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In this paper we consider vibrational relaxation of high-frequency impurity modes in condensed
environments as a computational problem. Linear response theory provides convenient routes for
this computation: The vibrational relaxation rate is obtained as a Fourier transform of a force–force
time correlation function. However, numerical difficulties arise for processes characterized by a
direct relaxation of high-frequency modes into an environment characterized by a relatively low
cutoff frequency. It is shown that modern signal processing procedures can significantly enhance the
efficiency and accuracy of the needed computation. Since the relevant ‘‘signal’’ can be very small,
the computation can be very sensitive to boundary conditions, and care must be taken to avoid
artifacts. The computation may be facilitated by using the expected functional form, exponential
dependence on the impurity frequency for high frequency, and fitting the parameters of this form
from the simulation. It is emphasized that this exponential dependence seems to be the correct
functional form, in spite of theoretical arguments in favor of a Gaussian dependence. The main
difficulty in the numerical evaluation of the relaxation rate of high-frequency modes results from the
fact that at low temperature the dynamical behavior of such modes is essentially quantum
mechanical. We demonstrate this issue by considering vibrational relaxation of an impurity CO
molecule in a low-temperature Ar matrix. The results obtained for this system by estimating the
quantum correction to the classical force–force correlation function are consistent with
experimental results, which indicate that under these conditions the relaxation of the vibrationally
excited CO is dominated by radiative decay. ©1997 American Institute of Physics.
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I. INTRODUCTION

Theoretical work on vibrational relaxation~VR! of sol-
ute molecules in condensed phases is still a focus of theo
ical and experimental interest even after over 20 years
intensive research. It is safe to say that the main fac
affecting this process in solid and liquid environments
now well understood. Among the important issues discus
and understood over the years are:~a! The interplay between
the oscillator frequency and the spectrum of the thermal
vironment;~b! the effect of different types of solute–solve
interactions, in particular short range versus long range
teractions;~c! the roles of different modes of motion: in
tramolecular modes of solute and solvent, local translatio
librational, and rotational modes, and the solvent phonons
the relaxation process;~d! temperature effects, and~e! the
significance of the quantum mechanical aspects of the
tion in the relaxation dynamics.

Within linear response theory, the vibrational energy
laxation rate,kVR , of a harmonic bond in a thermal environ
ment is given by~for a mode with frequencyv0!1–6

kVR5~2m!21z~v0!, ~1!

wherem is the oscillator mass,z~v! is the frequency depen
dent friction defined by

z~v!5~kBT!21E
2`

`

dt cos~vt !^F~0!F~ t !&, ~2!
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kB and T are the Boltzmann constant and the temperatu
respectively, andF is the fluctuating solvent force (^F&50!
on the oscillator coordinate. In evaluating Eq.~2! from mo-
lecular dynamics~MD! simulations, the oscillator bond i
held rigid. Equations~1! and~2! are written for the classica
limit. Quantum corrections to this results have been analy
by Bader and Berne,7 who have pointed out that for a ha
monic Hamiltonian~harmonic oscillator interacting with a
harmonic bath with bilinear interaction terms!, Eqs.~1! and
~2!, with the correlation function in~2! evaluated from the
classical trajectory, give also the correct quantum mechan
rate. It should be emphasized that this result is valid only
the particular model of linear coupling to a harmonic ba
and therefore is not appropriate for the relaxation of hig
frequency modes, which requires nonlinear coupling to
bath. In general, the energy relaxation rate of a harmo
oscillator coupled to a general thermal bath with the inter
tion potentialVqb52qF ~whereq is the oscillator coordi-
nate andF, the fluctuating force exerted by the bath on t
oscillator, depends on the bath coordinates only! is given by
(b5(kBT)21),

kVR5
tanh~b\v/2!

b\v/2

zQM~v!

2m
, ~3!

and the thermal transition rate between two levels in a s
tem coupled to its environment via the interaction poten
Hsb52S(q)F ~S is a system operator! is
7/107(24)/10470/10/$10.00 © 1997 American Institute of Physics
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10471Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
kI→J5
2uSIJu2

b\2@11exp~2b\v IJ!#
zQM~v IJ!

5eb\v IJkJ→I , ~4!

where7

zQM~v!5bE
2`

`

dteivtK 1

2
@F~ t !,F~0!#1L

5bE
0

`

dt cos~vt !^@F~ t !,F~0!#2&. ~5!

It is possible to use Eqs.~3!–~5! as a starting point for evalu
ating quantum corrections factors to rates evaluated from
classical ‘‘force’’–‘‘force’’ correlation function in more gen
eral cases, e.g., with nonlinear coupling. For our discuss
here it is sufficient to note that, as in many other situatio
Fourier transforms of time correlation functions play a ce
tral role in both classical and quantum rate theories.

Numerical simulations aimed at evaluating vibration
relaxation rates of solute molecules using Eqs.~1! and~2! @or
Eqs. ~3! with zQM(v) replaced by its classical counterpa
Eq. ~2!# have been recently used by several workers.3–5,8–12

Within given uncertainties in the interaction potentials a
with possible correlation resulting from the quantum nat
of the thermal environment,7 these calculations may be con
sidered to be moderately successful. A very important
tribute in calculations based on Eqs.~1!–~5! lies in the fact
that relatively short time correlation functions are used
calculate relatively slow rates. Still, when the VR proce
can be viewed as a high-order multiphonon transition, i
when there is a large mismatch between the relaxing m
frequency and the frequencies of the accepting modes~e.g., a
high-frequency diatomic molecule solute in a low Debye f
quency atomic solvent13!, even this approach may be ve
difficult because the Fourier transform in Eqs.~2! or ~5! must
be carried out with frequency much larger than the inve
characteristic times associated with the friction kernel, wh
yields a very small rate subjected to very large numer
errors. As a mathematical issue, evaluating the rate beco
a signal processing problem. From the physical point
view, the nature of the interaction and the relevant motio
responsible for this high-frequency part of the response
essential.

As a numerical problem, evaluating the high-frequen
Fourier components of correlation functions like those
pearing in Eqs.~2! or ~5! is hampered by the fact that th
Fourier transformz~v! falls to zero very rapidly forv.vD

~vD being the ‘‘Debye frequency’’ of the solvent!. Thus, we
need to evaluate a very small signal in the presence of v
large noise. It may help to have some notion about the w
z~v! depends onv. Some confusion arises from the comm
intuitive association of high frequencies with short time
Adelman and co-workers,6 in fact, suggest that the relaxatio
rate of high-frequency diatomic solutes in simple fluid
necessarily a Gaussian dependence on the frequency,kVR

;exp(2av2), since the initial relaxation of time correlatio
functions is quadratic,C(t);12bt2>exp(2bt2). Similar
J. Chem. Phys., Vol. 107, N
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conclusions may be reached from approaches based o
stantaneous normal modes~INM !,14 if one makes the seem
ingly reasonable assumption that relaxation of hig
frequency impurity modes is dominated by short tim
motions in the environment that can be analyzed within
INM picture. However, while the short time quadratic tim
dependence of the correlation function is implied by symm
try considerations, itdoes not imply a Gaussian high-
frequency dependence in Fourier space. This has b
known in the VR literature for some time,5,9 and a non-
Gaussian behavior—the exponential ‘‘energy gap law’’ h
already been suggested a long time ago.15 However, since
the high-frequency Gaussian behavior of spectral line sha
is a deeply rooted notion, it is useful to examine this iss
more closely. To this end we consider the Kubo function

C~ t !5expF2a2S t

a
21e2t/aD G , ~6!

as a simple example. This function is well known in th
stochastic theory of line shapes16 as a precursor of the ab
sorption line shape,J(v), of an oscillating dipole whose
frequency has a stochastic white-noise component.J(v) is
given by the Fourier transform

J~v!52E
0

`

dt cos~vt !C~ t !. ~7!

Kubo’s theory16 predicts a Lorentzian line shape
(v21a2)21, near the absorption center and a Gauss
exp(2v2/2), in the band edges.17 However, we show in the
Appendix that the truly asymptotic~v→`! form of ~7! is not
a Gaussian but a power law,v24. The Kubo function pro-
vides a successful model for the transition from the Lore
zian center to the Gaussian edges of absorption line shap
condensed environments because the truly asymptotic
gimev→` is irrelevant in such applications. The situation
very different in the case of vibrational relaxation of hig
frequency solutes imbedded in low-frequency condensed
vironments. As we show below, numerical simulations se
to confirm the theoretical prediction15 that at least in the
relevant experimental range, the exponential energy gap
z(v);exp(2av/vD), where a is a constant andvD is a
measure of the extent of the solvent intermolecu
spectrum—the equivalent of the Debye frequency in soli
holds.

II. PHYSICAL MODELS AND SIMULATION DATA

In the examples shown and discussed below, we c
sider the vibrational relaxation of a diatomic molecule s
vated in either a Lennard-Jones~LJ! or a Stockmayer fluid.
The first is characterized by the intermolecular potential

VLJ~r !524«LJF S sLJ

r D 6

2S sLJ

r D 12G , ~8!

and in the second this potential is supplemented by puttin
point dipolem at the center of each LJ sphere, i.e., the int
action between two solvent particlesi and j is
o. 24, 22 December 1997
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10472 Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
V~r i j !5VLJ~r i j !1
mi•mj23~ n̂•mi !~ n̂•mj !

r i j
3 . ~9!

In what follows, we refer by ‘‘standard model’’ to the fol
lowing choice of parameters:sLJ53.15Å,«LJ578.3 K, the
massM518 amu, the moment of inertiaI 51.284 amu•Å2,
the temperatureT5298 K, and the densityr51.0 g/cm3.
These are parameters that were used to fit water molec
within the Stockmayer model.18,19 The dielectric moment of
this waterlike Stockmayer fluid was taken to be 1.695
With this choice, the dielectric constant calculated as
scribed in Ref. 20 was found to be«;80. The Fourier trans-
forms of the velocity–velocity time correlation functions
this Stockmayer liquid and of the corresponding LJ liqu
characterized by the same parameters, except thatm50, are
shown in Fig. 1. These spectra reflect the contributions
translational motions for the LJ fluid and of translational a
rotational motions for the Stockmayer system. The diff
ence spectrum@inset in Fig. 1~b!# emphasizes the contribu
tion of rotational and librational degrees of freedom f
v>150 cm21. Our solute is a generic dipolar diatomic mo
ecule, which for definiteness is taken identical to the
atomic CH3CL model considered in Ref. 4. The atom
masses in this model are those of CH3 and of Cl. These
‘‘atoms’’ interact with the solvent with a combination of L
interactions and Coulombic interactions associated with

FIG. 1. Fourier transforms of the velocity–velocity time correlation fun
tions,Cv(v)52*0

`dt cos(vt)^v(0)•v(t)&, for ~a! the ‘‘standard’’ LJ model,
and~b! the ‘‘standard’’ Stockmayer model. The inset in Fig. 1~b! shows the
difference between the two.
J. Chem. Phys., Vol. 107, N
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partial chargesqCH352qCl50.25 e. The LJ parameters fo
the solute–solvent interactions are obtained by tak
sCl53.93 Å, sCH353.43 Å, «Cl590.68 K, and«CH3553.63
K and using the combination ruless i j 5@s i1s j #/2 and« i j

5(« i« j )
1/2. The solute equilibrium bond length isReq51.78

Å, and the intramolecular interaction is a Morse potent
characterized by a well depthD05234.52 Kcal/mol and a
bottom frequencyv5680 cm21. Note, however, that in the
simulation this bond is held rigid.

In Sec. V below we also apply our numerical conside
ation to one realistic system: an impurity CO molecule i
bedded in an argon matrix. The model for this system
sumes Lennard-Jones interactions between the argon a
as well as between them and the carbon and oxygen ato
The parameters used are21,22 s~Ar–Ar!53.42 Å, s~Ar–O!
5s~Ar–C!53.28 Å, «~Ar–Ar!5124 K, «~Ar–C!5«~Ar–O!
588 K. The CO bond length is 1.1 Å and is frozen durin
the simulation. In all simulations we use 399 Ar atoms an
CO molecule in a cubic box of length 25.136 Å, which co
responds approximately to the density of Ar in a 20 K m
trix. ~Note that the same density was used for simulatio
made at higher temperatures.! The simulated system was pre
pared by first equilibrating it at room temperature, th
quenching it to the desired low temperature. The result
system is therefore amorphous and the calculated rate
depend somewhat on the particular local configuration s
rounding the CO molecule.

Below we compute the resulting relaxation rate as
function of several of these parameters, primarilyv. The
simulated system consists of 100–400 solvent particles a
solute molecule in a cubic cell of sizeL514.364 Å ~100
particles; twice that for 400 particles!. In typical trajectories
we used 40 000–100 000 time steps withDt51 fs after the
system was equilibrated. The dynamics of the Stockma
fluid is obtained using theSHAKE algorithm as described in
Ref. 23. As we see below, the quality of the computed r
may be sensitive to the way boundary conditions
handled. In order to examine this issue we have used dif
ent cutoff schemes for both the LJ and for the electrost
interactions. For the LJ potential the following two cuto
schemes were used:

VLJ
A ~r !5VLJ~r !u~Rc2r !, ~10!

VLJ
B ~r !5H VLJ~r !2VLJ~Rc!248«LJF1

2S sLJ

Rc
D 6

2S sLJ

Rc
D 12G r 2Rc

Rc
J u~Rc2r !, ~11!

whereu(x)51 for x.0 and is zero otherwise. The secon
choice keeps the force~first derivative of the potential! con-
tinuous at the cutoff radius, while the first choice does no

For the electrostatic interactions we use either reac
field ~RF! boundary conditions~see Ref. 23 for details! or
periodic boundary conditions with Ewald sums~ES! in order
to treat the long range electrostatic interactions. In the
case, electrostatic interactions are cut off at the reaction fi
radius Rc5L/2. This cutoff is affected by a function tha
o. 24, 22 December 1997
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10473Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
goes to zero betweenRs5 f Rc and Rc ~we took f 50.95!.
The simplest~and most commonly used! cutoff form is

VDD
A ~r i j ,mi ,mj !5H S 1

r i j
3 2

2~«821!

~2«811!Reff
3 D m1•mj

2
3~ n̂•mi !~ n̂•mj !

r i j
3 J tA~r i j !

3u~Rc2r i j !, ~12!

with the tapering function

tA~r !5H 1 r ,Rs

12
r 2RS

Rc2Rs
; Reff

3 5~11 f 1 f 21 f 3!Rc
3/4

0 Rc,r

. ~13!

With this choice, the potential energy is continuous at
sphere boundary but the forces are not. A slightly modifi
form, VDD

B , is similar to~14!, with tA replaced by

tB~r !5H 1 r ,Rs

123S r 2RS

Rc2Rs
D 2

12S r 2RS

r c2RS
D 3

RS,r ,Rc

0 Rc,r

,

~14!

andReff
3 5(11(3/2)f 1(3/2)f 21 f 3)Rc

3/5, which renders both
potential and force continuous at the boundary. In the Ew
approach, the electrostatic energy and forces are give
sums of terms, computed in real and reciprocal spaces.
real space sum is usually restricted to the first simulation
and a parametera determines both the error in this trunc
tion and the corresponding number of terms that neede
be taken in the reciprocal space summation to achiev
similar truncation error.a has to be large enough so th
limiting the sum in real space to the first simulation cell~i.e.,
to a cutoff distanceRc;L/2! is valid. Using this cutoff the
truncation error is of the orderd5exp(2a 2/4).24,25We have
checked the accuracy of the computed rate with respec
the choice ofa or d, as detailed below.

III. COMPUTING VIBRATIONAL RELAXATION RATES
AS A SIGNAL DETECTION PROBLEM

As discussed in the Introduction, the use of Eqs.~2! or
~5! to evaluate vibrational relaxation rates from numeri
simulation data has a considerable advantage over the d
observation of energy relaxation as a function of time. To
meaningful results for the latter, one needs to follow t
~relatively slow! relaxation process of interest, while th
force–force correlation functions of Eqs.~2! and~5! relax on
the much shorter time scale associated with the solv
nuclear motion. This important time-saving device should
used with care for frequencies much higher than those c
acteristic to the solvent: The frictionz~v! goes to zero very
quickly with v in this range, so simply evaluating the Fouri
transform in ~2! or ~5! amounts to detecting a very sma
signal in the presence of much stronger irrelevant ones. T
J. Chem. Phys., Vol. 107, N

Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
e
d

ld
as
he
ll

to
a

to

l
ect
t

e

nt
e
r-

is

problem is compounded by the fact that the correlation fu
tions ^F(0)F(t)& or ^@F(t),F(0)#1& are not known exactly:
They are obtained at a finite number of discrete time po
and by necessity are affected by numerical inaccuracies
by statistical noise.

The issue outlined above is a standard problem in sig
processing, and is discussed in a large body of availa
literature~see, e.g., Ref. 26; for an introductory review s
Ref. 27!. In view of the very demanding nature of our type
signal processing, it is worthwhile to consider ways a
means offered by this literature. For the sake of definiten
we focus on the force–force time correlation functio
^F(0)F(t)& of Eq. ~2!. It is assumed that we have obtaine
the desired force as a~real valued! data sequenceF@n#
5F(nDt), where Dt is the chosen time interval andn
50,1,...,N21. The following points ca be of relevance:

~a! For a given sampling intervalDt, the Fourier trans-
form is meaningful only foruvu<vc5p/(Dt). vc is the
Nyquist critical frequency. When the sampling is restrict
to theN pointst5nDt, n50,1,...,N21, the discrete Fourier
transform is defined by

F̂k[F̂~vk!5 (
n50

N21

F@n#e2 ivknDt;

vk52k/~NDt ! with k52N/2,...,~N/221!.

DtF̂(vk) is hopefully a decent approximation t
*2`

` dtF(t)eivkt. The correlation function is defined by

C@ l #5
1

N (
n50

N2u l u21

F@n#F@n1u l u#. ~15!

~b! The discrete sampling defined above provides an
act representation for a function which is band limited to t
interval v,vc . The transform of functions which are no
band limited to this range may suffer from aliasing: T
power spectrum outside the Nyquist range is spuriou
moved into that range. This is not expected to create a s
ous problem in our present application, because our spec
decreases rapidly forv.vD , wherevD is the solvent ‘‘De-
bye frequency,’’ provided we chose the sampling such t
vc.vD.

~c! The Wiener–Khinchin theorem, which relates th
Fourier transform of the correlation function^F(0)F(t)& to
the absolute square of the Fourier transform ofF(t) takes the
following form for finite discrete samples: Let

Ĉ~v!5 (
l 52~N21!

N21

C@ l #eiv lDt ~16!

and

F̂~v!5 (
n50

N21

F@n#e2 ivnDt. ~17!

Then

Ĉ~v!5
1

N
uF̂~v!u2. ~18!
o. 24, 22 December 1997
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10474 Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
This result is very useful for our application: It turns out th
results based on~18! are more reliable in the high-frequenc
limit.

~d! Given thatF@n# is a random signal, theperiodogram
Ĉ(v) is another discrete random function. Its mean is ob
ously positive for all N, and approaches asymptotical
(N→`) the power density spectrumof the process. How-
ever,its variance remains finite, of the order of the square
its mean, in this limit. The standard deviation of this estima
of the power spectrum is therefore of the same order as
mean, and extra effort is needed to increase accuracy.
can be done by either breaking the data set into smaller
ments and averaging the periodograms associated with
ferent segments, computing the periodogram with finer d
crete frequency spacing than needed, then coarse-gra
the resulting periodogram estimate by summing the val
within bins of predefined size in the frequency doma
and/or using data windowing@see, e.g., Refs. 27~Sect. 12.7!
and 28#.

~e! The power spectrum estimate given by the pe
odogram

F̂~vk!5U (
n52N/2

N/221

F@n#e22p ikn/NU2

; vk52pk/~NDt !,

~19!

or

F̂~z!5U (
n52N/2

N/221

F@n#znU2

; z[e22p ik/N, ~20!

is just one possible form for an approximate estimate to
true power spectrum.@A formal expression for representin
the latter is similar to~20! with the sum extended to
2`...`, i.e., by an infinite Laurent series.# This is the ‘‘all
zero model,’’ emphasizing the fact that the model spectr
can have zeros, but not poles in the complexz plane. A
powerful alternative is the ‘‘all pole model,’’ based on th
form

F̂~z!'
a0

U11 (
k51

M

akz
kU2 . ~21!

In principle, theM11 coefficientsak may be determined so
that the firstM11 terms in a power series expansion of~21!
agree with the equivalent terms in the infinite Laurent se
corresponding to~20!. In practice, these coefficients are ofte
obtained from the following set of linear equations~the
‘‘maximum entropy method,’’ MEM!

F C0 C1 C2 ••• CM

C1 C0 C1 ••• CM21

C2 C1 C0 ••• CM22

••• •••

CM CM21 CM22 ••• C0

G F 1

a1

a2

aM

G5F a0

0

0

•••

0

G ,

~22!

whereCl 5C2l is the correlation function~15! at time lag
l Dt.
J. Chem. Phys., Vol. 107, N
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s In addition to the ‘‘standard’’ issues outlined abov
there are several other issues associated with our spe
signal processing problem.

As already noted, many of our applications deal with t
energy relaxation of a high-frequency mode of a solute m
ecule in a bath whose dynamics reflects a relatively low c
off ~Debye! frequency. A typical example is the vibrationa
relaxation of a diatomic molecule in rare gas solids. In t
situation, our ‘‘signal’’ is extremely small and our comput
tions may be extremely vulnerable to computational artifac
An example of such artifacts is provided by the sensitivity
the computed friction,z~v!, to the boundary conditions. Thi
is demonstrated in Fig. 2, which shows the friction as a fu
tion of frequency for our ‘‘standard’’ LJ and Stockmaye

FIG. 2. The vibrational energy relaxation rate, Eq.~1! calculated for a mode
with reduced massm518 amu for~a! the ‘‘standard’’ LJ fluid, and~b! the
‘‘standard’’ Stockmayer fluid. In~a! the full line results from a system o
N5128 particles, with the interparticle potential given byVLJ

A @Eq. ~12!#,
with Rc5L/2 and the dashed and dotted lines corresponding to system
N5128 ~L515.62 Å! andN5256 ~L519.68 Å! particles, respectively, with
the potentialVLJ

B @Eq. ~13!#. In ~b!, the full and dashed lines correspond
systems ofN5128 ~L515.62 Å! with reaction field boundary conditions
(Rc5L/2), using, respectively,VDD

A @Eqs.~14! and~15!# andVDD
B @Eq. ~14!

with tA replaced bytB, Eq. ~16!#. In both cases,VLJ
A was used for the LJ

interactions; however, usingVLJ
B in these cases had no significant effect. T

other three lines are obtained by using periodic boundary conditions
Ewald sums: For the dotted lineN5128 andd51024 for the dashed–dotted
line, N5128 andd51026, and for the crosses,N5256 andd51026. In
these three casesVLJ

B was used for the LJ interaction. The maximum entro
method was used in all cases.
o. 24, 22 December 1997
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10475Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
solvents. In order to save computer effort we simplify th
test calculation by using the pure solvents, and the ‘‘fr
tion’’ is calculated from a force–force time correlation fun
tion, where the force is that exerted on any solvent molec
by all other molecules in the direction of its dipole~or in
some fixed direction in the LJ system!. Figure 2~a! shows the
result for the LJ solvent~m50!, and Fig. 2~b! shows similar
results for the Stockmayer fluid. A significant observation
that for largev the computed friction is quite sensitive to th
boundary conditions, in particular in the system with lo
range Coulombic interactions. Thus in the Stockmayer s
tem, a crossover to an unphysically weak frequency dep
dence of the friction occurs at some high frequency wh
magnitude depends on the boundary model used~reaction
field or Ewald sum!, and on the cutoff function imposed o
the long range potential in the model that uses reaction fi
boundary conditions. The origin of this sensitivity is the fa
that the very small response at high frequency may be
fected by unphysical contributions to the force associa
with particles that cross the interaction cutoff range. Su
unphysical contributions are usually too small to affect m
other properties, but may not be too small in the pres
context. Figure 2~b! shows that a careful choice of mode
system size, and boundary conditions may significantly
prove the reliability of the computed friction; however, ca
culational artifacts associated with the system boundary m
contaminate the results if such precaution is not taken.

It is interesting to note in passing the effect of Coulo
bic interactions on the relaxation rates. Figure 3 compa
the two best~lowest! lines from Figs. 2~a! and 2~b! which
correspond to systems that differ from each other only by
existence of a permanent molecular dipole in the latter. T
potentially important role of electrostatic interactions in a
fecting vibrational energy transfer to the solvent has b
discussed by several workers.3–5,8,29It has been pointed ou
that the availability of rotational and librational modes
polar solvents can enhance vibrational relaxation of so

FIG. 3. The two best~lowest! lines from Figs. 2~a! and 2~b!, respectively.
Full line is the ‘‘vibrational relaxation rate’’ computed~see text! in the
‘‘standard’’ Stockmayer fluid. Dotted line—same as for the ‘‘standard’’
fluid.
J. Chem. Phys., Vol. 107, N
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modes whose frequencies lie in the corresponding range~see,
however, Ref. 12!. This effect is also seen here at low fre
quencies~see inset to Fig. 3!; however, multiphonon relax-
ation of high-frequency solute modes is seen to be domina
by the short range interactions. In fact, for the present mo
the LJ fluid is seen to be more effective than the correspo
ing Stockmayer fluid in affecting the relaxation at high solu
frequencies. The reason for this may be that the solv
structure about the solute is held tighter in the polar syst
preventing the close encounters needed for multiphonon
laxation.

The calculation of a very weak high-frequency respon
as is required here may be subject to other computatio
artifacts. We have found that an important reliability test
provided by comparing results obtained using the ‘‘all z
ros’’ ~direct Fourier transform! and the ‘‘all poles’’ ~maxi-
mum entropy! forms for the estimate of the spectral r
sponse. An agreement between computations based on
different approximations provides a strong indication for t
integrity of the result. Figure 4 shows an example of suc
comparison. The data set used to produce these results
resents the forceF@n# sampled at 40 000 points along a tr
jectory obtained for the Stockmayer fluid withDt51 fs ~pe-
riodic boundary conditions using Ewald sums withd
51024!. The dashed line is obtained by first dividing th
data set into overlapping segments of 1024 points e
~neighboring segments overlap over half of their length!,
performing the Fourier transform on each segment usin
triangular window, and averaging the absolute squares of
resulting transforms over all segments. The dotted line
obtained from the same procedure, using segment length
8192. This gives an overall increase in accuracy at highv;
however, the fewer segments used imply larger noise.
full line is obtained from the maximum entropy method u
ing 71 parameters~70 poles!.

Knowledge of the asymptotic form ofz~v! for v→` can

FIG. 4. A comparison of three different data analysis schemes using a
set corresponding to the force acting on one particle in the ‘‘standa
Stockmayer fluid in the dipole direction, sampled at intervals of 1 fs. Das
and dotted lines are averages over periodograms calculated for segme
different lengths. The full lines are obtained from the maximum entro
method with 70 poles. See text for details.
o. 24, 22 December 1997
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10476 Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
facilitate its evaluation in this regime. Arguments based
the saddle point approximation, as well as numerical eva
ation of the Fourier transform of simulated force–force c
relation functions, suggest an exponential ‘‘energy gap law
z(v)5A exp(2av), whereA and a are positive constants
Assuming that this indeed is the correct asymptotic for
i.e., that the functionC(t) satisfies

Ĉ~v![E
2`

`

dteivtC~ t !;Ae2v/v0; v→`, ~23!

our task reduces to calculatingAand v0. Figures 2~a! and
2~b! show that we could extract the parameters for an ex
nential dependence of the rate from any of the lines d
played. Alternatively, the following procedure was found
be useful whenC(t) is the force–force correlation function
Since we look for the asymptotic behavior at largev, it is
reasonable to expect that it is dominated by the short t
part of C(t). It therefore makes sense to apply a Gauss
window in the time domain

G~ t !5C~ t !exp~2gt2!, ~24!

so that

Ĝ~v!5E
2`

`

dteivtG~ t !

5Ap

g E2`

`

dw8Ĉ~v2v8!e2v82/~4g! ~25!

for large v ~i.e., if the asymptotic form~23! holds for the
frequencyv22g1/2), and Eq.~25! can be evaluated in th
form

Ĝ~v!5Ap

g
AE

2`

`

dw8e2~v2v8!/v0e2v82/~4g!

52pAeg/v0
2
e2v/v0. ~26!

Thus plotting@ ln Ĝ(v)# vs v we can obtaina from the slope
and A from the intercept. It should be noted that while w
have found this method to be quite useful for obtaining hig
frequency information from the correlation function, in mo
situations this procedure was not used, since using the F
rier transform ofF(t) itself within the Wiener–Khinchin
theorem was found to work better.

IV. EFFECT OF PHYSICAL PARAMETERS

Typical results for the vibrational relaxation rates we
shown ~Figs. 2 and 3! and discussed above. It was esta
lished that in the high-frequency regime, well above the s
vent cutoff frequency, the vibrational relaxation rate asso
ated with an isolated molecular mode~e.g., a diatomic
impurity molecule! can be represented by an exponen
function of the mode frequency:

kVR5Ae2v/v0. ~27!

Table I gives fitted values for the parametersA andv0

obtained for the ‘‘standard’’ system defined in Sec. II and
its Lennard-Jones counterpart, as well as for variations
J. Chem. Phys., Vol. 107, N
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these systems. These variations are derived from the stan
system by changing the solvent molecular mass, its mom
of inertia, and the rotational characteristics of the solute m
ecule: In some of the simulations the solute is not allowed
rotate, making it possible to examine the role played by
corresponding local libration in the relaxation process. In
cases, the fit to the form~27! is based on the results obtaine
in a finite frequency range, typically 500–1300 cm21 for the
case of a polar solvent.30

It is seen that bothA andv0 depend on the solvent an
impurity parameters. The effect onv0 is more significant
because it appears exponentially in the rate expression
particular, the importance of the local librational mode
seen by comparing the values ofv0 for rotating and nonro-
tating solute. The effect of solvent rotational motion, inferr
from comparing results obtained for different moments
inertia I, is relatively small for the present model syste
Note that Fig. 1 similarly shows a relatively weak effect
the molecular rotations on the translational spectrum.31

V. QUANTUM EFFECTS: THE CO–Ar SYSTEM

Figures 5 and 6 show our results for the classical vib
tional relaxation rate@based on Eqs.~1! and ~2!# for the
Ar–CO system~see Sec. II for details of the model system!.
Figure 5 displayskVR(v) as a function of mode frequencyv,
at three temperatures: 20, 150, and 300 K, while Fig. 6 co
pares, at 20 K, the vibrational relaxation rate computed us
a model which allows rotational/librational motion of the C
impurity and the rate obtained from a model which forbi
this motion. Note that the full lines in Figs. 5 and 6 a
identical. Based on our discussion above we can assert
kVR is of the form~27!. A fit to this form yields the results in
Table II: For the CO frequency,v>2140 cm21 in the ma-
trix; using these parameters in Eq.~27! yields kVR ~classical
simulation!5 2.14•10220 s21 at T520 K. This unphysically
low result must be multiplied by the quantum correction fa
tor Q @cf. Eqs.~1!–~5!#,

Q5
tanh~b\v/2!

b\v/2

*0
`dt cos~vt !^@F~ t !,F~0!#1&QM

*2`
` dt cos~vt !^F~0!F~ t !&C

.

~28!

We recall7 that Q51 for a system characterized by a line
coupling between a harmonic bath and a harmonic impur

TABLE I. Parameters for the vibrational relaxation rate, Eq.~27!, for sev-
eral model systems: The ‘‘standard’’ and the corresponding LJ systems
related systems with restricted solute rotational motion, and systems re
to the ‘‘standard’’ systems with different solvent mass or moment of iner

System A ~ps21) v0 (cm21)

‘‘standard’’ 26.4 112.5
LJ 26.7 103.3
‘‘standard’’-nonrotating solute 36.3 91.2
LJ-nonrotating solute 20.6 82.9
‘‘standard’’; m310 73.2 88.6
‘‘standard’’; I 310 36.3 94.2
‘‘standard’’; I 3100 40.2 104.6
o. 24, 22 December 1997
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10477Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
however, this is no longer the case for processes domin
by multiphonon transitions. In general,Q cannot be calcu-
lated exactly, and several ways to approximate it w
suggested.32–35 Here we use an approximate expression
rived by Nitzan and Jortner36,37 for a model which assumes
simple nonlinear coupling between a harmonic impurity
frequencyv and a harmonic bath:

FIG. 5. Theclassical vibrational relaxation rate@Eqs. ~1! and ~2!# as a
function of impurity frequency for a system characterized by the interac
parameters of a CO molecule embedded in an Ar matrix atT520 ~full line!,
150 ~dotted line!, and 300 K~dashed line!.

FIG. 6. The full line is identical to the corresponding line of Fig. 5. T
dotted line represents the vibrational relaxation rate computed for the s
system under the restriction that the CO molecule is not allowed to rot
J. Chem. Phys., Vol. 107, N
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Q>
eb\NvD21

~eb\vD21!N

~b\vD!N

b\NvD
, ~29!

where vD is the ‘‘Debye frequency’’ of the bath andN
5v/vD is the order of the dominant multiphonon process
should be emphasized thatvD appearing in this expressio
represents the highest frequency bath mode coupled to
impurity, irrespective of the validity of the Debye model fo
the environment.

For solid argon,vD>64 cm21, henceN>33.4. Using
these numbers in~29! yields Q>1.2•1020 and kVR

>2.5 s21, which is compared favorably to the upper bou
for this rate estimated from experimental results.38 It should
be emphasized that the theoretical result may be too h
The vD564 cm21corresponds to the pure solid argon a
disregards the higher frequency local modes associated
the CO impurity. Such modes arise both because the mas
CO is smaller than that of Ar and because of the librat
of the CO molecule in the solvent cage. We may estim
the effect of the librational motion from the data di
played in Fig. 6. Assuming that for the nonrotating C
case vD564 cm21, and that the rate is proportional t
exp(2a•v/vD) @so thatv0 in Eq. ~27! is vD /a#, with the
samea in the rotating and nonrotating CO cases, yields
the rotating CO system~using numbers from Table II! vD

>64•28/22582 cm21 and correspondingly,N>26.1. With
these parameters, Eq.~29! yields Q51•1018 and kVR

>0.021 s21.
While the absolute values given by the above estima

should not be taken too seriously, the trends observed
gest that we have indeed identified the main physical fac
affecting vibrational relaxation in such systems. In particul
the magnitude of the quantum correction factor emphas
the need to include it in any computation of the relaxati
rate. The large sensitivity to the local mode structure ass
ated with the impurity motion in the solvent cage makes
clear that any estimate of the relaxation rate should take
input into consideration. These observations suggest th
direct numerical computation of the quantum correction f
tor, Eq. ~28!, is needed in any simulation approach to t
vibrational relaxation of high-frequency modes.

VI. CONCLUSIONS

Numerical computation of vibrational energy relaxatio
rates of high-frequency modes in condensed phases is fa
tated by using appropriate time correlation functions deriv
from linear response theory. Two sources of difficulty r
main:~a! The numerical problem posed by the need to eva

TABLE II. Parameters for vibrational relaxation rate, Eq.~27!, for the
Ar–CO system.

System A ~ps21) v0 (cm21)

20 K 33.4 28
20 K ~nonrotating CO! 28.8 22
150 K 1550. 65
300 K 880. 103
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10478 Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation
ate high-frequency Fourier transforms of the computed t
correlation functions, and~b! the uncertainty involving the
relation between the computed classical and the nee
quantum correlation function. In this paper we have sho
that evaluating the needed Fourier transform, a very w
signal in the presence of much stronger irrelevant ones,
be done in a satisfactory way using available methods fr
the signal processing literature. The need for great accu
in this calculation is relaxed considerably using the obser
tion that the resulting signal, and correspondingly the ra
depends exponentially on the frequency. We have also
lyzed the quantum correction factor using an approxim
expression derived for harmonic solid environments. T
quantum correction factor can change the rate by many
ders of magnitude for high-frequency modes at low tempe
tures, and its numerical value depends sensitively on sys
parameters, in particular the relaxing frequency and the
vent cutoff frequency. Analysis of the computational resu
also underline the importance of local modes associated
the relaxing impurity molecule, e.g., its center of mass m
tion and its librational motion in the solvent cage.
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APPENDIX: ASYMPTOTIC EXPANSION OF EQ. „7…

In this Appendix we evaluate the asymptotic form of t
Fourier transform

J~v!52E
0

`

dt cos~vt !C~ t ! ~A1!

of the Kubo function

C~ t !5expF2a2S t

a
211e2t/aD G . ~A2!

@Note that the functionsf(t)andI (v) defined in Chapter 2.1
of Ref. 16 correspond toC(tD) and (1/(2pD))J(v/D),
wherev is measured from the line center.# The parametera
and the timet determine the behavior of the Kubo functio
as follows: Fort/a→0, C(t)5exp(2t 2/2), while in the op-
posite limit, t/a→`, C(t)5exp(2at). Consequently, it is a
common belief thatJ(v) behaves as a Lorentzian, (v2

1a2)21, near the absorption center, and as a Gauss
exp(2v2/2), in the band edges. However, while a Gauss
behavior in the band edges may indeed be expected
physical grounds, it isnot the result of Eqs.~6! and~7!. The
asymptoticv→` form of J(v) can be obtained by following
the procedure described in Ref. 40, Chapter 2.8: An inte
of the form *a

beivtf(t)dt with f(t) N times continuously
differentiable in the intervala<t<b can be represented b

E
a

b

eivtf~ t !dt5BN~ t !2AN~ t !1O ~v2N!, ~A3!
J. Chem. Phys., Vol. 107, N
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where

AN~v!5 (
n50

N21

i n21f~n!~a!v2n21eiva, ~A4!

BN~v!5 (
n50

N21

i n21f~n!~b!v2n21eivb,

and wheref (n)5dnf/dtn. Equation~A3! holds also when
a→` or b→`, provided thatf (n)(t)→0 for t→6` for n
50,1,...,N21 and thatf (N)(t) is integrable in~a,b!. Using
these results in Eq.~7! leads to the asymptotic expansion

J~v!;2 (
m51

`

~21!mC~2m21!~0!v22m; v→`. ~A5!

For the Kubo function, Eq.~6!, we find C(2m21)(0)50 for
m51andC(2m21)(0)51/a for m52, and thusJ(v);v24

as v→`. For largea, we have found that a good approx
mation forJ(v) is given by the ansatz

J~v!>A2pe2~v2/2!1
2

a
v24, ~A6!

which corresponds to a transition from a Gaussian beha
at smallv to the asymptoticv24 dependence at largev, at a
cross-over frequencyvc given as the solution of

vc5A2 lnS S p

2 D 1/2

a D18 ln vc. ~A7!
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