], while in order to ob-
tain a low enough T, the cooling process (which
corresponds to B) should occur on the same time
scale. It is this last condition which is difficult
to achieve for moderately fast chemical reactions,
as heat conduction in gases and liquids is of lim-
ited magnitude.

The scope of the experimental possibilities may
be enlarged considerably by looking at systems in
nonsteady states. The idea is to take the system
out of equilibrium with high intensity light such
that the heating rate is of the same order of mag-
nitude as the reaction rate, and to probe its be-

havior during the early stages of its time evolu-
tion—far from the high temperature steady state.
We take now the uniformly evolving system as our
reference state and wish to investigate fluctuations
from this time dependent state. As before we lin-
earize the equations but now around the reference
state Ay(t) and Ty(¢); the nonautonomous linear dif-
ferential equations for 6A(t)= A(t)~ A,(¢) and 5T()
= T(t) - T,(t) take the form

d (54 - K@) - L{®) 54

Zz?(ar)=(a+(m/e)x(t) - B+(AR/e)L(t))(5T) ’

where (I1. 24)
K()=E)Nt)+ E3(E) (I1. 25a)

and
L(t)=[1/To@ ] [RF()A,(¢) - RES(#)B,(2)].  (IL 25b)

A considerable simplification may be achieved if
we can assume that at the time of interest the
chemical equilibrium concentration relations are
not highly perturbed so that approximately %, (¢)A,(2)
~ky(t)By(t). With this assumption L(¢) takes the
simpler form

L(t)=- [R}()A(t)/ Tot P 1 AR (1. 26)

and we recover Eqs, (II,13) and (II. 14), only this
time with a time dependent matrix M. If we further
assume that on the time scale of interest M may be
regarded as constant, then the approximate behav~
ior of the system in time is obtained as a linear
combination of two exponential terms with eigen-
roots given by the solution of Eq. (II.15), just as
before. As we are now interested particularly in
fast reactions we may approximate Eq. (II.15) by

b=klik)=K,
(1. 27)
c=- (C!kng/T%)AR

which leads to the condition for oscillatory (stable)
modes

20A,/Ty>k(Ty/AR), (11. 28)

where for simplicity of presentation we took &} = kJ
=(1/2)K=Fk. The validity of the approximation
made here, namely the assumption of separation
of time scales, may be checked by comparing the
time scale for changing the entries of the matrix
M(t), which is approximately aAy/T,, with the
time scale of an experiment, which is practically
the oscillation frequency of the system (around the
temporally evolving state).

Taking this frequency to be of the order of
(1/2)c'”? we have

2a4,/To<kR/T,

or combining with relation (11, 28)
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AR adot)/Tolt) | Tolt)

Tolt) kY AR

(II. 29)

The inequalities (II. 29) provide the validity criterion

for observing oscillatory fluctuations in a system
evolving in time with frequency much larger than
the system’s evolution rate, from an initial equi-
librium steady state. We note that AR ~10°~10*
degrees while T,~ 102-10° degrees so that relation
(1. 29) may be easily realized in practice. When
this is not the case, numerical integration of Eq.
(I1. 24) is necessary.

H. Systems Involving Intermediates

As a slightly more complicated example which
contains an intermediate in the reaction mechanism
we treat the system

Ry Ry
A;; ;‘TB (11.30)
|
- (R} +RD) -k
M= - k3 - (k3 +k§)

o +Xl(k(1)+kg)'— Az kg

From these equations it may be shown that again
instability, multiple steady states, and oscillations
are possible. A sufficient condition for instability
for this problem is

det(M)>0 (11. 35)
which leads to
a(kSAge/ T2 (RS + BN, + B, ]
> B(kikY + KORY + 3RD) . (1. 36)

Other conditions may be obtained from the general
solution of the secular determinant, (II.35). When
kg and &, go to infinity and R, and R; go to zero
such that k;/k, is kept constant we regain the con-
ditions for the simple A==B case with %, and %, re-
placed now by kiky /(ky+ k) and kyk, /(ky + k), Te-
spectively (Appendix B). This describes the loss
of memory in the C stage: a molecule which leaves
the A state does not necessarily go to B, but only
with a probability #; /k,+%;. The procedure which
takes k, and k; to infinity does not change the equi-
librium constant of the A== C==B system, which
remains (¢,k;)/(k,k,). We further note that devia-
tions from the simple A==B behavior (of the slowly
decaying mode) may be found in the terms of order
1/K. In principle this deviation may be detected in
the experiment considered here and thus may be
used for determining the reaction mechanism,

ROSS

We use all the previous assumptions and define

M=[Ry=R1)e€, dp=(Ry~R;3)/€ (IL 31)
so that the kinetic equations take the form

dA/di=—k, A+ k,C,

dB/dt=k,C- %, B, (1. 32)

dT/dt= aA~ B(T - T,) - \(dA/dt) + \,(dB/d¢).

The linearized equations are

5A 5A
d _ (1. 33)
pr 6B )=M| 6B
8T 5T
with
(k?Ao/ TZO)EM
- (kyBy/T2)eN, (1L 34)

MRS = AR+ D) —[B+(e/TE)ES AN + kS BpE ]

IIIl. THERMODYNAMIC ANALYSIS OF ILLUMINATED
REACTIONS

In this section we present a thermodynamic anal-
ysis of illuminated reactions. In principle this
requires account of photons and consideration of
excited species as components, For our purpose,
however, it is sufficient to regard the effect of
light equivalent to adding a highly energetic chemi-
cal species to the system uniformly and at a con-
stant rate. In addition our analysis is simplified
by taking a single species A* to represent the ex-
cited A molecule. This approximation is not re-
strictive when the relaxation process A*— A occurs
on a time scale much shorter than the chemical
reaction time scale A= B. Our system may be
now described by the following reactions (P stands
for light):

N Ry
A+ P=A*=A, (IL. 13)
kag bay
Ry
A=B, (10. 1b)
k2

where the cycle (IIL. 1a) is assumed to be far from
equilibrium
P=constant; kAP >k A%, B, A*>k,A. (IIL2)

Also k, and k_y are taken to be temperature inde-
pendent.
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Our analysis follows the theory of Glansdorff and
Prigogine'? which is based on Liapounoff’s second
method for stability analysis.!® This approach con-
siders the second variation 6%s of the local entropy
around a steady state as a Liapounoff function. By
hypothesis of local equilibrium we have the condi-
tion 6%s <0 and hence the inequality

8(6%)/0t>0 (1. 3)

is a sufficient condition for asymptotic stability

of the steady state considered. The opposite in-~
equality thus provides indication that instability or
at least oscillatory decay to a stable steady state
might occur.

For a system with fixed boundary conditions (no
diffusion currents and no temperature fluctuation
on the boundaries), which is the case for our sys-
tems, it has been shown that the local entropy pro-
duction obeys the equation

3 86%(ps)/ ot =21 8J,6X, , (I 4)

7
where ps is the local entropy per unit volume, p
the constant density, and where J, and X, are re-
spectively the flow and its corresponding force for
the yth dissipative process which takes place inside
the system, The only flows which have to be con-
sidered are chemical (thermal flows are ruled out
by the assumption of homogeneity), for which we
have

X,=-T"e,, (tm. 5)

where @, is the chemical affinity for the yth chemi-
cal reaction, defined for ideal mixtures by

a'y(T) =R Tln[Kr(T)/Qr] .

In Eq. (I 6) K, is the equilibrium constant of the
reactions y (i.e., the appropriate product of equi-
librium concentrations) while @, denotes a similar
product of the actual chemical concentrations. The
stability condition (III. 3) now leads to

22 8(in(k,/Q,)ov, >0,

(1. 6)

(m. 7)

where v, stands for the rate of the yth reaction.

For comparison we seek first the form which
the lhs of relation (III. 7) has for the isolated ther~
mochemical system A=B. Here

vy=k A=, B,

K,/Q=k,A/k.B .
and with a straightforward calculation we have
(using 8A=- 8B and the steady-state relation 2,4
= kz B)
3 [ln(K1 /Ql)]G(klA - sz)
=[((%y + Bp)/ iy A) BA + (B, ~ Ry) /T3 (k1A 26 TE = 0

(1. 9)

(1. 8)

so that this equilibrium system is always stable.

Consider now the contriPutions to (IIL. 7) arising
from the cycle A+ P LUNEYY Invoking the assump-
tion (I1I. 2) we have

3=k, AP Ky/Qy=ks AP/k LA,
vy =k A*; K,/Qu=ky A¥/ kA

which in turn leads to

(I11. 10)

i) 8[In(K,/Q,)J6v,=k;POA(DA/A,— BA*/A¥)

=3

+ [B8A* + (REAL/TR)ST]
X [6A4%/Ag— 8A/Ag+((Ry —R_y))/T2)0T]
=v(6A*/A% - 6A/A,F + (Rw/TE(BA*/AY — 6A/Ay)
+ [ky(Ry - R)/ T16A*6T
+ [VRy(Ry - R.)/TEN(6T?. (1L 11)

To obtain this result we have utilized the steady
state relation k,PA,=k, Ay =v. We now introduce
the assumption that the photochemical rates v, v,
(I11. 10) are much faster than the thermochemical
reaction rates k,A, k,B. For the quantities (64),
{6A*), averaged over a time interval, long on the
photochemical time scale yet short on the thermo-
chemical time scale, we have the simple relation

ky P{6A) = B {8A%) or (6A™)/AF=(6A)/A,. (I 12)

As we are interested in processes which occur on
the thermochemical time scale we may replace,
therefore, 8A, 6A4* in Eq. (II. 11) by these aver-
ages, and utilizing Eq. (II1,12), we obtain

i) 8[In(K,/Q,)] 6v,= — (R_ ks P/T%)(6A ST, (III, 13)
=3 .

where we have also assumed R,~ 0, that is no acti-
vation energy is required for the radiationless re-
laxation processes.

It is seen that the contribution (IIl. 13) may add a
negative term to the stability condition (II1.7) which
becomes increasingly important as R, (the optical
excitation energy) and P (the light intensity) become
larger. As was demonstrated in Sec. II, this
negative contribution may become large enough to
interfere with the system’s stability. We further
note that if B absorbs light in the same spectral
region as A (same R._,) with the same efficiency
{(same %;) then we have an equivalent contribution
to (IIL. 7) from processes involving B so that the
overall contribution of this type becomes

(R_4ks P/T2)(6A) +{6B)) 6T=0
since we have (6A)=— (6B).

(Im. 14)

The same conclusion can of course be obtained
from the kinetic Eqs. (III.3). To obtain instability
effects the system must be taken out of equilibrium
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asymmetrically which is achieved in the present
case by adding energy to the system in a way de-
pendent on the density of A only, so that a dis-
placement from chemical equilibrium changes the
rate of energy input. This is not the case for the
same reaction system heated by, let us say, an
electrical resistance heater. The heat input is not
coupled to a displacement from the initial chemical
equilibrium and no oscillations or instability can
occur, A contribution to (I, 9) from heat conduc-
tion is always positive. 1

IV. RELAXATION OSCILLATIONS IN A CYCLIC
CHEMICAL REACTION SCHEME

In Sec. II we investigated effects of illuminating
a chemical system which are due to nonlinear cou-
pling of the rate of a stable reaction mechanism
with the rate of change of temperature. We turn
now to a different type of interaction of light and
chemical reactions, one in which the only function
of the light is to displace asymmetrically a reaction
mechanisms, by effectively breaking microscopic
reversibility. The reaction mechanism itself is
sufficiently complex to show oscillatory relaxation
upon such displacement,

The possibility of oscillatory phenomena in a
cyclic reaction scheme was long ago demonstrated
by Hirniak.!® In what follows we present a modi-
fied review of his arguments. Consider the cyclic
reaction mechanism given by

B
%, 'S
/ez ky . (Iv.1)
k5
C
k

A

6

The time evolution of this system under isothermal
conditions is governed by the following kinetic
equation

1(;1)_(- (Ry+Es+kg) ky— kg A\ (ksa
di\B)~ ky-ky - (k2+k3+k4))<B)+(k4a) ’

(Iv. 2)
where A, B, C denote species and concentrations
while

a=A+B+C=const. (1v.3)

The solution of (IV. 2) is determined by the eigen-
values of the evolution matrix

ME<“(k1+k5+k6) ky— kg )

Bimky, = (bptkythy) (v.4)

which are the solutions to the characteristic equa-
tion

224bz+¢=0,

ROSS

8
b= Z ki ’
= (Iv. 5)

c= (kl +k5 + ks)(kz+k3 +k4)— (kz - ks)(kl - k4) .

The real part of z, Relz), is always negative so
that stability of the system is insured for any choice
of the rate coefficients. However, z may be com-
plex, Im(z)+#0, provided that

(By+ks+hg=ky—ky=k, ) = 4lks— k)b, = £y) <0
(Iv.6)
which implies the necessary condition

(ks — ky)(ky — £y)> 0 (v.m7)

for the choice k5> k,, k&, >k, (i.e., a clockwise di-
rection for the reaction; the opposite choice k; > k;;
k, >k, leads to an equivalent steady state where the
reaction goes in a counterclockwise direction).
An additional but not independent condition is &g
>ks. We now assume that in fact conditions may
be established for which
Ry >k,
ks >k, (Iv.8)
Ry >> kg .

With neglect of the small rate constants, (IV.6)
may be simplified to

(by+ks—ky ) — 4k ks <0, (1v.9)
The frequency of the damped oscillation is

w= 3[ak,ks— (By+ ks — kg )2]M? (Iv.10)
while the damping rate is

y=3(ky+ s+ Rg). (Iv.11)

Comparing (IV. 10) and (IV. 11) we see that y>w
and in most situations the oscillatory behavior will
not be amenable to experimental observation due
to the large damping rate. However, under the
favorable conditions

By~k~ Lk av.12)
5 3

we have y~ 2w and hence the possibility of observ-
ing the effect.

We have thus shown that in principle the system
(IV. 1) may under certain conditions show damped
oscillations, However, the necessary conditions
never exist in equilibrium systems or more gen-
erally, in systems which are close to chemical
equilibrium. In fact, the necessary conditions

ky>ky; ks>ky, kg>kg (1v.13)

are consistent with the principle of detailed bal-
ance, '® which implies that at equilibrium %,4 =%,B;
kyB=k,C; k;C=Fk,A, and which leads to the relation

Ryksks = kok kg , (IV. 14)
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which is valid at all times. This is clearly con-
tradictory to the conditions (IV.13). However, in
an open system in a nonequilibrium steady state
(IV.13) may be achieved and one way of doing so is
by optical excitation. Consider the system (IV.1) -
in the presence of light where A may go to B by
electronic optical excitation, and B to C by a radia-
tionless relaxation. In that steady state the overall
rate constants do not fulfill (IV.14), and (IV. 13)
may be realized. It might be possible to achieve
condition (IV. 12) by monitoring the external vari-
ables such as light intensity, on which &, depends,
and pressure of an added inert gas, on which &g
may depend.

Photochemical systems seem to be practical for
observing the predicted oscillations. To achieve
the same by chemical means we consider a cycle
of the form

A+D=B=C+E,
C=A,

(Iv.15)

where constant flows of D into the system and of E
out of the system are applied. This is, of course,
equivalent to the photochemical case where light
and heat fluxes replace the material flows of D and
E, respectively.

Many cyclic reactions of the type {IV.15) are
known'® which may under favorable experimental
conditions exhibit the predicted oscillatory behav-
ior. Moreover, the effects discussed here are not
confined to simple triangular mechanism. It may

be shown that decaying oscillations may be exhibited

by any cyclic mechanism (for a treatment of an
equivalent model see Ref. 17) provided that the
reaction is maintained far from equilibrium. Mate~
rial flow or alternatively energy flow are again
necessary in order to insure unidirectional reac-
tion evolution (i.e., breaking of detailed balance),
Any biochemical cycle thus has the potential ability
to oscillate. It should be remembered, however,
that in order to obtain sustained oscillations or
other types of instabilities, more efficient feedback
mechanisms are required,

V. DISCUSSION

We have shown the possibility of damped oscilla-
tions, multiple steady states, hysteresis, and in-
stabilities in simple illuminated chemical reac-
tions. In all previous chemical systems the occur-
rence of such properties required an open system
in which mass crossed the boundary of the system,
but in our new examples no such mass flows are
necessary.

If damped oscillations occur in an illuminated
reaction, as discussed in Sec. II., then relaxation
experiments yield both a frequency and a decay

rate. In the usual type of relaxation experiment
only a decay rate is measured. By applying peri-
odic perturbations we may look for resonance ef-
fects in the response, the width of this resonance
and its position on the frequency axis are related
to the decay rate and to the eigenfrequency of the
system. Additional information may be obtained
from the relationship between the phases of the
perturbation and the response. (For more details
see Appendix C). In addition, as was recently pro-
posed, *® such systems may be probed by light scat-
tering, where the oscillating mode may induce
splitting of the scattered Rayleigh band.

Finally it should be noted that other types of sys-
tems may be found which exhibit instability and
oscillations when maintained asymetrically far
from equilibrium, For example, asymetrical
heating similar to that discussed in the present
work may be achieved also by electric current
when only one reactant, A say, is ionic and con-
ducts electricity. Such systems are easily ana-
lyzed along the lines provided in the present work,
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APPENDIX A: NECESSARY CONDITIONS FOR MULTIPLE
STEADY STATES

Here we provide the proof for Egs. (II.12). By
inspection of Fig. 2 the two first conditions (II. 12
a, b) become obvious. Condition (II. 12¢) is ob~
tained from the observation (Fig. 2) that in order
for multiple steady states to occur the slope of the
function F(X) must be smaller than 1 for both X=X,
and X=X,+1/[(k;+ ;) +1]. Transforming back to
the original variables we obtain (II. 12c), which is
identical to the left inequality of (II.12d). The
right inequality of (II.12d) is just a necessary con-
dition for condition (II. 12b) to be held, as may be
seen from the expression for F'(X), Eq. (II. 10),

APPENDIX B: A DISCUSSION OF THE A= C= B SYSTEM IN
THE LIMIT OF FAST A < C—~> B REACTIONS

Starting from Egs. (II.30)-(I1. 34) we want to ob-
tain the roots of the matrix M in the limit &, AJ
~ o R, R,—0 provided that &3 /kJ=const. Physi-
cally it is expected that this limit will correspond
to the simple A== B scheme. Defining &)= KkY',
k3= KRY', with k3, Y’ finite and K~ =, the charac-
teristic equation for the roots of M is obtained in
the form

224 [K(EY + RY) + B + 1§ +M,)2% + {K (k3RS
+ RS + (BY + RS WMy + (N BY = 2,d2) (M, +My)]

+ BRS + (B + BDM g + Mya + MRIM, —~ N k3M, } 2
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+K[BR%®Y + kYR - a (R M, — kM)
+akiMy+ gRI=0, (B1)
where we have defined
M= (R%A/T¥ex; My=+ (RIBy/ T3)ex,
My=+[B+(e/TE)RIAN; + B3BAZ)]. (B2)
The desired roots are now expanded in the form
2=2\K+20+2.1/K++es, (B3)

and terms with equal powers of K are considered.
From the terms of order K® we obtain

28+ (kY + 1Y )22 =0 . (B4)
from which we get
2{1,2) -0 ,

(B5)
2= - () +RY).

The root z{* represents a rapidly decaying mode

which arises from the fast reactions A-~C~B, We
are interested in such roots for which z,=0. From

these roots we obtain from terms of order K the

equation for z§!'?

(k9" +£3")zg+ [k R+ k3RS + (kD" + 8,
+ (MRI MR WM + My)) 2 + BRIRS + k3'R3)
- alky'M; - k3'M,)=0. (BS6)
Utilizing now the relations

M=-Ry/e; 2=R,/e,

(B7)
k1A0= k4Bo(kz /ks) =kCq

we transform (B6) into the form
X3+ B+ B3+ B+ (ByAy/€TRR, —RyP) + AU + K
- (akAy/TE(R, - R,) (BB)
with
RO = 1S kg [(gr eg); kY =RV, /(ey+ es) . (B9)

Comparing (B8) to (II. 15) we see that indeed we
regain the result for the simple A= B scheme with
rate coefficients modified according to Eq. (B9).

APPENDIX C: RESONANCE RESPONSE TO PERIODIC
PERTURBATION

Let us consider the change in the model experi-
ment, Sec. II. A, for which we add to the steady il-
lumination, proportional to ¢ in (II. 3b), a periodic

term
! ’ 14
a+a cosw't; a'<a. (c1)

The homogeneous Eq. (II. 13) is now replaced by
the inhomogeneous equation

d {8A 8A 0
Zﬁ(éT)‘M<6T>+<AOa’cosw’t> ’ (€2)

where M is given by Eq. (II. 14).

Focusing our attention on the case where relaxa-
tion oscillations are exhibited in the homogeneous
case, we are interested in the nonhomogeneous part
of the solution to Eq. (C2) (the homogeneous part
decays to zero in time), This is proportional to
the function

flw)=coslw't- ¢)/[(r?+w? - w?F + 42w ]2, (C3)

where ¥ +iw are the eigenvalues of the matrix M,
and where

¢ =arctan @rw’/(F + u® — w'?)), (C4)

which shows typical resonance behavior,
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