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Abstract

The dependence of solvation dynamics on the thermodynamic state of the solvent is studied numerically for simple model
polar solvents. The solvent is described by the Stockmayer model, characterized by Lennard-Jones and dipolar intermolecu-

Ž .lar interactions. The solute–solvent coupling is given by a nonpolar Lennard-Jones and, for a charged solute, by a
charge-dipole interaction. We study thermodynamic states which are representative of the liquid and vapor phases, of the
neighborhood of the critical point, and of the supercritical region of the solvent. Statics and dynamics are studied by
investigating equilibrium fluctuations in the electrostatic potential induced by the solvent at the solute position and the
fluctuations in the nonpolar part of the solute–solvent interaction. The relaxation of these fluctuations corresponds, within
linear response theory, to the dynamics of nonequilibrium solvation, and the applicability of linear response can be glimmed
from comparing the results obtained for charged and uncharged solutes. For a few selected thermodynamic states, we also
simulate the corresponding nonequilibrium solvation, starting from either a neutral or a charged solute. We find that both
static and dynamical aspects of the solvation process are strongly affected by the density of the neat solvent. Effects of
temperature are less pronounced. On lowering the solvent density, the relaxation of dynamic fluctuations gets increasingly
more dependent on the solute charge, i.e. the validity of a linear response description decreases. The main characteristics of
the dynamics can be largely traced to aspects of static structure. In addition, the effect of proximity to the critical point on
the solvent static and dynamic response is examined. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Recent work on solvation dynamics in polar liq-
Ž w x .uids e.g. 1–4 and references cited therein has

focused on the study of system response to a sudden
change in the charge distribution of the solute. The
typical quantity of interest in such studies is the
solvation function

² : ² :D E t y D E `Ž . Ž .
S t s , 1Ž . Ž .² : ² :D E 0 y D E `Ž . Ž .

² Ž .:where D E t is an ensemble average of the change

in the solute–solvent interaction energy observed at
time t after a sudden change in the solute charge
distribution at time ts0. In the linear response

Ž .regime the function S t is well approximated by an
equilibrium correlation function. For a sudden change
in the magnitude of a solute point charge, this corre-
lation function is given by

² :d V t d V 0Ž . Ž .
C t s , 2Ž . Ž .V 2² :d V

Ž . Ž . ² :where d V t sV t y V are the fluctuations in
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Ž .the electrical potential V t induced by the solvent at
the solute position. Numerical simulations have
shown that the linear response assumption works
reasonably well for many cases of polar solvation
w x5–11 , although cases where it does not hold have

w xbeen reported 5,12–15 .
Most experimental studies on polar solvation and

consequently theoretical and numerical simulation
work have focused on systems at ambient tempera-
ture and pressure. Recent studies have considered
solvation in different regions of the thermodynamic
phase space, mostly focusing on equilibrium aspects

wof solvation in supercritical nonpolar solvents 16–
x19 . In this paper we use numerical simulations to

investigate issues of solvation in polar solvents under
variation of the thermodynamic state of the solvent.
In particular, we focus on the dependence of equilib-
rium and nonequilibrium solvation on variations of
the solvent density and temperature. The thermody-
namic states considered are representatives of the
liquid and of the vapor phases, and of the critical and
supercritical regions. Since we examine generic is-
sues we have chosen a generic model for the solu-
tion: A spherical solute, either neutral or with a point
charge at its center, in a Stockmayer fluid character-

Ž .ized by a combination of Lennard-Jones LJ and
dipolar interaction. This model was used in the past
to study classical solvation dynamics under ambient

w xtemperature and pressure 9–11 , and these studies
are extended here to other thermodynamic regimes:
coexisting liquid and gas phases, the vicinity of the
solvent critical point and the supercritical region.
The latter thermodynamic regime is of interest both
because of the importance of supercritical solvents in

w xcurrent technologies 20,21 and in view of recent
w xexperimental and numerical studies 22–26,16–19 .

These studies indicate that the thermodynamic char-
acter of solvation in a supercritical solvent is very
different from the corresponding process at ambient

Ž .conditions for at least three reasons: a The dielec-
tric constant of a supercritical solvent is considerably
lower than that of the corresponding normal solvent
and can be varied continuously by changing tempera-
ture and density; therefore dielectric saturation ef-
fects and ionic association may be more pronounced.
Ž .b Solvent clustering about the solute molecule may
be an important factor in the supercritical solvent

Ž .response, especially in the low density regime. c

Near the critical point solvent compressibility is
large, and this may increase the relative importance

Žof electrostriction i.e. translational as opposed to
.rotational relaxation in the solvation process. In

particular, the possible importance of such effects in
supercritical solvation suggests that the validity of
linear response theory in the description of solvation
thermodynamics and dynamics may strongly depend
on the solvent density. These issues will be ad-
dressed by the present numerical experiments.

At the critical point some aspects of the solvent
response become singular. While it is not clear that
this singular character of the solvent will show itself
in the relatively local phenomenon of solvation, it is
interesting to examine several static and dynamic
characteristics of the solvation process as we go
through the critical region to see if some signature of
critical behavior appears. We find, in agreement with

w xearlier observations in other systems 22–24 , that
the transition through the critical region does show
itself in some of the solvation properties, although in
view of the limited number of thermodynamic states
investigated and of the finite, relatively small size of
the systems studied, the magnitude and significance
of the effect should not be deduced from the results
of the present simulations.

In the following section we describe the simula-
tion procedure. Section 3 considers the equilibrium
aspects of the solvation process, and the solvation
structure. In Section 4, we present the results of our
dynamical studies and discuss the dependence of the
dynamical response on solvent density and tempera-
ture, as well as the validity of linear response. We
summarize our findings in Section 5.

2. Simulation procedure

The Stockmayer solvent is characterized by its
mass M, moment of inertia I, dipole moment m, and
the Lennard-Jones parameters e and s . The solute
properties are determined by its charge q and mass
M , and by the Lennard-Jones parameters for thes

solute–solvent interaction, e and s . The solute–s s

solvent interaction is thus a superposition of short
range Lennard-Jones potential and electrostatic
charge-dipole interactions. Each of the simulated
systems contains N particles in a cubic box of side
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Ž 3.length L volume VsL , subject to periodic bound-
ary conditions. All pair interactions are cut off at a
distance R sLr2. The electrostatic interactions arec

supplemented by terms associated with reaction field
boundary conditions. Further details and expressions
for the interaction potentials are given in Appendix
A.

The solvent parameters are taken to approximate
Ž .trifluoromethane CHF , using a recent compilation3

of Stockmayer potential parameters determined from
w xphase coexistence data 27 : ms1.62 D, erk sB

Ž .199.6 K k is the Boltzmann constant and ssB
˚4.007 A, and using Ms70.01 amu and Is48.52

˚2 Ž .amu A . We determined the latter I using the
w xstructure of CHF in the liquid phase 28 . In re-3

Ž ) ) ) . )duced units e s1, s s1, M s1 we get m

Ž 3.1r2 ) Ž 2 .s mr es s 1.217 and I s Ir Ms s
Ž 2 .1r20.04316. The unit of time is Ms re f2.6 ps.

In these reduced units, values for the number density
rsNrV and the temperature T are determined by
r ) srs 3 and T ) sk Tre . In the simulations de-B

scribed here the molecular parameters are held fixed
while the thermodynamic state of the solute is var-
ied. For simplicity we take e se , s ss and M ss s s

M. The solute charge is varied between qs0 au and
qs1 au. In a typical simulation we use Ns256
particles.

For the implementation of the reaction field
boundary conditions as well as for comparison with

Ž .dielectric continuum theories of solvation, the value
of the dielectric constant e of our neat solvent in0

the different thermodynamic states is needed. For a
pure Stockmayer fluid, e was shown to satisfy well0

w xthe following polynomial relation 29 :

e y s1q2.932 yq4.210 y2Ž .0

y1.323 y3 q0.6115y4 ,

0FyF3.31 , 3Ž .
where the dipolar strength y is given in terms of the
solvent number density rsNrV, the molecular
dipole m and the temperature T by

4prm2

ys . 4Ž .
9k TB

Ž . Ž .The e values determined by Eqs. 3 and 4 for our0

systems are then used for the exterior dielectric
constant e

X which appears in the reaction field

Ž .boundary conditions see Appendix A and for com-
Ž .parison with analytical models in Sections 3 and 4 .

Taking the exterior dielectric constant e
X to be equal

Ž . Ž .to the e value determined by Eqs. 3 and 4 rather0

than computing it self-consistently for each thermo-
dynamic state is expected to be of minor influence
on the data reported in the present work, since the
precise value of e

X was shown to be of weak
influence on the coexistence properties and the struc-

w xture of coexisting phases 30 , as well as on the
w xsimulated dynamics 9 . Note that we use the same

e values for both the neat solvent and the corre-0
Žsponding solute–solvent system where one solute

.particle has been replaced by the solute . This scheme
conforms with the assumption of a dilute solution.

The thermodynamic states of the neat solvent are
studied using the Gibbs ensemble Monte Carlo tech-

w xnique, originally introduced by Panagiotopoulos 31
and later applied by others to the investigation of

wvapor-liquid equilibria of Stockmayer fluids 32–
x34,27,30 . In the present simulations we follow the

Monte Carlo sampling procedure of van Leeuwen et
w xal. 33 while using reaction field boundary condi-

w xtions as described by Garzon et al. 30 . We deter-´
mined the values of the critical temperature T and ofc

the critical density r following the common proce-c
w xdure 32–34,27,30 by fitting the numerical data to

b Žthe scaling law r yr sAP T yT where rŽ .l v c l

and r are, respectively, the densities of the coexist-v

ing liquid and vapor determined by a simulation at
temperature T , and where the value bs0.32 was

.taken to be fixed during the fitting procedure and to
Ž .the law of rectilinear diameters, r qr r2sr ql v c

BP T yT . In using this procedure we have fol-Ž .c

lowed others in disregarding subtle issues associated
with the approach to criticality in finite systems,
such issues were investigated by Mon and Binder
w x35 .

Following this procedure, we determined the ap-
proximate vapor–liquid coexistence curve of our
neat solvent using a total of 512 particles in the two
coexisting phases. The critical point of our Stock-
mayer ‘‘CHF ’’ fluid is obtained in this way to be3
Ž ) ) . Ž .r ,T s 0.31,1.50 in agreement with vanc c

w xLeeuwen 34,27 and the resulting coexistence dia-
gram is shown in Fig. 1. Points on this diagram will
be denoted by the corresponding values of the re-

Ž ) ) .duced density and temperature as r ,T . In Sec-
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tion 4, we consider solvent dynamics and response in
several thermodynamic states, marked on the phase

Ž ) ) .diagram of Fig. 1 and denoted by r ,T , is1,2,3i j

and js1,2,3. The corresponding values of density
and temperature are r ) s0.10, r ) s0.31, r ) s1 2 3

0.56 and T ) s1.40, T ) s1.50, T ) s1.60. Addi-1 2 3

tional properties of these states are summarized in
) ) ) ) Ž ) ) .Table 1. Note that r sr and T sT . r ,T2 c 2 c 1 1

Ž ) ) .and r ,T correspond to the boundaries of the3 1

vapor-liquid coexistence region at T ). The states1

with T ) sT ) display density change at the critical2

temperature, while the states with T ) sT ) corre-3

spond to the supercritical regime.
Once the equilibrium thermodynamic states of

interest were determined, ensembles of correspond-
ing equilibrium configurations were generated for

Ž . Ž .these states using regular NVT Monte Carlo MC
evolution with Metropolis sampling. Typically, each
tenth MC-cycle is sampled during this production of
equilibrium data. Reported data for static fluctuations

Ž .and structure Section 3 is extracted from 5000 such
configurations for each thermodynamic state investi-

Ž .gated. Dynamics of the system Section 4 was
Ž .studied by classical molecular dynamics MD simu-

lations using the velocity Verlet algorithm with a
time step of D tf1.033 fs. These MD runs are

Fig. 1. The vapor-liquid coexistence curve of the simulated model
CHF solvent. The eight dots indicate the thermodynamic states3

investigated in this work. These states are denoted in the text by
Ž ) ) .r ,T with is1,2,3 and js1,2,3 and the correspondingi j

values of r ) and T ) are noted in the figure.i j

Table 1
The dipolar strength y and the corresponding dielectric constant
Ž .e y from the polynomial relation for the dielectric constant0

Ž Ž . Ž ..Eqs. 3 and 4 for the different thermodynamic states indicated
in Fig. 1

) ) )r r r1 2 3

)T y 0.13 0.40 0.723
Ž .e y 1.45 2.78 4.990

)T y 0.14 0.43 0.772
Ž .e y 1.48 2.94 5.380

)T y 0.15 0.831
Ž .e y 1.52 5.840

w xsimilar to those described by Neria et al. 9 , except
that the absolute magnitude of the molecular dipole

Žwas kept fixed using the RATTLE instead of the
. w xSHAKE algorithm 36 . The system was brought to

the desired temperature using Andersen thermaliza-
w xtion 37 . Reported data for the dynamics of equilib-

rium fluctuations is extracted from trajectories of a
total length of f500 ps. Data for nonequilibrium
solvation are averages over 50 runs, each starting
from an initial configurations taken from the equilib-

Ž .rium MD simulations at 100 fs intervals . All MC
and MD simulations were done at constant number
of particles and volume.

3. Equilibrium aspects

Some observations concerning the equilibrium
structure associated with solvation in the different
thermodynamic states of our model solvent are dis-
cussed in this section. We focus on the average

² : Želectrostatic potential V at the solute position the
. Ž .reaction potential , on the average nonpolar LJ part

² :of the solute–solvent interaction, U , on the cor-LJ
² 2:responding fluctuation amplitudes d V and

² 2 :dU and on structural aspects expressed by theLJ

distribution functions for the solvent density and for
the polarization density about the solute. These dis-
tribution functions are, respectively,

N1
g r s d ryR 5Ž . Ž . Ž .Ý0 s i¦ ;r is1

and
N1 mPRs i

g r s d ryR , 6Ž . Ž . Ž .Ý1 s i¦ ;r mRs iis1
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where R sR yR with the solute position R ands i s i s

the solvent particle positions R . In addition, it is ofi

interest to consider the number of solvent particles
Ž .N r within a neighborhood of radius r about the0 0

solute. If r is the radius of the first solvation shell,0
Ž .N r measures the ‘‘coordination number’’ about0

the solute. The normalized difference,

n r ;qŽ .0

s N r ;q y N r ;qs0 N r ;qs0 , 7Ž . Ž . Ž . Ž .0 0 0

where q is the solute charge, is a measure of the
electrostriction effect. In the computations reported

Žbelow we have used r s1.5s which lies see Fig.0
.2 between the first and second peaks of the pair

correlation function for the ‘‘normal fluid’’, i.e. the
Ž ) ) .fluid in the liquid state r ,T . In addition, we3 1

consider the average distance r and the averages

orientation cosu relative to the solute–solvent axiss

of the N solvent molecules nearest to the solute. Wes

have chosen N s8, which was found to be the orders
Ž ) ) .of the coordination number in the state r ,T3 1

Ž .Fig. 4 .
In what follows we focus on the solvent states

Ž ) ) . Ž ) ) .r ,T s 0.10,1.40 , r ,T s 0.60,1.40 ,Ž . Ž .1 1 3 1
Ž ) ) . Ž ) ) .r ,T s 0 .3 1 ,1 .5 0 an d r ,TŽ .2 2 2 3

Ž .s 0.31,1.60 see Fig. 1 . The first two are vaporŽ .
and liquid phases at coexistence, while the latter two
are in the critical and supercritical region, respec-

Ž ) ) . Ž ) ) .Fig. 2. Distribution functions of the solvent around the solute. Shown are results for the four thermodynamics states r ,T , r ,T ,1 1 3 1
Ž ) ) . Ž ) ) . Ž Ž .. Ž .r ,T , and r ,T . The full and dashed lines show the solvent density g , Eq. 5 at a distance r from a neutral qs0 and charged2 2 2 3 0
Ž . Ž . Ž Ž ..qs1 solute respectively. The dotted lines show the negative polarization density yg , Eq. 6 for solute charge qs1. Note that the1

ranges displayed for the distribution functions g are different for the different subfigures.
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² :Fig. 3. The reaction potential V versus solute charge q for the same four thermodynamic states as in Fig. 2. The full lines connect the
Ž Ž . Ž . Ž ..results from Monte Carlo simulations. The dotted and dashed lines correspond to the Born and the MSA models Eqs. 9 and 10 – 11 ,

respectively.

Ž .tively. Fig. 2 shows the distribution functions g r0
Ž .and g r in these states for solutes with point1

charge qs0 or qs1. Fig. 3 shows the dependence
² :of the reaction potential V on the solute charge q.

The reaction potential is related to the solvation free
energy W bysolv

q
X² :W s V dq . 8Ž .Hsolv

0

² :Under linear response, where V depends linearly
X ² :on the solute charge q , this yields W sq V r2.solv

² :Fig. 3 shows that in the range qs0 . . . 1 V
depends approximately linearly on q in all but the

Ž ) ) .vapor system r ,T . In the latter and to some1 1

extent in the critical and supercritical system a sig-
nificant super-linearity arises from the highly com-
pressible nature of the solvent which strongly pro-
motes electrostriction. Note that saturation of dipolar
orientation is another potential source of nonlinear-
ity. In fact, electrostriction and dielectric saturation
appear to affect the evolution of the reaction poten-
tial in an opposite manner, because the latter by itself
is expected to lead to a sublinear evolution with

Ž w x.increasing solute charge see also Refs. 38,7 . The
superlinear behavior seen in Fig. 3 indicates that
electrostriction is the dominant source of nonlinear
response in this regime. Also shown in Fig. 3 are

² :theoretical results for V , given by the Born ex-
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ŽFig. 4. Normalized difference in number of solvent particles Eq.
Ž ..7 in a sphere of radius r s1.5s centered about the solute. The0

full line connects the simulation results for the liquid state
Ž ) ) .r ,T ; the dotted line is the corresponding result for the vapor3 1

Ž ) ) .state r ,T .1 1

pression using for the cavity radius the LJ diameter
s ,

q 1
² :V sy 1y , 9Ž .Born ž /s e0

where the values for e were taken as the corre-0
Ž .sponding e y values from Table 1, and by the0

Ž . w xmean spherical approximation MSA 39–41 ,

q 1 y1² :V sy 1y 1qD , 10Ž . Ž .MSA ž /R e0

3r y1solv 1r3 1r6D( 108 e y2 , 11Ž .Ž .0R

Ž .where R and r both equal here to sr2 aresolv

respectively the solute and solvent radii. We see that
these theoretical linear response expressions account
relatively well for the behavior of the normal liquid
state and perform more poorly for the more com-
pressible vapor, critical and supercritical states. For
the vapor phase, where solvation is primarily associ-
ated with the formation of a solvent droplet around
the charged solute, the linear response expressions
with the vapor dielectric response fail badly.

The most important qualitative difference between
solvation in relatively incompressible fluid states

Ž ) ) .such as r ,T and between the corresponding3 1

behavior of a compressible fluid, e.g. the coexisting
Ž ) ) .vapor at r ,T , is the solvation structure in the1 1

neighborhood of the solute molecule. This is shown
in Fig. 4 which depicts the normalized difference
Ž . Ž Ž . .n r ;q Eq. 7 , for r s1.5s for the coexisting0 0

liquid and vapor phases and in Fig. 5 where r ands
Ž .cosu for N s8 are displayed as functions ofss

solute charge q for the same coexisting fluids. Also
² :shown in Fig. 5 are the electrostatic potential V s

² :and the Lennard-Jones energy U induced by thesLJ

solvent at the solute position, taken as an average
over the N s8 solvent molecules nearest to thes

solute. The evolution of these quantities with increas-
ing q clearly shows that in the vapor phase, a
liquid-like neighborhood is developed near the solute
with increasing q. For qs1 the properties of the
first solvation shell in the coexisting liquid and vapor
of our solvent are quite similar. This is also seen in

Ž .the results Table 2 for the average electrostatic and
² : ² :Lennard-Jones potential, V and U respec-LJ

tively, induced by the solvent at the solute position,
and for the corresponding fluctuation amplitudes
² 2: ² 2 :d V and dU . The theoretical results in TableLJ

Ž . Ž .2 were calculated by Eqs. 9 – 11 and by the
corresponding expressions

k T 1B2² :d V s 1y 12Ž .Born ž /a e0

and

k T 1B y12² :d V s 1y 1qD . 13Ž . Ž .MSA ž /R e0

It is seen that for the charged solute these properties
Ž ) ) .are quite similar in the coexisting vapor r ,T1 1

Ž ) ) .and liquid r ,T phases. This similarity is associ-3 1
Žated with the fact exaggerated by the finite size of
.our simulation cell that these properties are domi-

nated by the close neighborhood of the solute
molecule. However, the development of the solva-
tion structure in the two solvents is quite different,
and is consistent with the marked nonlinear response
associated with the more compressible liquid. We
also note that the results for the equal density critical

Ž ) ) . Ž ) ) .and supercritical states, r ,T and r ,T , are2 2 2 3

very similar.
The observation just made may reasonably sug-

gest that the proximity of the critical point does not
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Ž .Fig. 5. Properties of the local solvation neighborhood as function of solute charge: a Average distance r of the N s8 solvent moleculess s
Ž . Ž . Ž .closest to the solute; b average orientation cosu relative to the solute–solvent axis of the same N solvent molecules; c and d similarss

Ž² : . Ž² : .averages for the electrostatic V and nonpolar U parts of the solute–solvent interaction respectively. All results are shown versuss sLJ

solute charge q. Line notation is as in Fig. 4.

have a special effect on the solvation which is an
essentially local phenomenon. Fig. 6, however, indi-
cates that some effect may be expected. Here the
solvent density in the first solvation shell, r , de-1

) Žfined by 0.5-r -1.5 rsrrs is the dimension-
.less distance from the solute center , and the second

solvation shell, r , 1.5-r ) -2.5, are plotted for2

the charged solute against the bulk solvent density r

at the critical temperature. Because of electrostriction
r and r are larger than r, however as r increases1 2

this difference is expected to diminish. It appears
that the critical point, rsr , marks the transitionc

above which r and r more rapidly approach r.1 2

Because of the small size of the simulated system
this observation should be regarded as preliminary.

The different structural aspects of the solvation
process should show up in the dynamics. While in
the normal, less compressible fluid the dynamics
may be dominated by solvent librations and rota-
tions, in the compressible fluid electrostriction dy-
namics is expected to be more important. We turn
into these dynamical aspects in the following section.

4. Dynamical aspects

We first consider the dynamics of equilibrium
fluctuations, represented by the correlation function

Ž . Ž Ž ..C t Eq. 2 for solute charges qs0 and qs1.V
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Table 2
² : ² :Average electrostatic and LJ potentials V and U , and theLJ

² 2:1r2 ² 2 :1r2corresponding fluctuation amplitudes d V and dU ,LJ

induced by the solvent at the solute center. Also shown, when
Ž Ž . Ž ..applicable, are the Born and MSA results Eqs. 9 – 13

) ) ) ) ) ) ) )Ž . Ž . Ž . Ž .r ,T r ,T r ,T r ,T1 1 3 1 2 2 2 3

² :V qs1 y0.11 y0.12 y0.12 y0.11
Born y0.045 y0.11 y0.087 y0.085
MSA y0.046 y0.13 y0.096 y0.093

1r22² :d V qs0 0.0066 0.0094 0.0086 0.0087
qs1 0.010 0.0098 0.0097 0.010
Born 0.0063 0.0098 0.0091 0.0092
MSA 0.0064 0.0107 0.0096 0.0096

² :U qs0 y0.00099 y0.0047 y0.0025 y0.0026LJ

qs1 y0.0013 y0.0022 y0.0017 y0.0017
1r22² :dU qs0 0.00067 0.00096 0.00095 0.00098LJ

qs1 0.0023 0.0024 0.0025 0.0025

We will also consider the equivalent correlation
Ž .function C t for the LJ potential,LJ

² :dU t dU 0Ž . Ž .LJ LJ
C t s , 14Ž . Ž .LJ 2² :dULJ

which is determined by the same solvent motions,
but reflected through the short LJ interaction. Our
results are summarized in Figs. 7 and 8, and Tables 3
and 4.

The short time dependence of equilibrium correla-
tion functions of the type displayed in Figs. 7 and 8

Ž . 2should be rigorously given by C t ;1ya t , how-
ever it is convenient to fit the numerical results to a
sum of a Gaussian and exponential decay,

t 2 t
C t saexp y q 1ya exp y .Ž . Ž . ž /ž /2t tG E

15Ž .

Obviously such a fit does not capture the oscillations
observed in many of the correlation functions dis-
played, but it provides a simple way of estimating
the timescales of Gaussian and exponential relax-
ation processes. Tables 3 and 4 give the resulting fit
parameters a, t and t for the correlation func-G E

Ž . Ž .tions C t and C t , respectively. Note that inV LJ

some cases the exponential component of the relax-
ation cannot be observed within our numerical accu-
racy. For these cases the amplitude a was set to
unity and the fit was done just for the Gaussian

component. It is also interesting to note that in the
Ž . Ž .case of C t Table 3 the Gaussian time t for theV G

neutral solute is in reasonably close agreement with
the linear response theoretical values suggested by

w xMaroncelli et al. 42 ,
1r2

3 I 1
t s 1y . 16Ž .G 2 ž /e8prm 0

Results based on this expression are given in Table
3. However, as seen in Table 3, the relaxation times
depend on the charging state of the solute, in contrast

Ž .to the prediction of Eq. 16 .
The following observations regarding the results

displayed in Figs. 7 and 8 and in Tables 3 and 4 can
be made:

Ž .a The solvent response, as expressed by the
Ž . Ž .correlation functions C t and C t , is often char-V LJ

acterized by two main relaxation modes: A short
time Gaussian-like behavior following by a long
time exponential relaxation. The overall appearance
of the relaxation process can be broadly character-
ized by the timescales of these components, by their
relative amplitudes and by the period of the accom-
panying oscillations.

Ž .b The relaxation processes associated with the
Ž . Ž .solvent response functions C t and C t dependV LJ

) Ž . ) Ž .Fig. 6. Solvent density r full squares and r full circles in1 2

the first and second solvation shells, respectively, about a charged
Ž .solute qs1 , plotted against the bulk solvent density at the

critical temperature. The dotted vertical line marks the critical
density.



( )P. Graf, A. NitzanrChemical Physics 235 1998 297–312306

Ž . Ž Ž ..Fig. 7. Equilibrium correlation functions C t Eq. 2 of the electrostatic potential induced by the solvent at the solute position. Note thatV
Ž .the subfigures are positioned according to their position on the phase diagram Fig. 1 , shown also in the bottom center panel. Full and

dotted lines correspond to solute charge qs0 and qs1, respectively.

strongly on the thermodynamic state of the solvent.
Within the limited thermodynamic space that we
explored we find that the character of the solvent
response is mostly affected by its density.

Ž .c Comparing the behavior of the solvent relax-
Ž .ation about a charged qs1 and an uncharged

Ž . Žqs0 solute, close to linear behavior indepen-
. Ž . )dence of solute charge is seen for C t at high TV

and r ). Markedly different relaxation patterns for
the two solute charges, indicating nonlinear re-
sponse, appear in the gas phase and at the low

Ž .density supercritical states. The dynamics of C tLJ

shows a considerably stronger nonlinear behavior,

which, again, is more pronounced for the lower
density states. The dependence on temperature at
constant density is much less pronounced.

Ž . Ž .d For C t the amplitude of the long timeV

relaxation process is larger about a charged solute
Žthen near a neutral solute in the latter case the long

time relaxation component cannot be observed within
.our numerical accuracy . Moreover, this amplitude is

Ž .larger for the lower density fluid. For C t thisLJ

behavior is reversed: The long time component of
the relaxation is not observed within our accuracy in
the qs1 case and it is very prominent in the qs0
case — more so for the lower density fluid.
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Ž . Ž Ž ..Fig. 8. Equilibrium correlation functions C t Eq. 14 of the nonpolar part of the solute–solvent interaction. The layout and the lineLJ

notation are the same as in Fig. 7.

Ž .The relaxation processes that affect C t andV
Ž .C t result from translational and rotational mo-LJ

Ž .tions of solvent molecules. C t is affected only byLJ

translational motions of solvent molecules close to
Ž .the solute, while C t is affected by both solventV

translations and rotations, and contains contributions
from solvent molecules farther from the solute. The
qualitative behavior of the correlation functions
shown in Figs. 7 and 8 can be explained by assuming
that the bimodal character of the relaxation is associ-
ated with the approximate separability of molecular
motions to those which occur within local potential
wells and those which take place by crossing local
potential barriers. When the first type dominates the

relaxation, the corresponding correlation function is
essentially described by the fast relaxation compo-
nent with accompanying oscillations. When the sec-
ond type becomes important, a slow component ap-
pears in the time evolution of the corresponding
relaxation process.

It should be emphasized that the picture just
outlined complements, not contradicts, the usual pic-
ture of solvation dynamics which associates the fast
component with ‘‘inertial response’’ and the slow

Ž w xone with ‘‘diffusive response’’ see, e.g., Refs. 7,9
.and references cited therein . Inertial response, i.e.

solvent response on a time scale not affected by the
time dependence of intermolecular interactions, often
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Table 3
Ž Ž ..Results of fits Eq. 15 to the normalized correlation function

Ž . Ž .C t Fig. 7 . The numbers in brackets are the theoreticalV
Ž .predictions of Eq. 16 . t and t are given in femtoseconds.G E

Note that for the neutral solute the amplitude a was preset to
unity and the fit was done only for the Gaussian component

) ) )r r r1 2 3

qs0 qs1 qs0 qs1 qs0 qs1
)T a 1 0.51 1 0.67 1 0.863

Ž . Ž . Ž .t 250 269 144 206 220 152 178 183 148G

t 12930 6065 6624E
)T a 1 0.60 1 0.75 1 0.802

Ž . Ž . Ž .t 250 276 149 211 224 148 180 185 143G

t 14200 4412 5914E
)T a 1 0.68 1 0.821

Ž . Ž .t 256 284 150 180 187 147G

t 11380 4697E

dominates — in particular in small molecules sol-
vents — the short time relaxation. However, the
inertial response is not a condition for the existence

w xof the fast component 43 ; the latter can be found
also in models for solvation based on hopping mo-

w xtions, i.e. intrinsically without inertial response 44 .
Consider now the relaxation behaviors displayed

Ž . Ž .in Figs. 7 and 8. C t Fig. 7 is mostly affected byV

solvent rotations. For the neutral solute the solvent is
not locally ordered and barriers to rotation are low.
Most of the relaxation process takes place within

Ž .local potential wells or through low relative to k TB

barriers. For qs1 the solvent is orientationally or-
dered in the vicinity of the charged solute. This
implies relatively larger barriers to solvent rotations
and a more prominent slow component in the relax-
ation. On the other hand, the time evolution of

Ž . Ž .C t Fig. 8 is due to solvent translations withinLJ
Žthe nearest neighborhood due to the short range of

.the LJ interaction of the solvent. For qs1 this
neighborhood is almost fixed since the solvent dipoles
are strongly attracted to the solute, i.e. its relaxation
consists of small amplitude arrangements within lo-
cal potential wells. Therefore for qs1 all relevant
relaxation is fast. Exchange of molecules in this
neighborhood is possible only for the neutral solute,
hence the existence of a prominent long time compo-
nent in the relaxation for this case. In agreement with

Ž .this, note the independence of the evolution of C tLJ

on the solvent density observed for the charged

solute case. The nearest neighborhood to the solute,
i.e. the first solvation shell, does not depend on the
bulk solvent density, in fact it can be thought of as a
small droplet of solvent about the solute. Therefore
the dynamics within this droplet is only weakly
dependent on the bulk solvent density.

Next consider the relation between the linearity of
the solvation process and the solvent density. The
dependence of the solvent dielectric response on its
density, together with the expectation and observa-
tion that the smaller the solvent density the larger is
the dependence of the local environment of the
solute on its charging state, imply that the nonlinear
nature of the response will be more pronounced for
the lower density solvent states. This is indeed ob-
served in all the cases examined. We may conclude
that the degree of nonlinearity in solvation should
depend on the solvent compressibility, and more
directly on the extent to which the density in the
local neighborhood of the solute changes during the
charging process.

Turning now to the nonequilibrium solvation
Ž . Ž Ž ..functions S t Eq. 1 , we note that even though

this function is defined in terms of the total solvation
energy, i.e. electrostatic plus LJ interactions, the
former dominates it quantitatively, and therefore the

Ž . Ž .behavior of S t Fig. 9 and Table 5 is closely
Ž .associated with that of the correlation function C tV

Ž .Fig. 7 . The marked differences between the relax-
ation following the changes qs0™qs1 and qs
1™qs0 is again an indication of the nonlinearity

Table 4
Ž Ž ..Results of fits Eq. 15 to the normalized correlation function

Ž . Ž .C t Fig. 8 . The times t and t are given in femtoseconds.LJ G E

Note that for the charged solute the amplitude a was preset to
unity and the fit was done only for the Gaussian component

) ) )r r r1 2 3

qs0 qs1 qs0 qs1 qs0 qs1
)T a 0.19 1 0.27 1 0.50 13

t 55 69 62 71 58 72G

t 3524 3919 1315E
)T a 0.18 1 0.22 1 0.52 12

t 53 72 62 71 63 73G

t 2777 3525 1715E
)T a 0.15 1 0.49 11

t 70 73 65 75G

t 3995 2074E
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Ž . Ž Ž ..Fig. 9. The nonequilibrium solvation functions, S t Eq. 1 of the total solute–solvent interaction energy for the solvent states with
) ) ) Ž .T sT and T coexisting vapor and liquid, and the critical temperature, respectively . Full and dotted lines correspond to the1 2

relaxations which follow the sudden qs0™qs1 and qs1™qs0 switches, respectively.

of the process. This difference is larger for the lower
density solvent states, which is compatible with the

Žobservation that the lower density and more com-
.pressible solvents are less linear. Also note that the

evolution following the qs1™qs0 switch is es-
sentially complete on the short time scale, while that
associated with qs0™qs1 process has a consid-
erable long time component, in agreement with the
argument made above that in the field of a charged
solute solvent rotations have to overcome potential

barriers which are absent in the case of a neutral
solute. This characteristic is compounded by the fact
that following a qs0™qs1 switch the solvent is
compressing itself into the small solvation neighbor-
hood of the solute, a slower process than the oppo-
site expansion which takes place after the central
charge changes from 1 to 0.

Finally consider the behavior of the solvent dy-
namical response near the critical point. Fig. 10
shows the exponential relaxation time t plottedE

Table 5
Ž Ž .. Ž . Ž . ) Ž . )Results of fits Eq. 15 to the solvation function S t Fig. 9 . The times t and t are given in femtoseconds. r is1,2,3 and TG E i j

Ž .js1,2 are the density and temperature values indicated in Fig. 1
) ) )r r r1 2 3

qs0™1 qs1™0 qs0™1 qs1™0 qs0™1 qs1™0
)T a 0.19 1 0.34 1 0.60 12

t 171 206 141 190 129 174G

t 15890 7816 5450E
)T a 0.16 1 0.61 11

t 172 219 139 183G

t 11860 3082E
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Fig. 10. The exponential relaxation time t associated with theE
Ž . Ž . Ž .correlation function C t for qs1 full circles and C t forV LJ

Ž .qs0 blank squares plotted against the bulk solvent density at
the critical temperature. The dotted vertical line marks the critical
density.

against the solvent bulk density at the critical tem-
perature. As noticed above, a detectable exponential

Ž .relaxation component is observed in C t for qs1V
Ž .and in C t for qs0. The former shows a markedLJ

change of behavior at the critical density, from a
rapidly diminishing trend for increasing r to essen-
tial independence of r above r . t which has beenc G

w xshown 7 to depend mostly on the immediate vicin-
ity of the solute does not show a similar trend. As
noted before, in view of the small size of the simu-
lated system and our limited statistics, these results
should be considered preliminary.

5. Summary and conclusions

Using a Stockmayer model for a polar solvent and
a spherical charged solute we have investigated the
dependence of several equilibrium and dynamic
characteristics of the solvation process on the ther-
modynamic state of the solvent. We found that for
given solvent molecular properties, these character-
istics depend mostly on the solvent density. In partic-
ular we found that the lower is the solvent density
the stronger is the nonlinear character of the solva-
tion response. This observation is related to the
Ž .intuitively obvious fact that for a lower bulk sol-
vent density, its equilibrium local density in the

neighborhood of the solute is more sensitive to the
solute charge. In fact it was seen that for a solute
charge qs1 the local density in the first solvation
shell for a liquid solvent is quite similar to that in the
coexisting vapor. Dynamical implications of this be-
havior were observed and discussed.

We have found that the proximity of the critical
point can show itself when some equilibrium and
dynamical characteristics of the solvation are ob-
served as functions of density near the critical tem-
perature. We leave for future studies the question
whether these observation are associated with real
critical behavior of the solvation process.
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Appendix A. Interaction potentials

The interaction potentials and boundary condi-
tions used in this work are standard. Interaction
energies are given as a sum of pairwise additive pair
potentials. All pair interactions are cut off at a
distance R sLr2, half the cubic box side length L.c

The nonpolar part of the solvent-solvent and so-
lute–solvent pair potential for two particles a dis-
tance r apart is given by a Lennard-Jones potential,

12 6s s
u r s4e y Q R yr , A.1Ž . Ž . Ž .LJ cž / ž /r r

Ž .with parameters e and s and where Q x s1 for
x)0 and is zero otherwise. Note that we have
chosen the potential parameters the same for the
solute and the solvent. For differing parameters the

Ž .Lorentz-Berthelot, i.e. s s s qs r2 and e12 1 2 12

s e e , mixing rules could be applied. A simple( 1 2

procedure to correct the truncation of the Lennard-
Jones potential is to add to the potential energy a

w xself-term per particle 45 ,
9 38p 1 s s

s 3u s es y . A.2Ž .LJ ž / ž /3 3 R Rc c
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In simulations done at constant volume and number
Žof particles, this self-term and the corresponding

.term for the polar interactions below is a constant
and could be added as a correction to the results after
the simulation. However, in simulations in which
volume or number of particles are varied for a

Žparticular simulation cell like during simulations of
.the Gibbs ensemble , such a self-term changes under

the corresponding ‘‘moves’’.
The dipolar part of the solvent-solvent pair poten-

tial for two particles at r and r with dipoles m andi j i

m , including linearly tapered reaction field boundaryj
w xconditions 46 , is given by

X1 2 e y1Ž .
rfu r ,m ,m s y m PmŽ . XDD i j i j i j3 3ž /r 2e q1 RŽ .i j eff

3 r Pm r PmŽ . Ž .i j i i j j
y t rŽ .i j5ri j

A.3Ž .

with the tapering function

1, r-R ,° s

~1y ryR r R yR , R -r-R ,Ž . Ž .t r sŽ . s c s s c¢0, R -r ,c

A.4Ž .

< <with r sr yr , r s r , the reaction field dielec-i j i j i j i j

tric constant e
X, and the switching radius R s fRs c

Ž . 3 Žwe took fs0.95 . R is given by R s 1q fqeff eff
2 3. 3f q f R r4. To correct for the truncation, a self-c

term per particle given by

m2 e
X y1

su sy A.5Ž .XDD 3 2e q1Reff

is added to the electrostatic interaction energy.
The polar part of the solute–solvent pair potential

is defined in accordance with the tapered reaction
field boundary conditions to be

1 2 e
X y1Ž .

rfu r ,m sq yŽ . XQD s i i 3 3ž /r 2e q1 RŽ .s i eff

= r Pm t r , A.6Ž . Ž . Ž .s i i s i

where the solute charge q is located at r . Thes

Žself-energy term a Born-energy in a sphere of radius
.R is given byeff

q2 1
su sy 1y . A.7Ž .XQD ž /R eeff
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