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Abstract

Structural disorder is an inherent property of solid materials, which can support a macro-
scopic ionic current. Many transport phenomena in these solid ionic conductors appear to be
related to concepts from percolation theory. We demonstrate this for three classes of materials,
namely (i) dispersed ionic conductors, which show conductance properties that can be related
to random electrical networks, (ii) ion-doped network glasses, whose concentration-dependent
di�usion properties are accessible by critical path analysis, and (iii) polymer ionic conductors.
For the latter we discuss Monte Carlo simulations which indicate the applicability of dynamic
bond percolation theory. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Among the best-known physical realizations of the model of classical percolative
transport is electrical conduction in random insulator–conductor composites [1,2] or in
non-homogeneous ultrathin metallic �lms [3]. Many experiments on such systems have
revealed even the detailed critical properties associated with the percolation threshold,
as predicted by lattice or continuum percolation theories [4–7]. Moreover, percolation
concepts have proved very useful in more general studies of transport phenomena in
disordered media, including the description of transport at the atomic level.
This review is concerned with percolation concepts for ionic transport in disordered

solids, a �eld which is of great practical importance from the electrochemical point
of view. In addition, the large variety of solid ion-conducting materials enables us
to perform fundamental studies of microscopic di�usion processes in many di�erent
random structures. Section 2 summarizes the work on dispersed ionic conductors, whose
conductance and dielectric properties can be mapped onto electrical impedance networks
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[8,9]. In Section 3 we turn to some aspects of percolative transport in glasses, while
Section 4 describes Monte Carlo studies of polymer electrolytes and discusses a possible
relationship with the concept of dynamic bond percolation [10–12]. A brief summary
is contained in Section 5.

2. Dispersed ionic conductors

Heterogeneous mixtures of two di�erent ionic conductors or of an ion-conducting
and an insulating component have been prepared experimentally in very di�erent com-
binations [13]. Particular interest has focused on such mixtures after the discovery that
insulating �ne particles, with sizes of the order of 1�m, dispersed in a conductive
medium (e.g. Al2O3 in LiI) can lead to a conductivity enhancement [14]. This e�ect
has been found to arise from the formation of a defective, highly conducting layer
following the boundaries between the conducting and the insulating phase [15,16].
E�ectively, the system thus contains three phases. Theoretical studies therefore have fo-
cused on suitable three-component impedance network models [8,9,17]. Fig. 1 shows a
two-dimensional illustration of such composites and a corresponding discretized model.
In its simplest version this model is constructed by randomly selecting a fraction p
of elementary squares on a square lattice, which represent the insulating phase (C),
while the remaining squares are the conducting phase (B). The distribution of both
phases leads to a correlated bond percolation model with three types of bonds and as-
sociated bond conductances �̂k ; k =A; B; C; as de�ned in Fig. 1b. For example, bonds
in the boundary between phases B and C correspond to the highly conducting compo-
nent (A). The analogous construction for three dimensions is obvious. Finite frequency
e�ects are readily included, when we allow bond conductances to be complex [18].
For simplicity, we may assume the ideal behaviour �̂k = �k − i!Ck including constant
zero-frequency conductances �k and capacitance elements Ck , but more general forms

Fig. 1. (a) Two-dimensional illustration of dispersed ionic conductors showing an enhanced conductivity
within a narrow interfacial region. (b) Three-component bond percolation model, de�ned by the random
mixture of an ionic conductor (unshaded) and an insulator (shaded). Bonds within the conducting and
insulating region have conductances �̂B and �̂C , respectively, while interfacial bonds have a conductance �̂A.
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can be chosen, when necessary. Clearly, the experimental situation described above
requires that �A=�B = �/1; �C = 0.
A remarkable feature of this model is the existence of two threshold concentrations.

At p= p′
c, interface percolation (i.e. percolation of C-bonds) sets in, whereas at p=

p′′
c =1−p′

c (normally not accessible by experiment) the system undergoes a conductor–
insulator transition. In two dimensions (d=2) we have p′

c=0:41, while in d=3; p
′
c=

0:097, corresponding to the threshold for second-neighbour (d=2) and third-neighbour
(d=3) site percolation on a d-dimensional cubic lattice, respectively. At zero frequency,
the total, averaged conductance � can be obtained from Monte Carlo simulation. Good
agreement with experiments is obtained, which show a broad maximum in � as a
function of p in the range between the two thresholds [19]. Generally, the conductances
�A and �B will display di�erent activation energies, which means that the parameter
� can be controlled via the temperature. This in principle o�ers the possibility to
detect critical transport behaviour associated with interface percolation [17]. In the
vicinity of p′

c it seems interesting in addition to study critical AC-e�ects [18,20]. For
example, at p′

c the e�ective capacitance Ce� = lim!→∞ Im�(!)=! should scale with �
as Ce� ∼ �1−u. The exponent u= �=(�+ s) is given in terms of the critical exponents
� and s, describing the near-threshold behaviour of the averaged conductivity in a
two-component conductor–insulator or conductor–superconductor mixture, respectively.
In d= 3, we have � and s ' 0:7. AC-properties in the whole range of p-values have
been calculated by renormalisation group techniques [18].
Several extensions of this model are conceivable. In the case of DC-transport (!=0),

the variation of the total conductivity with the size of dispersed particles has been
calculated and successfully compared with experiments [21]. Subsequent work also
emphasised critical aspects of continuum percolation in dispersed ionic conductors [22].

3. Counterion e�ects in glasses

Network glasses with SiO2 – or B2O3 – building units can show high ionic con-
ductivities after doping with appropriate network modi�ers (e.g. alkali oxides) [23].
Cation di�usion in these glassy ionic conductors is accompanied by several remark-
able phenomena, like conductivity dispersion, including a nearly constant dielectric loss
at high frequencies [24,25], or a sensitive dependence of the DC-conductivity on the
ion concentration. In addition, transport properties of glasses containing two species
of migrating alkali ions generally depend on their mixing ratio in a highly non-linear
way [26–28]. Percolation ideas for explaining these “mixed-alkali e�ects”, which can
also occur in certain crystalline ionic conductors, are presented in the contributions by
Ingram and by Maass and Meyer to this volume.
For single-alkali glasses at low doping level one expects that the migrating alkali

ions get temporarily trapped by the immobile counterions (e.g. oxygen ions) which
are introduced into the glassy network through the doping process. This counterion
model has proved very useful in explaining frequency-dependent conductivities as well
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as DC-transport properties as a function of ion concentration c. For details the reader
is referred to the original work, which is largely based on Monte Carlo simulation
of charged particle di�usion in the presence of both Coulombic traps and interparticle
interactions [29,30].
For brevity, let us focus our discussion on the di�usion constant D(c), which deter-

mines the DC-conductivity. Experimentally, D(c) is known to increase drastically with
c, but to level o� for strongly doped samples [23]. This behaviour mainly results from
a decrease in the associated activation energy E0(c) with c. Qualitatively, such trends
with c can be understood by simple percolation arguments. Within a single-particle pic-
ture, an ion will di�use along the most favourable paths within the energy landscape
determined by the counterions. Critical path arguments for random walks in a disor-
dered energy landscape have been employed earlier in the context of electron transport
in amorphous semi-conductors [31] and also for superionic glasses [32,33]. Here, in
order to estimate the dominant activation energy E0(c), one �rst determines the saddle
point energy E(r) midway between two Coulombic trapping centres at a distance 2r
[34]. Introducing rs as a measure of the density of Coulombic traps by (4�r3s )

−1 ˙ c,
we can estimate E0(c) ' E(r0). Here r0 = 0:69rs is the critical radius for percolation
in a system of randomly placed (overlapping) spheres. For the di�usion constant D(c)
one thus obtains D(c) = const: r20 exp(−E(r0)=kBT ). Because of important many-body
e�ects contained in the counterion model, this expression cannot be expected to re-
produce the simulations for D(c) in a quantitative manner. Nevertheless, as shown in
Fig. 2 [35], it accounts for the experimentally observed increase of D(c) for small
c and, setting E0(c∗) = kBT , it yields a reasonable estimate of the characteristic con-
centration c∗, beyond which the strongly doped regime with nearly constant activation
energy is reached.

4. Polymer ionic conductors

Chain polymers carrying an electro-negative atom (oxygen or nitrogen) in their re-
peat unit, can act as solvents for certain salts, as a consequence of the attractive
interaction between chains and cations. Well-known examples are Li-salts dissolved in
polyethylene-oxide (PEO). At temperatures su�ciently above their glass transition tem-
perature these polymer-salt solutions show signi�cant DC-mobilities. Materials of this
type are known as polymer electrolytes [36,37] and are used, for example, in battery
applications.
Thermodynamical studies, optical measurements and di�usion studies have revealed

a subtle interplay between ionic and polymer network degrees of freedom [36–40].
Deeper insight into this problem emerged from Monte Carlo simulations of a micro-
scopic di�usion model designed for PEO-based electrolytes [39–42]. It consists of
interacting lattice chains and two species of point particles, which represent anions and
cations. The latter can bind speci�c beads (oxygen beads) in the chains. Details of this
model are described elsewhere [42]. Its main features are:
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Fig. 2. Di�usion constant D(c) versus ion-concentration in the counterion model for two di�erent tempera-
tures, V=kBT = 15 and 20, where V is a typical Coulomb energy. Data points are from simulation. Dashed
and dotted line result from critical path analysis. A constant prefactor in the analytic expression for D(c)
(see text) has beeen chosen such that the curves agree with the simulations at the respective concentrations
c∗1 and c

∗
2 , which characterize the cross-over to the strongly doped regime.

(i) The centre-of-mass di�usion constants D(P)(T; c) of the polymer chains nicely
follow the Vogel–Fulcher–Tammann (VTF) law, as shown in Fig. 3. VTF-temperatures
T0(c) increase nearly linearly with the concentration c of sites occupied by ions, see
the inset in Fig. 3. This trend is consistent with the experimentally known increase in
the glass transition temperature upon adding salt [43,44].
(ii) Cation di�usion constants D+(T; c) as a function of temperature T are propor-

tional to [D(P)(T; c)]n+(c) over at least three decades in D(P). The exponent n+(c) de-
creases with c, again see Fig. 3. Qualitatively, we expect that chain di�usion constants
reect the behaviour of the viscosity of the system. The proportionality mentioned
before therefore is reminiscent of Walden’s rule [45,46], which relates electrical con-
ductivities of ionic solutions to their viscosity. The appearance of a fractional power
in the relation between D+ and D(P) appears interesting in connection with recent
measurements of the conductivity–viscosity relationship in ionic melts [47].
(iii) Anion di�usion constants as a function of both T and c approximatively scale

as D−(T; c) ' f(D(P)(T; c)), where f(x) ' x0:2 for the majority of simulation data for
D−.
The fundamental di�erence between anion and cation di�usion [48] is not surprising

because anion–polymer interactions in the model of Ref. [42] are always repulsive. The
anions thus �nd themselves in an environment where pathways open up and rearrange
according to the chain motion, which in this way facilitates anion di�usion. This picture
bears the essential idea of the dynamic bond percolation (DBP) model, proposed long
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Fig. 3. Simulated di�usion constants of polymer chains, D(P), normalized by the bare di�usion constant D0
of point particles, as a function of temperature for di�erent ion concentrations, c=0 (©); 0.02 ( ); 0.04 (♦);
0.06 (4), demonstrating VTF-behaviour. The inset shows VTF-temperatures T0(c) (•) and exponents n+(c)
( ) characterizing a power-law relation D+ ˙ [D(P)]n+ .

ago, in connection with a qualitative description of di�usion data and viscosities in
polymer electrolytes [10,49]. Basically, in the DBP one is considering the random
walk of a single particle in a bond percolation model, with a total fraction p of broken
bonds, but bonds independently uctuate at a rate � between two states, where they
are conducting or broken, respectively. An important outcome of this model is the fact
that its frequency-dependent di�usivity D(−i!; p; �), irrespective of the exact form of
the di�usivity of the frozen lattice, D(f)(−i!; p) = D(−i!; p; 0), can be obtained by
analytic continuation [50],

D(−i!; p; �) = D(f)(−i!+ �; p) : (1)

In fact, the simulation results for D− in our complete polymer electrolyte model, see
(iii), imply that only one time scale characterizing the polymer network dynamics is
relevant with respect to D−, in agreement with the DBP-concept for anion di�usion.
In a preliminary attempt to work out this idea more explicitly, we con�ne ourselves

to !=0 and assume D(−) to be identical with the di�usion constant of an underlying,
e�ective DBP-model. This procedure, in fact, is in the spirit of e�ective medium the-
ories developed for interacting lattice gases with the help of the DBP [51]. In view of
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Fig. 4. Relation between the rate � for bond uctuations in an e�ective DBP-model and polymer chain
di�usion constants, as obtained from simulation.

Eq. (1) we therefore write

D−(T; c) = D(f)(�; p) : (2)

Here the parameter p is a purely formal quantity which may not be related directly
to the concentrations of polymer beads or ions in our complete model. Neverthe-
less, we can argue that p should be slightly above the threshold pc of the associated
DBP-model, because the case of a frozen lattice (� = 0) should be recovered at the
VTF-temperature T0, and di�usion constants D(−) extrapolated to T0 (corresponding to
�= 0 in Eq. (2)) are very small, actually of the order of D−=D0∼10−4.
Moreover, the temperature range considered in the simulations, which is well above

T0, should correspond to the regime of fast bond uctuations. Standard scaling theory
therefore yields D(f)(�; p)∼ �1−k , where k is the exponent describing anomalous dif-
fusion in a percolation system at criticality. Its value in three dimensions is k ∼ 0:3. It
follows that D−(T; c)∼ �1−k .
This result allows us to relate the relaxation rate � to D(P), as shown in Fig. 4.

Obviously, as D(P)=D0 becomes small (smaller than about 10−3) � decreases more
slowly than D(P). This trend seems reasonable, because segmental motions of the chains
may still facilitate anion di�usion while the centre-of-mass motion of chains is almost
frozen.
A �rm theory of mapping the polymer electrolyte model onto a DBP model might

proceed as follows. In a �rst step one can simulate the anion motion in a frozen
polymer environment and thereby extract the function D(f)(−i!). Second, following
Ref. [51], one may obtain the relaxation rate � directly from the simulated decay of
the local occupational correlation function in the case of moving chains. This second
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step requires simulating the complete polymer electrolyte model only for relatively
short times. Combination of both steps by using D− =D(f)(�) should yield the anion
di�usion constants. (Note that here the parameter p becomes irrelevant.) It would be
interesting to test the validity of such an approach, which would save a large amount
of computational e�ort needed in long-time simulations of the complete polymer elec-
trolyte model.

5. Summary

We demonstrated the utility of percolation concepts for ionic transport in various
disordered solids. As a �rst example, we considered DC-transport and dynamic proper-
ties of dispersed ionic conductors, which involve an enhanced interfacial conductivity.
This problem can be mapped in a rather direct way onto a correlated three-component
electrical network. Two threshold concentrations, p′

c and p
′′
c , can be identi�ed. Criti-

cal properties related to them are analogous to random conductor–superconductor and
normal conductor–insulator networks, respectively. Experimentally, the shape of curves,
describing the overall conductance versus the concentration p of dispersed particles,
shows large variations in the di�erent composites, and certainly depends on the size
and shape distributions and on possible correlated spatial arrangements of the insulat-
ing particles. It is important to note that such e�ects can be taken into account in a
straightforward manner within suitably generalized network models.
Furthermore, some percolation ideas for transport in weakly doped network glasses

were advanced, based on the spirit of critical path analysis. Very recent Monte Carlo
studies of di�usion in polymer electrolytes have revived the concept, suggested long
ago, of an underlying e�ective dynamic bond percolation model. This concept, if suc-
cessful, could greatly simplify the problem of obtaining quantitative information on the
dynamics at long times in a coupled ion-polymer system.
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