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Perturbation theory approach to tunneling: Direct and resonance
transmission in super-exchange models

Misha Galperin, Dvira Segal, and Abraham Nitzan
School of Chemistry, Sackler Faculty of Science, Tel Aviv University, Tel Aviv 69978, Israel

~Received 24 September 1998; accepted 31 March 1999!

In this paper we examine, within simple models, different approaches to computing tunneling
probabilities in super-exchange models of electron transfer. The relationship between tunneling
calculations that use scattering theory type formalisms and approaches based on standing waves,
which are more closely related to electron transfer between bound donor and acceptor states, is
established. Transmission probabilities computed by using truncated basis representations are
compared to exact analytical or numerical results for one- and two-dimensional models. We find
that while resonance tunneling is well approximated by truncated basis approaches, computing deep
tunneling using such basis sets can lead to large errors. Implications for calculations of bridge
assisted electron transfer are discussed. ©1999 American Institute of Physics.
@S0021-9606~99!01524-X#
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I. INTRODUCTION

Recent work on long-range electron transfer has focu
on the super-exchange mechanism as the origin of the w
falloff, with distance observed for the transmission probab
ity in many electron transfer systems.1 The super-exchang
mechanism invokes electronic states in the bridge connec
donor and acceptor as intermediate states in the transfer
cess. The overall transmission probability is then expres
in terms of these states: their energies and the interstate
pling. The transfer parameterb associated with the exponen
tial distance dependence of the transmission probabi
T;exp(2br), is obtained in terms of these quantities1

Moreover, if these states are energetically close to the do
and acceptor states so that they are actually transiently p
lated, this distance dependence may become weak or d
pear. Also, if thermal relaxation processes erase intermed
coherence, the transmission may take a diffusive charac2

The purpose of the present paper is to examine sev
issues associated with such processes in the absence of
mal relaxation: We develop a steady-state formalism t
makes it possible to analyze electron transmission proce
in the language of scattering theory, using a representatio
which perturbation theory can describe deep tunneling
well as resonance tunneling processes. This also mak
possible to connect scattering theory, which is usually rep
sented in terms of incoming and outgoing waves, with
usual representation of electron transfer theory in terms
initial and final states. We use this formalism within a simp
barrier/wells model to show that standard procedures that
truncated basis representations in super-exchange model
fail badly far from resonance. Finally, we discuss the adv
tages and disadvantages of different computational
proaches to the electronic coupling part of the electron tra
mission problem.

Mathematically, describing the transmission process
super-exchange models in terms of a limited number
bridge states amounts to describing the process in terms
1560021-9606/99/111(4)/1569/11/$15.00
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strongly truncated basis~tight binding approximation!. While
in the case of resonance tunneling it is expected that nea
resonance peak the transmission will be dominated by
states associated with the resonance structure, once w
out of resonance this becomes less obvious. The situatio
analogous to that encountered in Raman scattering: R
nance Raman scattering is described well in terms of on
a few intermediate vibronic levels, while the off-resonan
process is usually described in terms of the whole interm
diate electronic manifold. Intuitively we expect that the e
ergy range of relevant intermediate states is determined
the ~inverse of! characteristic time of the transmission pr
cess; however, the determination of this time in all but s
cial models is itself uncertain.3 Related uncertainties aris
when we compare transitions between two continua e.g.,
rent through a metal insulator–metal junction, between t
discrete levels, e.g., the tunneling splitting in a double-w
structure and between a quasibound state and a continu
e.g., tunneling-induced escape out of a potential well.

The validity of the tight binding approximation for th
description of long distance bridge mediated electron tran
was addressed in the past by Beratanet al.4 The model con-
sidered below satisfies the criterionkb@1 ~k21 is the expo-
nential decay length for the electronic wave function loc
ized on a bridge site andb is the nearest-neighbor distanc
between such sites! for which, according to Ref. 4, the tigh
binding approximation should be valid for bridge units th
support only one bound state. In contrast, we will show t
even though this criterion holds, a truncated basis that u
only the lower states of the bridge sites can lead to subs
tial errors in the computed transmission for energies far fr
resonance,5 in particular when the bridge wells support mo
than one bound state.

Computing tunneling probabilities is a central issue
quantum transport theory.6 Recently we have investigate
numerically one-electron tunneling processes through w
and through rare gas layers,7 using numerical grid technique
9 © 1999 American Institute of Physics
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and a suitable pseudopotential to describe the interaction
tween the electron and the molecular system. A numer
grid is a basis set chosen so as to accommodate the pr
ties of the one-electron pseudopotential as well as the en
range of interest. In a typical tunneling calculation of th
type, we need~in 3D! 100–1000 grid points per atom. I
alternatively, a restricted molecular basis set can be use
substantial reduction in computational effort may
achieved. For example, recent calculations of electron tra
mission through conjugated organic molecules8 use just the
four 2s and 2p atomic orbitals on each carbon atom and o
1s orbital on each hydrogen to construct the needed mole
lar orbitals on the extended Hu¨ckel level.~Note that, by con-
struction, such bases are nonorthogonal.! In this context, the
question concerning the validity of the tight binding appro
mation for super-exchange transmission can be rephrase
follows: Assuming that a reliable pseudopotential is ava
able and that a set of local orbitals can also be found, to w
extent and under what conditions can a truncated basi
local orbitals describe adequately the transmission pro
~and therefore be preferred over the spatial grid represe
tion!?

In addition to choosing a convenient basis set to desc
the barrier~or, in scattering theory language, the target!, we
may consider different representations of the initial and fi
states. Standard descriptions of electron transfer proce
compute the rate associated with the decay of populatio
the initial electronic state that is localized on the donor,
equivalently, the growth of population in the final state l
calized on the acceptor. The actual process is often do
nated by nuclear relaxation about these states, while
bridge levels mediate the electronic coupling. Focusing
the latter issue, the effective donor-acceptor electro
coupling can be estimated from the splitting~or shifts! of
the corresponding energy levels from their zero-or
values.1~c!,9 Here we adopt the alternative approach of d
scribing the process as a scattering phenomenon. In this
scription the donor and acceptor states become repres
tives of the initial and final levels of the scattering contin
~that should be summed over when evaluating total transm
sion probabilities!.8 The resulting observable is relevant f
low energy electron transmission~LEET!,10 for photoemis-
sion through thin molecular films,11 for inelastic tunneling
spectroscopy~ITS! and scanning tunneling microscop
~STM! through adsorbed molecules,6 and in measuring the
current through molecular spacers between metal contac12

From the theoretical point of view, we deal with the sam
electronic coupling problem, with the added advantage
the energy is well defined~thus avoiding the difficulty en-
countered in identifying the exact tunneling energy in el
tron transfer processes9! and can be controlled. One issu
however, requires special attention: For a scattering proc
the usual representation in terms of incoming and outgo
waves is natural. On the other hand, the conceptual prox
ity of electron transmission phenomena to other elect
transfer processes suggests that a time-dependent descr
in terms of semilocal initial and final states, confined to t
left and right sides~say! of the barrier, respectively, may b
useful. Indeed, we show~Secs. II and III! that scattering
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theory can be reformulated as a steady-state solution
time-dependent formalism represented in terms of s
semilocal functions. This becomes particularly importa
when perturbative solutions are sought: The Born appro
mation in standard scattering theory, as well as any fin
order expansion based on it, cannot describe tunneling.
show in Sec. II that, using a semilocal representation, tun
ing through a potential barrier~‘‘through space’’ transmis-
sion! can be described by perturbation theory in lowest
der. Moreover, the description of ‘‘through bond’’ tran
mission and of resonance tunneling~Sec. III! becomes a
natural higher order extension of the same calculation,
leads to expressions used by other workers.8

In the present paper we use a simple model of rectan
lar barriers and wells as a starting point for discussing th
issues.13 In one-dimension, the transmission probability a
sociated with such models can be obtained exactly us
transfer matrix methods.14 On the other hand, the perfor
mance of a model that uses, e.g., only the lower bound st
of each well as a basis set for the same calculation, can
used as an indication of the validity of similar tight bindin
approximations used in models for bridge assisted tunnel
Such comparisons are done in Sec. IV, leading to the c
clusion that far enough from resonance a strongly trunca
basis of the type usually employed@i.e., using the lowest
unoccupied molecular orbitals~LUMOs! or the highest oc-
cupied molecular orbitals~HOMOs! for electron and hole
conduction, respectively# can fail badly in predicting both
the magnitude of the electronic coupling, and its depende
on the tunneling length. Similar observations are made a
in a model two-dimensional calculation. We conclude~Sec.
V! with an assessment of our present ability to compute e
tron transfer and transmission probabilities using molecu
orbitals and pseudopotential methods.

II. PERTURBATION APPROACH TO TUNNELING

Consider the tunneling process associated with the
tential barrier displayed in Fig. 1~a!. This tunneling process
is a one-dimensional scattering problem; however, since
barrier constitutes a strong perturbation in the tunneling
gime, it cannot be easily described in low order, e.g.,
Born theory. Instead, nonperturbative approaches are usu
employed; the most generally used is the Wentze
Kramers–Brillouin~WKB! approximation. For the rectangu
lar barrier and well structure such as that of Fig. 1~a!, an
exact solution may be found using the transfer mat

FIG. 1. A simple potential for bridge assisted tunneling processes~a!, the
corresponding tight binding model~b!. Only the lowest states of the inter
mediate wells are included in the truncated basis shown on the right.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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method.14 Alternatively, it is intuitively expected that a rep
resentation in terms of scattering continua plus some st
associated with the intermediate wells@Fig. 1~b!# may pro-
vide an adequate description of the transmission probl
For electron transfer in a donor-bridge-acceptor syst
where the scattering continua are replaced by donor and
ceptor states~and supplemented by nuclear relaxation!, this
is indeed the standard approach.1,9

The fact that the transmission probability is very small
many tunneling systems suggests that a perturbation th
of tunneling should be possible using an appropriate re
sentation. Indeed, Bardeen15 has suggested a perturbatio
scheme for a simple tunneling barrier~no intermediate wells
and no resonance effects! such as that displayed in Fig. 2~a!.
In the Bardeen formalism the continuum wave unctions
defined as the eigenfunctions of the corresponding half
riers shown in Fig. 2~b!, and the transmission probability i
expressed in a golden-rule type form where the transi
operator is the flux operator defined anywhere within
barrier. The alternative perturbation formalism developed
low may be considered a combination of the Bardeen re
sentation of the tunneling problem with the standard qu
tum chemistry representation of electron transfer.
carrying out this procedure in the framework of an exac
soluble model we will be able to assess the performanc
the approximations involved.

Using the potential barrier of Fig. 3~a! as an illustrative
example, we first associate the incident and transmitted
gions with the half barriers shown in Figs. 3~b! and 3~d!, and
introduce the corresponding manifold of states,

C l~x;El !5H Al
~1!eikl ~x2xL!1Al

~2!e2 ikl ~x2xL!; x,x0[xL

Ble
2k l ~x2xL!; x>x0[xL

,

~1!

C r~x;Er !5H Ar
~1!eikr ~x2xR!1Ar

~2!e2 ikr ~x2xR!; x.xN[xR

Bre
kr ~x2xR!; x<xN[xR

.

~2!

FIG. 2. Tunneling through a simple barrier~a! and the potential used to
define the zero-order continuum~standing waves forE,UB states! ~b!.
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Here, and in what follows, we denote by the subscriptsL ~or
0! and R ~or N11! the incident/reflected region and th
transmitted region, respectively, and by the subsc
a[( j , j 11) the regions of flat potential defined byxj,x
<xj 11 @see Fig. 3~a!#. Equations~1! and ~2! correspond to
standing waves with energyE, defined as in the Bardee
formalism using

kl5
1

\
A2m~El2UL!; k l5

1

\
A2m~U012El !,

~3!

kr5
1

\
A2m~Er2UR!; k r5

1

\
A2m~UN21,N2Er !.

Second, with each intermediate well we associate the se
lower bound states in the corresponding isolated well sho
in Fig. 3~c!. In the present treatment we limit ourselves
just one~lowest! energy level in each well, e.g., for the we
x1,x<x2 with the lowest energy stateE12,

C12~x!5H A12
~1!eik12x1A12

~2!e2 ik12x; x1,x<x2

B12
~1!ek12

~1!
~x2x1!; x<x1

B12
~2!e2k12

~2!
~x2x2!; x.x2

, ~4!

FIG. 3. ~a! A potential barrier with intermediate wells.~b!, ~c!, ~d! Potentials
used to define the zero-order continua and the intermediate zero-order b
states.~e! The energy level diagram for a truncated basis~based on the
lowest bound state in each intermediate well! calculation of the transmission
rate.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1572 J. Chem. Phys., Vol. 111, No. 4, 22 July 1999 Galperin, Segal, and Nitzan
k125AS 2m

\2 D ~E122U12!;

k12
~1!5AS 2m

\2 D ~U012E12!; ~5!

k12
~2!5AS 2m

\2 D ~U232E12!.

Finally, the HamiltonianH i j 5^C i uHuC j& and the overlap
Si j 5^C i uC j& matrix elements are evaluated in terms of t
variousk andk parameters and theA andB coefficients~see,
e.g., Appendix A!. Assuming that the intermediate barrie
are high/thick enough, it is possible to disregard these
ments for all but nearest-neighbor wells, i.e.,

Hlm5Hl1dm1 ; Slm5Sl1dm1 ,

Hrm5HrNw
dmNw

; Srm5SrNw
dmNw

, ~6!

Hmm850 unlessm85m61,

where Nw is the number of intermediate wells an
m51,...Nw is the well index. This completes the reduction
the full tunneling problem associated with the multibarr
potential in Fig. 3~a! to the restricted coupled state bas
representation of the type displayed in Fig. 3~e!. Since non-
diagonal coupling and overlap elements are very small w
the intermediate barriers are high/thick enough, perturba
theory should work. This is in contrast to the usual scatter
theory, which uses free particle states in zero order, wh
low-order perturbation theory fails for the present problem

As discussed above, representing the effect of inter
diate wells in the barrier by one or a few states per wel
equivalent to the standard quantum chemistry approac
electron transfer. Less obvious is the applicability of the c
tinuum states chosen above for calculating direct~‘‘through
space’’! tunneling by standard perturbation theor
Bardeen’s perturbation theory15 is not easily generalized to
the more complex situations discussed below, and we pre
here an alternative approach. For this purpose we cons
the problem of tunneling through a simple rectangular pot
tial barrier@Fig. 2~a!. Note that the general notation of Fig.
is simplified here by using the notationx0[xL , x1[xR , and
U01[UB#. The standard calculation of the transmission c
efficient for a particle of massm and energyE incident from
the left proceeds by writing the wave function in the form

C~x;E!5H Al
~1!eiklx1Al

~2!e2 ikl x; x,xL

Ab
~1!ekx1Ab

~2!e2kx; xL<x,xR

Are
ikrx; x>xR

, ~7!

with kl , kr , andk defined by Eq.~3!, with E replacingEl

andEr . The coefficients in Eq.~7! are determined from the
four continuity relations for the wave function and its deriv
tives at the two boundaries. Puttingd5xR2xL and neglect-
ing terms of order exp(22kd) relative to terms of order 1
leads to the following result for the transmission coefficie
Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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T~E!5
uARu2

uALu2
kR

kL
5

16~UB2E!A~E2UL!~E2UR!

~UB2UL!~UB2UR!
e22kd.

~8!

Consider now the perturbation theory approach to
same problem. Instead of using incoming and outgo
eigenstates of the free particle Hamiltonian, we consider
process as a transition between two interacting continua
the standing waves defined by Eqs.~1! and ~2!. The cou-
plings and overlaps between these states are given in Ap
dix A. The transmission problem~from left to right, say! can
now be represented as a transition from a particular statel,
of energyEl , from the left~$l%! manifold, to the continuum
manifold of states on the right. Within this subspace of sta
the operatorH-El takes the form

S El ¯ Hlr2ESlr ¯

A � 0 0

Hrl2ESrl 0 Er 0

A 0 0 �

D . ~9!

Note that the submatrix that excludes the first row and c
umn, which corresponds to the$r% manifold, is taken
diagonally.16 For the initial value problem with the system i
statel at t50, the transition rate to the right manifold i
given by the generalized golden-rule expression~see Appen-
dix B!,

Kl→$r %52p~ uHlr2ElSlr u2rR!Er5El
, ~10!

where the subscriptEr5El indicates, as usual, that all quan
tities associated with the$r% manifold should be computed a
energiesEr equal toEl .17 rR is the density of states in th
right manifold associated with the spectrum of on
dimensional free particle states. It is given by18

rR~Er !5~2puARu2!21
m

\2kr~Er2Ur !
;

kr~E!5@\222mE#1/2. ~11!

Also, the relation between the inverse lifetime of the statel,
Kl→$r % of Eq. ~10! and the transmission probabilityT(E) at
energyE5El , is given by

\21Kl→$r %5T~El!3uAlu2
\kl

m
. ~12!

Using the expressions in Appendix A and Eqs.~11! and~12!
in Eq. ~10! leads again to the result~8!. Note that we have
limited ourselves to deep tunneling situations by assum
that e2kd!1 in the standard tunneling calculation, and
using lowest order in the corresponding perturbation the
approach.

III. BRIDGE ASSISTED TUNNELING AND RESONANCE
TUNNELING

Consider now the barriers displayed in Figs. 1 or 3.
discussed above, the transmission through such barriers
exactly soluble problem. Here we focus on the approxim
perturbation theory description of this problem. In this a
proach, the asymptotic motions to the left and to the right
the barrier are described by standing wave continua a
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1573J. Chem. Phys., Vol. 111, No. 4, 22 July 1999 Perturbation theory approach to tunneling
Sec. II, while each well is represented by some lower bo
states of the corresponding well in Fig. 3~c!. For simplicity,
we present the following development in the simplest tig
binding approximation, using one bound state per well.

Again we note that while we deal with a scattering pr
cess, the scattering continua are represented by stan
waves that carry no flux. The steady-state formalism u
below leads to scattering theory results in this representa
Also, because our representation has nonzero overlap
tween basis functions, expressions for the transmission c
section will be modified. Similar issues are encountered
the theory of electron transfer when overlapping basis re
sentations are used.1~c!,9

Denoting the continuous manifolds by$l% and $r% as be-
fore, and the states in the intermediate wells$m%, with ~ap-
proximate! energiesEm5Hmm, m51,...Nw , the solution of
the time-dependent Schro¨dinger equation associated with
particular initial statel, the incident state in the$l% manifold,
can be represented byC(t)5cl(t)cl1( lÞlcl(t)c l

1( rcr(t)c r1(mcm(t)cm , where the coefficientsc(t) sat-
isfy

ċl1(
m

Slmċm1(
r

Slr ċr

52 iElcl2 i (
m51

Nw

Hlmcm2 i(
r

Hlr cr , ~13!

ċm1 (
~mÞm8!51

Nw

Smm8ċm81Smlċl1(
lÞl

Smlċl1(
r

Smrċr

52 iEmcm2 i (
~mÞm8!51

Nw

Hmm8cm82 iH mlcl

2 i (
lÞl

Hmlcl2 i(
r

Hmrcr ; m51,...Nw , ~14!

ċr1 (
m51

Nw

Srmċm1Srlċl1(
lÞl

Srl ċl

52 iErcr2 i (
m51

Nw

Hrmcm2 iH rlcl2 i (
lÞl

Hrl cl . ~15!

Note that the left and right manifolds were assumed
satisfyHll 85Eld l l 8 andHrr 85Erd rr 8 . Note also that while
the initial statel belongs to the$l% manifold, we have written
it explicitly in Eqs. ~14! and ~15!. Equations~13!–~15! con-
stitute the most general form, where all interstate coupl
and overlap terms are included. As already pointed out, w
the basis functions$m% are spatially localized, a good ap
proximation is often obtained by setting to zero coupling a
overlap terms involving centers far enough from each ot
or from the left and right continua. For large systems t
simplification can be numerically significant because
makes the coupling matrix sparse. In addition, the direct c
pling between the$l% and the$r% manifolds will be taken only
in the lowest order. This amounts to disregarding the te
( rSlr ċr and( rHlr cr in Eq. ~13! and the terms( lÞlSrl ċl and
( lÞlHrl cl in Eq. ~15!.
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In a time-dependent initial value problem, the set of E
~13!–~15! would be solved for the time-dependent coef
cientsc(t), given that all coefficients vanish att50 except
cl(t50)51. Here we seek a steady-state solution w
ucl(t)u51 at all time. To obtain this solution we repeat th
procedure described in the second part of Appendix B, d
regarding the time-dependent equation forcl(t) @one of the
equations in the set~13!#, and assuming instead thatcl(t)
5cle2 iElt. In steady state the same holds for all interme
ate state amplitudes, i.e.,cm(t)5cme2 iElt; m51,...Nw . Us-
ing this in Eq.~15! leads to

ċr52 iErcr2 i ~Hrl2ElSrl!cle2 iElt

2 i (
m

~Hrm2ElSrm!cme2 iElt, ~16!

which, following the procedure that leads to Eq.~B11!,
yields

cr~ t !5S Ṽrlcl1(
m

ṼrmcmD e2 iEr t2e2 iElt

Er2El
~17!

and

1

uclu2
d

dt (r
ucr~ t !u252pH rRUṼrl1(

m
Ṽrm

cm

cl
U2J

Er5El

,

~18!

where the effective couplingṼ is defined by

Ṽab~El!5Hab2ElSab ; aÞb. ~19!

Similarly, for lÞl, we get from~13!,

cl~ t !5(
m

Ṽlmcm

e2 iEl t2e2 iElt

El2El
. ~20!

From ~17! and~20! it is evident that only states from$r% with
Er5El and only states from$l% with El5El are populated
significantly, so that we can putċr(t)52 iElcr and ċl(t)
52 iElcl in the left-hand side~l.h.s! of Eq. ~14!. This leads
to

2 i ~El2Em!cm52 iṼmlcl2 i (
m8Þm

Ṽmm8cm82 ieiElt

3(
lÞl

Ṽmlcl~ t !2 ieiElt(
r

Ṽmrcr~ t !. ~21!

Using Eq.~17!, the last term of~21! takes the form

2 ieiElt(
r

Ṽmrcr~ t !

52 i(
r

ṼmrṼrl

12ei ~El2Er !t

El2Er
cl

2 i(
m8

S (
r

ṼmrṼrm8

12ei ~El2Er !t

El2Er
cm8D . ~22!

Since we are taking the direct coupling between the$l% and
the $r% manifolds only in the lowest order, the first term o
the right hand side~r.h.s.! of ~22! may be disregarded, an
Eq. ~22! can be rewritten in the form
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2 ieiElt(
r

Ṽmrcr~ t !

>2 i(
m8

S (
r

ṼmrṼrm8

12ei ~El2Er !t

El2Er
cm8D

52(
m8

S (
r

ṼmrṼrm8E
0

t

dtei ~El2Er !tcm8D
——→

t→`

2 i lim
«→0

(
m8

S (
r

ṼmrṼrm8
El2Er1 i«

cm8D
[2 i(

m8
Lmm8

~R! cm8 , ~23!

where the self-energy matrix associated with the right-h
manifold is

Lab
~R!~El![ lim

«→0
(

r

ṼarṼrb

El2Er1 i«

5Dab
~R!~El!2

1

2
iGab

~R!~El!, ~24!

Dab
~R!~El!5PP(

r

ṼarṼrb

El2Er
,

~25!

Gab
~R!~El!52p(

r
ṼarṼrbd~El2Er !,

and wherePP denotes principal part of the integral that re
resents the summation over the continuum. Similarly, fr
~20!,

2 ieiElt(
l

Ṽmlcl~ t !52 i(
m8

Lmm8
~L ! cm8

52 i(
m8

~Dmm8
~L !

2~1/2!iGmm8
~L !

!cm8 .

~26!

Using these results in~21!19 leads to

cm5(
m8

@~ElI2H̃2L!21#mm8Ṽm8lcl ; L5L~L !1L~R!,

~27!

where the matrixH̃ is given by H̃mm85Emdmm81(Vmm8
2ElSmm8)(12dmm8). Inserting Eq.~27! in ~18! finally re-
sults in

Kl→$r %[
1

uclu2

d

dt (r
ucr~ t !u252p~rRuTrlu2!Er5El

, ~28!

with T5Ṽ1ṼGṼ, and Gmm85@(ElI2H̃2L)21#mm8 is
evaluated in the$m% subspace. In the calculations describ
below the level shiftsD were disregarded andL was re-
placed by2 iG.

Equation~28! is the final result for the steady-state tra
sition rate from an initial levelul& in the $l% manifold to the
$r% manifold. The transition amplitudeṼ1ṼGṼ is seen to be
a sum of a direct~or ‘‘through space’’! contribution and an
Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
d

indirect component associated with the intermediate st
$m%.20 The latter term,ṼGṼ, is most important near reso
nance, i.e., when the incident energyEl is close to an inter-
mediate state energyEm , but may dominate the transitio
also in off-resonance situations. The transition rate is de
mined by contributions from these two routesas well as from
interference between them. The transmission probability is
then found from Eqs.~28! and ~12!. Note that because al
intermediate state couplings are in principle included in
calculation that leads to Eq.~28!, this result can be used als
for two- and three-dimensional models, e.g., when
‘‘bridge’’ is a molecular layer separating two electrodes.

IV. RESULTS AND DISCUSSION

Figure 4 compares the electron transmission probab
ties as functions of the incident energy, obtained from E
~28!, to the exact results calculated using the transfer ma
method, for the symmetric model of Fig. 1 with one inte
mediate well. Here we useUB2UL5UB2UR56 eV, UB

2UW53 eV for the barrier height, andx12x05x32x2

FIG. 4. Transmission probabilities for tunneling through the potential
Fig. 1~a!. Full lines—exact results. Dashed lines—results obtained from
~28! using a truncated basis. See text for details of the potential surface
of the truncated basis used.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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54 Å for the barrier width parameters. In Fig. 4~a! the inter-
mediate well width was takenx22x154 Å. This well sup-
ports one bound level. Figures 4~b! and 4~c! correspond to an
intermediate well widthx22x158 Å, which supports two
bound levels. The calculation that leads to Fig. 4~b! uses
only the lower of these two intermediate levels in the tru
cated basis set, while Fig. 4~c! is obtained using both. Fig
ures 5~a! and 5~b! show similar results for two and fou
intermediate wells, respectively, where all barrier width p
rameters are taken to bexj2xj 2154 Å ~again supporting
one bound level per well!.

Figures 6~a! and 6~b! display, as a function of electro
energyE, the ‘‘beta parameter,’’b(E), which describes the
distance dependence of the transition probability accord
to the ansatz

Kl→$r %~El ,d!5A exp@2b~El!d#, ~29!

whered5xN2x0 is the barrier width.b is obtained as the
slope of the line describing ln(Kl→$r%(El ,d)) as a function of
d. A linear dependence, indicating exponential depende
of K on d, is obtained as long asEl is not too close to
resonance with the quasibound levels in the intermed
wells. Figure 6~a! corresponds to an extension of the mod
used in Fig. 4~a!. The barrier~Fig. 1! is made ofNw seg-
ments of barriers and wells, characterized by equal width

FIG. 5. Results of tunneling calculations for the potential barrier of F
1~a!. Full lines—exact results. Dashed lines—results obtained using a t
cated basis with the lowest bound state~with the potential parameters
used—the only bound state! in each well. Dotted line in Fig. 5~a!—result of
the truncated basis approximation with the additional approximation
replacesṼ12(E) by Ṽ12(E1)5Ṽ12(E2). See text for details of the potentia
surfaces.
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4 Å for all intermediate barriers and wells. The barrier us
in Figs. 6~b! is an extension of that used in Figs. 4~b! and
4~c!, with width parameters equal to 4 Å for all intermediate
barriers and 8 Å for all intermediate wells. Thus, the tota
widths ~in Å! of barriers with Nw intermediate wells are
d54(2Nw11) in the model used in Fig. 6~a! andd58Nw

14(Nw11) in the model used in Fig. 6~b!, respectively. All
the bound states of each well@one in Fig. 6~a!, two in Fig.
6~b!# are included in the truncated basis set.

Finally, Fig. 7 shows a simple application of the prese
formulation for a two-dimensional model: transmission of
incident plane wave traveling in thez direction through the
modified two-dimensional rectangular barrier shown in F
7~a!. The barrier height is 6 eV and its size in the transm
sion direction isdz512.4 Å. In order to conform to the nu
merical calculation, we also impose periodic boundary c
ditions in the perpendicular directionx, with a perioddx

5100 Å. Two identical cylindrical wells of radius 2 Å and
depth 3 eV relative to the barrier top are positioned so t
their centers are at (x,z)5(0,22.2) and~0,2.2! Å, respec-
tively, wherez50 corresponds to the barrier center. Such
well, in an otherwise constant two-dimensional potential s
face, supports one bound state. A numerically exact eva
tion of the transmission probability may be obtained us
the absorbing boundary conditions Green’s functi
method.21 The numerical results shown in Fig. 7~b! were
obtained using a grid of 2003210 points with spacingsDx
50.5 andDz50.177 Å and periodic boundary conditions a

.
n-

at

FIG. 6. b(E) as a function of the transmission energyE for the model of
Fig. 1. See text for details of the potential surfaces and the truncated b
Line notation is as in Fig. 5.
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described above. The following absorbing potential was
plied at the edges of thez domain:«(z)50 for uzu<dz/2 and
«(z)51.2@(uzu2dz/2)/(L2dz/2)#7 for L>uzu.dz/2, where
L is half the grid length in thez direction. The resulting
transmission probability is compared to a calculation ba
on a truncated basis set analogous to that used in Fig.~a!,
the left and right continua and the two zero-order bou
levels in the wells. The latter calculation uses Eq.~28! in the
same way as before, except that two-dimensional wave fu
tions and integrals are used to calculate the neededH̃ andS̃
matrix elements. Figure 7~b! shows the results of the gri

FIG. 7. ~a! A sketch of a two-dimensional barrier with two cylindrical wel
~see text for details!. ~b! Transmission probability vs incident energy of
plane wave traveling in thez direction through the two-dimensional barrie
shown in Fig. 2~a!. Note that periodic boundary conditions are employed
the direction~x! perpendicular to the tunneling.~c! Transmission through the
one-dimensional barrier which corresponds to a straight path perpendi
to the tunneling direction connecting the centers of the two wells. F
lines—exact results based on a numerical grid calculation in Fig. 7~b! and
on the known analytical result in Fig. 7~c!. Dashed lines—results based o
the truncated basis approximation using the single bound state in each
Densely spaced and sparsely spaced dotted lines correspond to the dire
the indirect contributions@Eq. ~28!#, respectively.
Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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d

c-

calculation, together with those based on the truncated b
approximation. For the latter we show the total transmiss
probability as well as the independent contributions of
direct (T5Ṽ) and the indirect (T5ṼGṼ) components of
Eq. ~28!. Figure 7~c! shows similar results for a one
dimensional barrier obtained by taking a straight path alo
z50, the line connecting the two well centers. Note that
peaks in Fig. 7~b! lie at higher energies due to the larg
value of the two-dimensional zero-point energy.

We note again that in the calculations, which lead
Figs. 4–7, we have disregarded the small energy shifts a
ciated with the real part ofL @Eq. ~24!#, i.e., we have ne-
glected the termsD defined in Eq.~25!. While this approxi-
mation has a very small effect on the quality of the resu
displayed in Figs. 4–6, its effect is clearly seen in Fig.
which corresponds to a system in which narrower barrie
therefore larger couplings, exist between the zero-order w
states and the continua.

It is evident from all the results displayed above th
tight binding models for bridge assisted tunneling can p
vide a good description of the transmission process at
not too far from resonance. The quality of this descripti
obviously depends on the number of intermediate qu
bound barrier states that are included in the truncated ba
Because of the exponential dependence of tunneling on
rier height, one tends to assume that a truncated basis b
on the lower energy bridge states should provide a g
description for deep tunneling below the resonance regi
This assumption is shown to be wrong. Its failure is seen
Figs. 4–7 in several ways.

~a! Figure 4~a! shows that the deviation of the truncate
basis~using the lowest state of each intermediate we!
model from the exact result increases as the incid
energy decreases below the resonance energy. This
viation increases considerably when the intermedi
well supports more than one bound state but only
lowest one is taken in the truncated basis~Fig. 4b!.
Increasing the basis by taking more zero-order w
states may improve the quality of the result at so
energies, but may create other problems@see point~b!#.

~b! Using truncated bases associated with a finite num
of intermediate barrier levels may give rise to interfe
ence artifacts that result in unphysical features in
transmission spectrum. This is seen in Fig. 4~c!, as well
as in Figs. 5~a! and 5~b!. With our choice of zero-order
basis functions, the dip atE>2.3 eV in Fig. 4~c! results
from destructive interference between the two pa
ways associated with the two intermediate levels, wh
the origin of the unphysical dip atE>3.2 eV in Fig. 5
is simply related to the vanishing of the effective co
pling Ṽ125H122ES12 between the two intermediat
levels atE5H12/S12. @It is interesting to note that a
cruder approximation which replacesṼ12(E) by
Ṽ12(E1) ~hereE15E2! eliminates this dip, but yields a
worse approximation to the exact result in the ne
resonance region~Fig. 5~a!#.

~c! The behavior of the ‘‘b parameter’’ as a function of the
incident energyE ~Fig. 6! shows a dramatic discrep

lar
ll

ell.
and
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ancy between the exact result and the result obtai
from the truncated basis representation. The exact
pendence ofb on the tunneling energy shows a rap
decrease ofb when E increases from zero toward th
energy of the first resonance. The vanishing ofb for
resonance transmission indicates that the expone
dependence ansatz, Eq.~29!, does not hold at and nea
the resonance energy, as is well known. The result
b(E) using the truncated basis approximation devia
from the exact result in two ways: First, it shows th
signature of the unphysical dip in Figs. 5~a! and 5~b! as
a maximum inb: As discussed above, this dip is ass
ciated with the~unphysical! vanishing of the nearest
neighbor effective couplingṼj , j 115H j , j 112ESj , j 11 ,
which implies a maximum inb at the corresponding
energy. Second, at lower incident energies this
physicalb increases rather than decreases with incre
ing E. This behavior can be traced to the fact that
uE2Ej u@H j , j 11 /Sj , j 11 the interstate coupling param
eter uṼj , j 11(E)u2/(E2Ej ) becomes linear inEj2E,
rather then inversely proportional to it.22 In the ap-
proximation which replacesṼj , j 11(El) by Ṽj , j 11(Ej )
@dotted line in Fig. 6~a!#, b(E) decreases with increas
ing E for energies far below resonance, and furth
more the unphysical interference peak is absent. S
except close to resonance, the value predicted by th
approximations strongly deviates from the exact res

Finally, consider the two-dimensional case of Fig. 7. A
considerations discussed in the one-dimensional case a
also here; however, an important additional factor is the f
that the relative contribution of the ‘‘direct’’ or ‘‘through
space’’ route to transmission is now enhanced by the
that the quasibound intermediate states are localized in
tively small neighborhoods of the barrier. Obviously, for
barrier of infinite spatial size in the direction~s! normal to the
tunneling and with a finite number of local intermedia
wells, the direct transmission component will always
dominant for an incident plane wave. This is also seen in
model system, characterized by a large finitedx , by compar-
ing Figs. 7~b! and 7~c!. For this reason, the agreement b
tween the exact result and the truncated basis approxima
is considerably better in the two-dimensional calculat
than in the corresponding one-dimensional system. In
low energy regime, where the indirect tunneling compon
shows again the unphysical behavior discussed above
transmission is dominated by the direct component, wh
as seen in Sec. III, is described well by our approximatio

In view of the results discussed above it is important
find a criterion for the size of the basis set needed for
calculation of bridge assisted tunneling. This question will
studied separately; however, the following reasoning may
useful: Let DE5uE2EBu be the energy gap between th
tunneling energyE and the nearest bridge levelEB . The
bridge level assists tunneling by being virtually occupied
a time scalet5\uE2EBu21. By the same reasoning, othe
bridge levelsB8 within the same energy range fromEB , i.e.,
uEB82EBu<uE2EBu, should be included in the calculation
For the examples described in Sec. IV this will involve co
Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
d
e-

ial

r
s

-

-
s-
r

-
ll,
se
t.

l
ply
ct

ct
la-

r

-
on

e
t
he
,

.

e
e
e

n

-

tinuum states with energies above the barrier top when we
far below resonance.

V. CONCLUSIONS

In this paper we have addressed two issues concer
tunneling transmission across a potential barrier.~1! A rela-
tionship was established between the conventional appro
that invokes stationary scattering theory and the steady-s
solution of the time-dependent theory based on stand
wave representation of the incoming and outgoing contin
The latter approximation makes it easier to make con
between the present formalism and between the stan
theory of electron transfer between localized donor and
ceptor states.~2! For simple super-exchange models we ha
compared the transmission probability calculated with tru
cated basis sets to exact analytical or numerical solutio
We have shown that using truncated basis sets base
lower zero-order bound states in the bridge to describe d
tunneling can fail badly, even though such models can
scribe successfully transmission near the corresponding r
nances. We conclude that, for deep tunneling, such calc
tions should be regarded with caution, and approaches b
on appropriate pseudopotentials may sometimes be adva
geous.
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APPENDIX A

Here we list, as examples, the expressions for the c
pling and overlap matrix elements between the wave fu
tions defined in Eqs.~1! and ~2!. We focus on the simple
barrier case described by Fig. 2, for which the differentk’s
andk’s are given by Eq.~3! with U015UN21,N5UB . Con-
tinuity conditions yield

Al
~2!52

k l1 ik l

k l2 ik l
Al

~1! ; Bl52
2ik l

k l2 ik l
Al

~1! , ~A1!

and, similarly,

Ar
~2!52

k r2 ikr

k r1 ikr
Ar

~1! ; Br5
2ikr

k r1 ikr
Ar

~1! . ~A2!

It is convenient to express the overlap matrix elements
tween ‘‘right’’ and ‘‘left’’ states as a sum over contribution
from regionsL (x,xL), B (xL<x,xR), andR (x>xR): see
Fig. 2,

Slr [E
2`

`

dxC l* ~x!C r~x!5Slr
L 1Slr

B 1Slr
R , ~A3!

where Slr
L [*

2`
xL dxC l* (x)C r(x), Slr

B[*xL

xRdxC l* (x)C r(x),

andSlr
R[*xR

` dxC l* (x)C r(x) are given by

Slr
L 524AL

~1!* AR
~1!

klkr~k l1k r !

~k l1 ik l !~k r1 ikr !~kl
21k r

2!
e2krd, ~A4!
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Slr
R524AL

~1!* AR
~1!

klkr~k l1k r !

~k l1 ik l !~k r1 ikr !~kr
21k l

2!
e2k l d, ~A5!

Slr
B 54AL

~1!* AR
~1!

klkr

~k l1 ik l !~k r1 ikr !

e2k l d2e2krd

k l2k r
. ~A6!

In terms of these partial overlaps the Hamiltonian mat
elements between states from the$l% and $r% manifolds are
easily shown to be given by

H lr [E
2`

`

dxC l* ~x!HC r~x!

5ErSlr 2~UB2UL!Slr
L 5ElSlr 2~UB2UR!Slr

R . ~A7!

APPENDIX B

Here we derive the generalized golden rule given by
~10!. It should be noted that this generalization correspo
to a situation where nonzero overlap exists between in
and final states, and some care has to be exercised i
derivation under this circumstance. To this end, analyze
decay of an initial level coupled to a continuum of states i
representation defined by Eq.~9!. It will prove useful to con-
sider both the initial value problem and the steady-state
lution.

1. The initial value problem

Let the time-dependent wave function be of the form

C~ t !5cl~ t !c l1(
r

cr~ t !c r , ~B1!

with cl(t50)51 and cr(t50)50. Inserting~B1! into the
time-dependent Schro¨dinger equation leads to equations f
the coefficientsc,

ċl1(
r

Slr ċr52 iElcl2 i(
r

Hlr cr ,

~B2!
Srl ċl1 ċr52 iH rl cl2 iErcr .

Solving by Laplace transform,ĉ(z)5*0
`dte2ztc(t), we get

ĉl~z!5S 12(
r

~zSlr 1 iH lr !Srl

z1 iEr
D

3Fz1 iEl2(
r

~zSlr 1 iH lr !~zSrl 1 iH rl !

z1 iEr
G21

. ~B3!

Note that if all the overlap termsS vanish, Eq.~B3! is re-
duced to

ĉl~z!5Fz1 iEl1(
r

uHlr u2

z1 iEr
G21

, ~B38!

which, upon employing inverse Laplace transform and a
standard transformations, yieldsc(t) in the form

cl~ t !5
1

2p E
2`

`

dEe2 iEt
1

E2El2L l l ~E1 ih!
, ~B4!

where
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L l l ~z!5(
r

uHlr u2

z2Er
~B5!

and h→0. If the energy dependence ofL l l can be disre-

garded nearE>El , Eq. ~B4! leads tocl(t)5e2 iẼ l t2(G l /2)t,
with Ẽl5PP( r uHlr u2/(El2Er) and

G l5Kl→$r %52p(
r

uHlr u2d~El2Er !52p~ uHlr u2rR!Er5El
.

~B6!

To extract similar information from Eq.~B3! we disregard
the correction to unity in the numerator, and rewrite the r
of the expression forĉl(z) in the form23

ĉl~z!5
1

z1 iEl1(
r

uHlr 2 izSlr u2

z1 iEr

. ~B7!

The same procedure used to get Eqs.~B4! and~B5! from Eq.
~B38! now leads again to Eq.~B4!, with Eq.~B5! replaced by

S l l ~z!5(
r

uHlr 2zSlr u2

z2Er
. ~B8!

Obviously, the golden-rule expression~B6! now becomes

G l52p~ uHlr 2ElSlr u2rR!Er5El
, ~B9!

as claimed.

2. Steady-state solution

Starting again from Eq.~B2!, we now consider a stead
state in which the amplitude of the levell is restricted, by
some unspecified means, to behave as if the level was
coupled to the$r% continuum, i.e.,cl(t)5cle

2 iEl t, where the
constantcl can be chosen to be 1. We want to compute
steady-state rate of transferring population to the continu
Using the lower of Eqs.~B2! in the form

ċr52 iErcr2 i ~Hrl 2ElSrl !e
2 iEl tcl , ~B10!

yields

cr~ t !5~Hrl 2ElSrl !
e2 iEr t2e2 iEl t

Er2El
cl ~B11!

and

(
r

ucr~ t !u254ucl u2E dErr~Er !uHlr 2ElSrl u2

3
sin2@ 1

2~El2Er !t#

~El2Er !
2 . ~B12!

For t→`, sin2(xt/2)/x2→1/2ptd(x), so

Kl→$r %[
1

ucl u2

d

dt (l
ucr~ t !u252p~ uHlr 2ElSlr u2rR!Er5El

.

~B13!
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