
Activated Conduction in Microscopic Molecular Junctions

Dvira Segal and Abraham Nitzan
School of Chemistry, The Sackler Faculty of Science, Tel AViV UniVersity, Tel AViV, 69978, Israel

Mark Ratner* and William B. Davis †

Department of Chemistry, Northwestern UniVersity, EVanston, Illinois 60908

ReceiVed: December 7, 1999; In Final Form: February 8, 2000

We analyze the connection between the electron transfer (ET) rate through a given molecular bridge, and the
conduction of a junction based on the same bridge between two metals. The Landauer relation between the
conduction of a junction and its transmission properties is generalized to yield a relation between conduction
and ET rate, including transfer processes dominated by thermal activation. The relation between the orders
of magnitude of these observables involves an additional length parameter, of the order of the range of the
donor wave function. We find that the functional dependence of these observables on the bridge length (N)
and on the temperature (T) changes from the exponential and temperature independent, exp(-âN) for small
N, to algebraic and thermally activated form, (R1 + R2N)-1 exp(-∆E/kBT), asN increases. An intermediate
range of apparent independence onN exists ifR1 . R2. This behavior is the analogue to the quantum Kramers
(barrier crossing) problem, analyzed with respect to the barrier length.

1. Introduction

The Landauer formula1 for the conduction of a small one-
dimensional junction between two macroscopic metals, and its
generalizations to multichannel situations and to the presence
of dephasing phenomena,2 have been central to the development
and understanding of electrical conduction in mesoscopic
systems. These formulations connect the conduction of a given
junction to its transmission properties as obtained from quantum
scattering theory in the coherent transmission case, and from
stochastic transport theory when dephasing becomes dominant.
These formulations have so far excluded the possibility of
activated transport, i.e., the enhancement of conduction by
thermal activation onto and within the junction barrier. The
possible role of thermally activated transport has been recently
considered in attempts to understand long-range bridge-mediated
electron transfer in molecular systems.3 The analysis of such
processes usually focuses on therate of electron transfer (ET)
between donor (D) and acceptor (A) molecules connected by a
molecular bridge (B) (Figure 1). Standard theory of such DBA-
ET (“superexchange”) processes follows the original formulation
of McConnell,4 and predicts an exponential dependence of the
rate on the bridge length:

whereRDA is the donor-acceptor distance andâ is a constant
characterizing the DBA system. (We ignore here the possible
dependence onRDA of reorganization energies associated with
the charge migration, though these are certainly important in
some cases.5) This is clearly a coherent tunneling process,
whereuponâ increases with the energy gap∆E (see Figure 1).
Weak dependence onRDA is predicted for small∆E. Alterna-

tively, at high temperatureT the transmission may proceed by
thermally populating the bridge states followed by hopping
diffusion on the bridge. Theoretical description of the transition
from the coherent tunneling to the bridge-hopping transfer
modes usually invoke the reduced Liouville equation for the
system’s density matrix.3,6 This makes it possible to consider
on equal footing the molecular coupling responsible for the
transfer process, as well as the system-solvent interactions that
cause dephasing and thermal relaxation.

This Letter considers the relationship between the steady state
ET rate that is the central observable in ET measurements, and
the conduction of a junction based on the same molecular bridge.
We first show that the Landauer formula can be generalized to
situations involving thermal activation and relaxation in the
bridge and thus can account for the overall current, including
the elastic/quasi-elastic and the inelastic (energy relaxed) fluxes.
Second, we consider the relationship between the ET rate and
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Figure 1. A schematic representation of DBA system discussed in
the text. Levels 1, ...,N represent the molecular bridge. For the
molecular ET problem D and A represent donor and acceptor levels
(also marked 0 andN + 1), and the continuous manifolds correspond
to molecular or solvent vibronic states. In a metal-molecular layer-
metal junction these continua are quasi-free electron states in the metal.
In this case D and A may denote the positions of the corresponding
Fermi energies. In simplified models the effect of the acceptor
continuum is sometimes replaced by assigning a damping rateΓA to
the acceptor level.

kET ) Ae-âRDA (1)
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the conduction properties associated with the same molecular
bridge and show that while both describe essentially the same
phenomenon, their exact relationship involves a nontrivial length
parameter, of the order of the size of the donor-localized
electronic wave function. Finally, we consider the bridge length
(N) dependence of the ET rate and the associated conduction
and show that beyond the coherent tunneling regime they behave
like (R1 + R2N)-1, where R1 and R2 depend on molecular
properties and on the strength of coupling to the thermal
environment. In many situationsR1 . R2, implying a range of
bridge length where the transmission appears almostN inde-
pendent.

2. Thermal Landauer Formula

For simplicity we focus on the single channel Landauer
formula

which constitutes a relation between the (linear) conductanceg
and the transmission probabilityT in a system without thermal
relaxationin the junction. An equivalent form is obtained by
invoking the formal relationship7 betweenT and thesteady state
transition ratekss, kss(E) ) L-1(pqi(E)/m)T(E), wherepqi is the
incident momentum andL is the normalization length in the
metal (so thatL-1 is the single electron density). Using alsoFi

) Lm(πp2qi)-1, wherem is the effective electron mass in the
metal, for the density of initial electron states (including spin
degeneracy) we get

When the transfer involves thermal activation onto the bridge,
the energy of the transmitted electron can be different from that
which enters the junction. We have recently shown3b,8 that kss

can be approximated in this case as a sum of coherent tunneling
and sequential hopping contributions

kss
tun depends exponentially on the bridge lengthN. The depen-

dence ofkss
hop on N is discussed below. Assume now thatkss

tun

corresponds to an elastic or quasi-elastic process so that the
energy of the transmitted electron is essentially the same as the
incident one. Taking into account the Fermi occupationsf(E)
on the two sides, the net quasi-elastic tunneling current for a
given voltage dropφ across the junction is

This leads to the familiar expression (3) for the elastic tunneling
part of the conductance

Consider now the hopping contribution. This part of the
transmitted flux results from electrons that physically occupy
the bridge, and we may assume that they emerge from the bridge

with energyEF + ∆E. The net inelastic current is

For smallφ andkBT < ∆E we may takef(E + eφ)[1 - f(EF +
∆E)] = f(E + eφ) and f(E)[1 - f(EF + ∆E + eφ)] = f(E),
which leads to

kss
hop depends on∆E like exp(-∆E/kBT), and the first

correction to (8) is of order exp(-2∆E/kBT). It follows that in
the lowest order in this thermal activation parameter, the form
(3) of the Landauer formula is satisfied also in the presence of
inelastic processes that result in occupying the bridge, where
kss is the rate associated with the total: elastic, quasi-elastic,
and inelastic flux.

The ratekss that appears in eq 3 depends, in addition to the
molecular bridge, also on the electronic structure of the donor
and acceptor molecules and on the interaction between them
and the bridge.9 When the “bulk metal donor” is replaced by a
molecular donor, the bridge electronic structure and charging
state may change in a way which is specific to the particular
system considered. Here we focus on generic aspects and
disregard this possible change of electronic structure. The other
main effect enters in the relationship between the matrix
elements,VBD between the bridge and the donor molecule and
VBM between the bridge and the metal, connecting the corre-
sponding initial states to the neighboring bridge state. The ratio
between these elements should scale like (lM/L)1/2, whereL is
the normalization length introduced above andlM is the
characteristic size of the donor state, typically the size of a
molecular site. Consequently10

Using alsoFi(EF) ) (L/2πp)x(2m/EF) leads to

with an effective transmission probability

Notice that, as is physically required, the final result is
independent of the normalization lengthL. Using typical
numbers we findg(Ω-1) ∼ 10-20kET (s-1). This implies that a
measurable current in, e.g., an STM junction can be observed
only if the electron-transfer rate through the same electronic
structure exceeds 108 s-1.

3. Bridge Length Dependence

The Hamiltonian for the system depicted in Figure 1 isHM

) H0 + V, where H0 corresponds to the states shown andV is
the coupling between them. The Hamiltonian for the overall
system isH ) HM + HB + F, whereHB is the Hamiltonian of
the free thermal environment (“bath”) andF is the molecule-
bath coupling. The steady state Liouville equation for the
reduced system density matrixσ in the local representation

g ) e2

πp
T(EF) (2)

g ) e2kss(EF)Fi(EF) (3)

kss) kss
tun + kss

hop (4)

Jtun ) e∫dE Fi(E)kss
tun(E)(f(E + eφ)(1 - f(E)) -

f(E)(1 - f(E + eφ))

≈ e2
φFi(EF)kss

tun(EF) (5)

gtun ) Jtun

φ
) e2kss

tun(EF)Fi(EF) (6)

Jhop ) e∫dE Fi(E)kss
hop(E)[f(E + eφ)(1 - f(EF + ∆E)) -

f(E)(1 - f(EF + ∆E + eφ))] (7)

ghop ) Jhop

φ
= e2kss

hop(EF)F(EF) (8)

kss

kET
) |VBM

VBD
|2 )

lM
L

(9)

g ) e2

πp
Teff (10)

Teff ) lMkETx m
2EF

(11)
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(eigenstates ofH0) is of the form3,8

whereJnn′ represent the boundary conditions, and where the
dephasing and relaxation termsR are obtained as Fourier
transforms of time correlation functions involving system matrix
elements of the operatorF. For the present application the
relevant boundary conditions are

whereJ is the total current through the system andΓA represents
the decay of the acceptor state|A〉 ≡ |N + 1〉. We note that the
derivation of eqs 12 should be done with care because the
Redfield approximation6 is valid only in the molecular repre-
sentation (eigenstates ofHM) so that repeated transformations
between the molecular and the local representations are needed.8

Solving (12) yields the steady state elements ofσ and in
particularσDD andσAA, the populations in the donor and acceptor
states. The steady state electron transfer rate is obtained from

Figure 2 shows some model results based on this procedure.
In this calculation we took the donor and acceptor energies
equal, ED

(0) ) EA
(0) ≡ 0, and all bridge levels placed 0.1 eV

above them. A tight-binding model was taken for the molecular
coupling,Vnn′ ) Vδn,n′(1 with V ) 0.02 eV. The molecule-
bath coupling was taken to be diagonal in the local representa-
tion (i.e., F ) ∑nFnn|n〉〈n|, with |n> eigenvectors ofH0) and
correlations between thermal operators on different sites were
assumed to vanish, i.e.,〈Fnn(t)Fjj(0)〉 ) 0 if j * n. This implies
the existence of correlations in the molecular states representa-
tion. Temperature and thermal relaxation enter through the
detailed balance property of such correlation functions. In the
Markovian limit this is taken to be of the form

The parameterκ determines the relaxation and dephasing rates
in the model. In the following calculations we take it to be 0.03
eV. A similar value is assigned to the parameterΓA in eq 13.
Assuming the process to be Markovian overestimates the
relaxation and dephasing rates, but it does not change the
qualitative effects of relaxation and is relatively simple to
analyze. (See ref 8 for a discussion of the non-Markovian
case.)

Figure 2 shows the resulting steady state rate displayed as a
function of the bridge lengthN for temperatures 250 and 350
K. For N < 3 the superexchange transfer mode prevails, and
the dependence onN is exponential. Beyond the crossover
region, the rate depends on temperature and the dependence on
N is very weak. This weak dependence on the bridge length
may seem odd, since in the hopping transport regime one may
expect an Ohmic behavior, i.e.,kET ∼ N-1. Further analysis of
the numerical results yields the following functional form

This N dependence is clearly seen in Figure 3 that depicts both
kss andkss

-1 as functions ofN. Only whenN is large enough
we obtain the Ohmic,N-1, behavior.R2 is the characteristic
hopping time that may be approximated by11

andR1 may be identified as the inverse rate associated with the
transition between the donor the bridge levels, given ap-
proximately by

This leads, for our choice of parameters, toR1 = 5.5 × 10-13

s andR2 =1.2 × 10-14 s, in reasonable agreement with the
numerical findings (R1 = 8.2 × 10-13 s andR2 = 1.4 × 10-14

s). The apparent nondependence on the bridge lengthN in the
intermediateN regime results fromR1. R2 and reflects the
existence of a range ofN for which the electron transfer is
dominated by the rate to thermally occupy the bridge. This rate
is obviously independent ofN. This behavior is reminiscent of
the underdamped limit of the Kramers’ barrier crossing problem.
In fact, the model considered here is a discrete level analogue
of the quantum Kramers problem, except that thebarrier length
is here a controlled variable. In this respect the present
discussion provides the first analysis of the transition from the

Figure 2. kET plotted against the bridge lengthN, for the model of
Figure 1, using parameters given in the text. The steady state electron
transfer rate is obtained by holding the population of level 0 fixed,
and assigning a damping rate,ΓA, to levelN + 1. Full line, T ) 250
K; dashed line,T ) 350 K.

-iωnn′σnn′ - i[V,σ]nn′ + ∑
l
∑

l′
Rnn′ll ′σll ′ ) Jnn′ (12)

JDD ) -J

JAA ) ΓAσAA

JAn ) 1/2ΓAσAn; JnA ) 1/2ΓAσnA

Jnn′ ) 0 for n,n′ * A (13)

kET ) J/σDD ) ΓAσAA/σDD (14)

∫-∞

∞
dt eiωt〈F(0) F(t)〉 ) κ; ω g 0

) κ exp(-|ω|/kBT); ω < 0 (15)

Figure 3. kET (full line, left axis), andkET
-1(dotted line, right axis),

plotted againstN. Parameters are the same as in Figure 2.T ) 300 K.

kET ) (R1 + R2N)-1e-∆E/kBT (16)

R2
-1 ∼ 4V2

κ
(17)

R1
-1 ∼ V2

∆E2
κ (18)
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tunneling to the thermally activated regime in a variant of the
quantum Kramers problemas a function of the barrier length.

4. Conclusions

We have analyzed the connection between theelectron
transfer ratethrough a given molecular bridge and theconduc-
tion of a junction based on the same bridge. Three new results
were obtained: First, we have generalized the Landauer relation
between a junction conduction and its transmission properties,
to yield a connection between conduction and ET rate,including
transfer processes dominated by thermal actiVation in the
bridge. Second, we found that in orders of magnitude these
variables can be associated with each other by adding a length
parameter of the order of the range of the donor wave function.
Quantitative comparison requires of course knowledge of the
coupling between the donor/acceptor (molecule or metal) and
the bridge. Finally, we have shown that the bridge length
dependence of the ET rate and of the conduction, which reflects
a transition from tunneling to thermally activated diffusion
through the bridge, is analogous to the quantum Kramers
problem, now analyzed as a function of barrierlength. The
possible existence of a regime where electron transport depends
weakly on the bridge length was demonstrated and was argued
to be the analogue of the underdamped-activated regime of
the quantum Kramers problem.
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