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In this paper we consider vibrational relaxation of high-frequency impurity modes in condensed
environments as a computational problem. Linear response theory provides convenient routes for
this computation: The vibrational relaxation rate is obtained as a Fourier transform of a force—force
time correlation function. However, numerical difficulties arise for processes characterized by a
direct relaxation of high-frequency modes into an environment characterized by a relatively low
cutoff frequency. It is shown that modern signal processing procedures can significantly enhance the
efficiency and accuracy of the needed computation. Since the relevant “signal” can be very small,
the computation can be very sensitive to boundary conditions, and care must be taken to avoid
artifacts. The computation may be facilitated by using the expected functional form, exponential
dependence on the impurity frequency for high frequency, and fitting the parameters of this form
from the simulation. It is emphasized that this exponential dependence seems to be the correct
functional form, in spite of theoretical arguments in favor of a Gaussian dependence. The main
difficulty in the numerical evaluation of the relaxation rate of high-frequency modes results from the
fact that at low temperature the dynamical behavior of such modes is essentially quantum
mechanical. We demonstrate this issue by considering vibrational relaxation of an impurity CO
molecule in a low-temperature Ar matrix. The results obtained for this system by estimating the
quantum correction to the classical force—force correlation function are consistent with
experimental results, which indicate that under these conditions the relaxation of the vibrationally
excited CO is dominated by radiative decay. 1997 American Institute of Physics.
[S0021-960607)51445-7

I. INTRODUCTION kg and T are the Boltzmann constant and the temperature,
. . . . respectively, andr is the fluctuating solvent forc =0)
Theoretical work on vibrational relaxatioivR) of sol- e?n ?he osci)I/Iator coordinate. In evgluating E8) f:é:? mo-

ute molecules in condensed phases is still a focus of theor I{écular dynamicsMD) simulations, the oscillator bond is

!cal apd experimental _mterest even after over 20. years 9fqq rigid. Equationgl) and(2) are written for the classical
intensive research. It is safe to say that the main factorF

. : : : 2o ; Imit. Quantum corrections to this results have been analyzed
affecting this process in solid and liquid environments ar Q y

now well understood. Among the important issues discuss egy Bader and Bermnéwho have pointed out that for a har-

e : - ) X . X )
and understood over the years ga:The interplay between ronic Hamﬂtoman(hgrmomg OSC'”"’.‘tor interacting with a
. harmonic bath with bilinear interaction terin&qgs. (1) and
the oscillator frequency and the spectrum of the thermal en-. . . L
. ] . (2), with the correlation function if2) evaluated from the
vironment;(b) the effect of different types of solute—solvent . : . .
. : . . . classical trajectory, give also the correct quantum mechanical
interactions, in particular short range versus long range in- . ) . .
o ; . 2~ Trate. It should be emphasized that this result is valid only for
teractions;(c) the roles of different modes of motion: in-

. fhe particular model of linear coupling to a harmonic bath,

tramolecular modes of solute and solvent, local translationa . : : .
librational, and rotational modes, and the solvent phonons ir‘%md therefore is not appropriate for the relaxation of high-
the relaxa;tion rocessH) tem e,rature effects ar?cé) the ' “frequency modes, which requires nonlinear coupling to the
A P P X ' bath. In general, the energy relaxation rate of a harmonic
significance of the quantum mechanical aspects of the mo-_ . : :
2 ) . oscillator coupled to a general thermal bath with the interac-

tion in the relaxation dynamics. . ; " : . ;

Within linear response theory, the vibrational ener re—tIon potentialVqy=—qF (whereq is the oscillator coordi-
P Y, 9y Tehate andr, the fluctuating force exerted by the bath on the

laxation ratekyg, of a harmonic bond in a thermal environ- ; . L
ment is given by(for a mode with frequencyeg)™— (()Zc_lll(akto_lr_,) Ehla)pends on the bath coordinates pig\given by
= (kg ,

kyr=(2u) * , 1

vr=(21) " (wo) (1) tanh Bhw/2) Low()
whereu is the oscillator mass,(w) is the frequency depen- VR™ Bhol2 2u )
dent friction defined by

and the thermal transition rate between two levels in a sys-
g(w):(kBT)flf dt cog wt)(F(0)F (1)), ) tem coupled to |t§ environment via the interaction potential
—o Hsp,=—S(q)F (S is a system operatpis
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2|S,,/? conclusions may be reached from approaches based on in-
k'*J:ﬁﬁz[Hexp(—ﬂﬁwU)] Som(wyy) stantaneous normal modew»u.\/l),14 if one makes the seem-
ingly reasonable assumption that relaxation of high-
=ebhonk; |, (4)  frequency impurity modes is dominated by short time

motions in the environment that can be analyzed within the
INM picture. However, while the short time quadratic time
w 1 dependence of the correlation function is implied by symme-
gQM(w)=ﬁf dte"”t<§[F(t),F(O)]+> try considerations, itdoes notimply a Gaussian high-
- frequency dependence in Fourier space. This has been
co known in the VR literature for some time, and a non-
=ﬁf dt cogwt){[F(t),F(0)]-). (5  Gaussian behavior—the exponential “energy gap law” has
0 already been suggested a long time &Yyblowever, since
It is possible to use Eq$3)—(5) as a starting point for evalu- the high-frequency Gaussian behavior of spectral line shapes
ating quantum corrections factors to rates evaluated from ths a deeply rooted notion, it is useful to examine this issue
classical “force”—"force” correlation function in more gen- Mmore closely. To this end we consider the Kubo function,
eral cases, e.g., with nonlinear coupling. For our discussion
here it is sufficient to note that, as in many other situations, C(t)zexp{ —a?
Fourier transforms of time correlation functions play a cen-
tral role in both classical and quantum rate theories. as a simple example. This function is well known in the
Numerical simulations aimed at evaluating vibrationalstochastic theory of line shapésas a precursor of the ab-
relaxation rates of solute molecules using E4sand(2) [or ~ sorption line shapeJ(w), of an oscillating dipole whose
Egs. (3) with {ou(w) replaced by its classical counterpart, frequency has a stochastic white-noise compongfib) is
Eq. (2)] have been recently used by several workeré=12  given by the Fourier transform
Within given uncertainties in the interaction potentials and "
with possible correlation resulting from the quantum nature J(w):zf dt coq wt)C(t). )
of the thermal environmertthese calculations may be con- 0
sidered to be moderately successful. A very important atkubo’s theory® predicts a Lorentzian line shape,
tribute in calculations based on Eqi)—(S) lies in the fact ((1)2+ a2)—1, near the absorption center and a Gaussian,
that relatively short time correlation functions are used toexp(—w?%2), in the band edges.However, we show in the
calculate relatively slow rates. Still, when the VR processappendix that the truly asymptotig—<) form of (7) is not
can be viewed as a high-order mUltiphonon transition, i.e.a Gaussian but a power |a\M’_4. The Kubo function pro-
when there is a large mismatch between the relaxing modgides a successful model for the transition from the Lorent-
frequency and the frequencies of the accepting méeles, a  zian center to the Gaussian edges of absorption line shapes in
high-frequency diatomic molecule solute in a low Debye fre-condensed environments because the truly asymptotic re-
quency atomic solvef), even this approach may be very gime w— is irrelevant in such applications. The situation is
difficult because the Fourier transform in E¢8).or (5) must  very different in the case of vibrational relaxation of high-
be carried out with frequency much larger than the inversgrequency solutes imbedded in low-frequency condensed en-
characteristic times associated with the friction kernel, Whicr\/ironments_ As we show beIOW, numerical simulations seem
yields a very small rate subjected to very large numericato confirm the theoretical predictibhthat at least in the
errors. As a mathematical iSSUG, evaluating the rate becom%kgvant experimenta| range, the exponentia| energy gap |aW,
a signal processing problem. From the physical point ofy( )~ exp(—aw/wp), where « is a constant andvp is a
view, the nature of the interaction and the relevant motionsneasure of the extent of the solvent intermolecular
responsible for this high-frequency part of the response argpectrum—the equivalent of the Debye frequency in solids,
essential. holds.
As a numerical problem, evaluating the high-frequency
Fourier components of correlation functions like those ap-
pearing in Eqs(2) or (5) is hampered by the fact that the ||, pHySICAL MODELS AND SIMULATION DATA
Fourier transforny(w) falls to zero very rapidly forw> wp
(wp being the “Debye frequency” of the solvenfThus, we In the examples shown and discussed below, we con-
need to evaluate a very small signal in the presence of Ve@ider the vibrational relaxation of a diatomic molecule sol-
large noise. It may help to have some notion about the wayated in either a Lennard-JonésJ) or a Stockmayer fluid.
{(w) depends om. Some confusion arises from the common The first is characterized by the intermolecular potential
intuitive association of high frequencies with short times. (ULJ 6 (Uu)lz
r r

Adelman and co-workefSin fact, suggest that the relaxation Vi(r)=—4g,
rate of high-frequency diatomic solutes in simple fluid is

necessarily a Gaussian dependence on the frequéggy, and in the second this potential is supplemented by putting a
~exp(—aw?), since the initial relaxation of time correlation point dipolew at the center of each LJ sphere, i.e., the inter-
functions is quadraticC(t)~1—bt?=exp(—bt?). Similar  action between two solvent particlesnd] is

where

: 6

l_ + eft/a
o

, ®
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0.0005 partial chargegicys= —qc=0.25 e. The LJ parameters for
the solute—solvent interactions are obtained by taking
O'C|:3.93 A, O'CH3:3.43 A, 8C|:90.68 K, andSCH3:53.63

_0'0004 K and using the combination rules;=[o;+ 0;]/2 ande;;
R = (eiej)"2 The solute equilibrium bond length Ry,=1.78

g 0.0003 A, and the intramolecular interaction is a Morse potential
2 characterized by a well depth,=234.52 Kcal/mol and a
:3:0.0002 bottom frequencyw=680 cmi . Note, however, that in the
g simulation this bond is held rigid.

0.0001 In Sec. V below we also apply our numerical consider-
(a) ation to one realistic system: an impurity CO molecule im-
bedded in an argon matrix. The model for this system as-

0.0 0.0004 sumes Lennard-Jones interactions between the argon atoms

’ as well as between them and the carbon and oxygen atoms.
0.0004 The parameters used &é? o(Ar—Ar)=3.42 A, o(Ar-0)
= 00 e =g(Ar-C)=3.28 A, e(Ar-Ar)=124 K, &(Ar—C)=&(Ar-0)

NE 0.0003 \/ =88 K. The CO bond length is 1.1 A and is frozen during
S, the simulation. In all simulations we use 399 Ar atoms and 1
5 -0.0001 CO molecule in a cubic box of length 25.136 A, which cor-

3 0.0002 0 250 500 . . .

S responds approximately to the density of Ar in a 20 K ma-
© trix. (Note that the same density was used for simulations
0.0001 (b) made at higher temperature$he simulated system was pre-

pared by first equilibrating it at room temperature, then
0.0 quenching it to the desired low temperature. The resulting
0 100 200 _?00 400 500 system is therefore amorphous and the calculated rate will
w [em ] depend somewhat on the particular local configuration sur-
rounding the CO molecule.
FIG. 1. Fourier transforms of the velocity—velocity time correlation func- Below we compute the resulting relaxation rate as a

tions,C,(w)=2[gdt cosft)(v(0)-v(t)), for (a) the “standard” LJ model, - . .
and(b) the “standard” Stockmayer model. The inset in Figbjlshows the function of several of these parameters, primauly The

difference between the two. simulated system consists of 100—400 solvent particles and 1
solute molecule in a cubic cell of sizZe=14.364 A (100
particles; twice that for 400 particledn typical trajectories
we used 40 000-100 000 time steps with=1 fs after the

(9)  system was equilibrated. The dynamics of the Stockmayer

ij fluid is obtained using theHAKE algorithm as described in

In what follows, we refer by “standard model” to the fol- Ref. 23. As we see below, the quality of the computed rate

lowing choice of parameters: ;=3.15A,¢,,=78.3 K,the may be sensitive to the way boundary conditions are

massM =18 amu, the moment of inertie=1.284 amuA?, handled. In order to examine this issue we have used differ-
the temperaturd =298 K, and the densitp=1.0 g/cni.  ent cutoff schemes for both the LJ and for the electrostatic

These are parameters that were used to fit water moleculésteractions. For the LJ potential the following two cutoff

within the Stockmayer modéf:'° The dielectric moment of schemes were used:

this waterlike Stockmayer fluid was taken to be 1.695 D.

#i- =30 ) (N py)
3 .

V(rij)=Vi(rij)+ ;

With this choice, the dielectric constant calculated as de- VL) =ViAN #(Re=), (10)
scribed in Ref. 20 was found to tae-80. The Fourier trans- 1/ o -\ 6

forms of the velocity—velocity time correlation functions of VEJ(r)zlvu(r)—vLJ( R.)— 48 5( R—LJ)

this Stockmayer liquid and of the corresponding LJ liquid C
characterized by the same parameters, exceptuhd, are o\ 2r =R,

shown in Fig. 1. These spectra reflect the contributions of —(?C } R, ]G(Rc—f), (12)

translational motions for the LJ fluid and of translational and
rotational motions for the Stockmayer system. The differ-where (x)=1 for x>0 and is zero otherwise. The second
ence spectrunfinset in Fig. 1b)] emphasizes the contribu- choice keeps the forcdirst derivative of the potentiglcon-

tion of rotational and librational degrees of freedom fortinuous at the cutoff radius, while the first choice does not.
0=150 cmL. Our solute is a generic dipolar diatomic mol- For the electrostatic interactions we use either reaction
ecule, which for definiteness is taken identical to the di-field (RF) boundary conditiongsee Ref. 23 for detailsor
atomic CHCL model considered in Ref. 4. The atomic periodic boundary conditions with Ewald surtisS) in order
masses in this model are those of L£&hd of Cl. These to treat the long range electrostatic interactions. In the RF
“atoms” interact with the solvent with a combination of LJ case, electrostatic interactions are cut off at the reaction field
interactions and Coulombic interactions associated with theadius R.=L/2. This cutoff is affected by a function that

J. Chem. Phys., Vol. 107, No. 24, 22 December 1997

Downloaded 21 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Rostkier-Edelstein, Graf, and Nitzan: Vibrational energy relaxation 10473

goes to zero betweeR,=fR, and R, (we took f=0.95. problem is compounded by the fact that the correlation func-

The simplestand most commonly usgautoff form is tions(F(0)F(t)) or ([F(t),F(0)].) are not known exactly:
1 2(e! They are obtained at a finite number of discrete time points
A (e'=1) . — .
Voo (rij M 'Mj):{ (‘5—/—?) ey and by necessity are affected by numerical inaccuracies and
rii (28" + DRy by statistical noise.

3(ﬁ'ﬂi)(ﬁ'ﬂj) The issue outlined above is a standard problem in signal
——3] tA(rij) processing, and is discussed in a large body of available

iy literature (see, e.g., Ref. 26; for an introductory review see

X 0(Re—Ty;), (12) Ref. 27. In view of the very demanding nature of our type of

signal processing, it is worthwhile to consider ways and

means offered by this literature. For the sake of definiteness

1 r<Rq we focus on the force—force time correlation function

R (F(0)F(t)) of Eg.(2). It is assumed that we have obtained

S RE=(1+f+f2+f3)R¥Y4. (13 the desired force as &eal valued data sequencé[n]
Re—Rs =F(nAt), where At is the chosen time interval and

0 R<r =0,1,...N—1. The following points ca be of relevance:

With this choice, the potential energy is continuous at thgw (&) For a given sampling intervalt, the Fourier trans-

sphere boundary but the forces are not. A slightly modifie Ormuift rcnrﬁ;rz;lln?rfemu%zlc):/ fo\;J/‘r‘:Lf ‘t')h"; ;Ta{r(nml?n “’I‘; Irse;[:?cte d
form, VB, is similar to(14), with t* replaced by yq quency. pling

to theN pointst=nAt, n=0,1,...N—1, the discrete Fourier

with the tapering function

tA(r)=4 1

1 r<Rg transform is defined by

B r—Rg |2 r—Rg\?® o N-1

t5(r)= 1—3(RC_RS) +2<fC—Rs) Rs<r<R,, F=Flon=3 F[n]e i=mit
0 Re<r "o

(14) o =2k/(NAt) with k=—N/2,..(N/2—1).

andR3= (1+ (3/2)f + (3/2)f2+ f3)R3/5, which renders both AtF(w) is hopefully a decent approximation to
potential and force continuous at the boundary. In the Ewalqoj dtF(t)e'“K. The correlation function is defined by

approach, the electrostatic energy and forces are given as
sums of terms, computed in real and reciprocal spaces. The
real space sum is usually restricted to the first simulation cell ~ Cll1= nZO FInIF[n+|I]]. (15
and a parametest determines both the error in this trunca- -
tion and the corresponding number of terms that needed to (b) The discrete sampling defined above provides an ex-
be taken in the reciprocal space summation to achieve act representation for a function which is band limited to the
similar truncation errora has to be large enough so that interval w<w.. The transform of functions which are not
limiting the sum in real space to the first simulation ¢e##., band limited to this range may suffer from aliasing: The
to a cutoff distancdr.~L/2) is valid. Using this cutoff the power spectrum outside the Nyquist range is spuriously
truncation error is of the ordef=exp(—a%4) 2#?>We have moved into that range. This is not expected to create a seri-
checked the accuracy of the computed rate with respect tous problem in our present application, because our spectrum
the choice ofa or &, as detailed below. decreases rapidly fap> wp , wherewp is the solvent “De-
bye frequency,” provided we chose the sampling such that
W= wp.

(c) The Wiener—Khinchin theorem, which relates the
Fourier transform of the correlation functigi (0)F(t)) to

As discussed in the Introduction, the use of E@.or  the absolute square of the Fourier transfornk (ff) takes the
(5) to evaluate vibrational relaxation rates from numericalfollowing form for finite discrete samples: Let
simulation data has a considerable advantage over the direct N—1
observation of energy relaxation as a function of time. To get A _ il At
meaningful results for the latter, one needs to follow the (w)_|:_%_1) Clile (16
(relatively slow relaxation process of interest, while the
force—force correlation functions of Eq®) and(5) relax on
the much shorter time scale associated with the solvent N-1 .
nuclear motion. This important time-saving device should be F(w)= 2 F[n]e '@nat, 17
used with care for frequencies much higher than those char- n=0
acteristic to the solvent: The frictiof{w) goes to zero very Then
quickly with w in this range, so simply evaluating the Fourier
transform in(2) or (5) amounts to detecting a very small
signal in the presence of much stronger irrelevant ones. This

N—[I|-1

Ill. COMPUTING VIBRATIONAL RELAXATION RATES

AS A SIGNAL DETECTION PROBLEM

and

- 1.
Clw)=IF(w)*. (18
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This result is very useful for our application: It turns out that
results based of1L8) are more reliable in the high-frequency
limit.
_ (d) Given thatF[n] is a random signal, thgeriodogram
C(w) is another discrete random function. Its mean is obvi-
ously positive for allN, and approaches asymptotically
(N—<) the power density spectruraf the process. How-
ever.,its variance remains finite, of the order of the square of
its mean, in this limitThe standard deviation of this estimate
of the power spectrum is therefore of the same order as the
mean, and extra effort is needed to increase accuracy. This
can be done by either breaking the data set into smaller seg-
ments and averaging the periodograms associated with dif-
ferent segments, computing the periodogram with finer dis-
crete frequency spacing than needed, then coarse-graining
the resulting periodogram estimate by summing the values
within bins of predefined size in the frequency domain,
and/or using data windowinjgee, e.g., Refs. 2Bect. 12.7
and 2§.

(e) The power spectrum estimate given by the peri-
odogram

(a)

N/2—1 2
Flo)=| > F[n]e 2mkN| - —27k/(NA),
n=—N/2
(19
or
N/2—1 2
F(z)=| 2, F[n]Z"| ; z=e 27k (20)
n=—-N/2

0

1000 2000

w [Cm'1]

3000 4000

FIG. 2. The vibrational energy relaxation rate, ED.calculated for a mode
with reduced masg=18 amu for(a) the “standard” LJ fluid, andb) the
“standard” Stockmayer fluid. In(@) the full line results from a system of

is just one possible form for an approximate estimate to thé/=128 particles, with the interparticle potential given %, [Eq. (12)],

true power spectrunfA formal expression for representing
the latter is similar to(20) with the sum extended to
—o0,..%, i.e., by an infinite Laurent serigsThis is the “all

with R.=L/2 and the dashed and dotted lines corresponding to systems of
N=128(L=15.62 A andN=256 (L =19.68 A particles, respectively, with

the potential\/f‘J [Eg. (13)]. In (b), the full and dashed lines correspond to
systems ofN=128 (L=15.62 A with reaction field boundary conditions

zero model,” emphasizing the fact that the model spectrun{R.=L/2), using, respectivelyysy [Egs.(14) and(15)] andVE, [Eq. (14)

can have zeros, but not poles in the compieplane. A
powerful alternative is the “all pole model,” based on the

form
~ ag
F(z)~ N 7 (21
1+ 2 aka
k=1

In principle, theM + 1 coefficientsa, may be determined so
that the firstM + 1 terms in a power series expansion(®f)

agree with the equivalent terms in the infinite Laurent series

corresponding t¢20). In practice, these coefficients are often
obtained from the following set of linear equatiofihe
“maximum entropy method,” MEM

[Co C4 C Cw Jr 1 [ ap

Ci G Ci Cv-1|| a

C, C Co Cyv-2|| a,[=| O [

LCv Cm-1 Cu-z Co JLomI | 0]
(22

whereC,=C_, is the correlation functiori1l5) at time lag
/At.

J. Chem. Phys., Vol. 107, No
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with t* replaced byt®, Eq. (16)]. In both casesV’, was used for the LJ
interactions; however, usiﬁcgjﬁJ in these cases had no significant effect. The
other three lines are obtained by using periodic boundary conditions with
Ewald sums: For the dotted lilé=128 ands=10"* for the dashed—dotted
line, N=128 and6=10"5, and for the crossesy=256 ands=10°. In
these three casag’; was used for the LJ interaction. The maximum entropy
method was used in all cases.

In addition to the “standard” issues outlined above,
there are several other issues associated with our specific
signal processing problem.

As already noted, many of our applications deal with the
energy relaxation of a high-frequency mode of a solute mol-
ecule in a bath whose dynamics reflects a relatively low cut-
off (Debye frequency. A typical example is the vibrational
relaxation of a diatomic molecule in rare gas solids. In this
situation, our “signal” is extremely small and our computa-
tions may be extremely vulnerable to computational artifacts.
An example of such artifacts is provided by the sensitivity of
the computed friction{(w), to the boundary conditions. This
is demonstrated in Fig. 2, which shows the friction as a func-
tion of frequency for our “standard” LJ and Stockmayer

. 24, 22 December 1997
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0 1000 2000 3000 4000 0 1000 2000 3000 4000
-1 -1
w [em™] wlem’]

FIG. 3. The two bestlowes) lines from Figs. 2a) and 2Zb), respectively. FIG. 4. A comparison of three different data analysis schemes using a data

Full line is the “vibrational relaxation rate” computetsee texk in the set corresponding to the force acting on one particle in the “standard”

“standard” Stockmayer fluid. Dotted line—same as for the “standard” LJ Stockmayer fluid in the dipole direction, sampled at intervals of 1 fs. Dashed

fluid. and dotted lines are averages over periodograms calculated for segments of
different lengths. The full lines are obtained from the maximum entropy
method with 70 poles. See text for details.

solvents. In order to save computer effort we simplify this
test calculation by using the pure solvents, and the “fric-modes whose frequencies lie in the corresponding réseg
tion” is calculated from a force—force time correlation func- however, Ref. 12 This effect is also seen here at low fre-
tion, where the force is that exerted on any solvent moleculguencies(see inset to Fig. )3 however, multiphonon relax-
by all other molecules in the direction of its dipoler in  ation of high-frequency solute modes is seen to be dominated
some fixed direction in the LJ systenfrigure Za) shows the by the short range interactions. In fact, for the present model,
result for the LJ solvenfu=0), and Fig. Zb) shows similar  the LJ fluid is seen to be more effective than the correspond-
results for the Stockmayer fluid. A significant observation ising Stockmayer fluid in affecting the relaxation at high solute
that for largew the computed friction is quite sensitive to the frequencies. The reason for this may be that the solvent
boundary conditions, in particular in the system with longstructure about the solute is held tighter in the polar system,
range Coulombic interactions. Thus in the Stockmayer syspreventing the close encounters needed for multiphonon re-
tem, a crossover to an unphysically weak frequency depenraxation.
dence of the friction occurs at some high frequency whose The calculation of a very weak high-frequency response
magnitude depends on the boundary model ugedction as is required here may be subject to other computational
field or Ewald sumy, and on the cutoff function imposed on artifacts. We have found that an important reliability test is
the long range potential in the model that uses reaction fielgrovided by comparing results obtained using the “all ze-
boundary conditions. The origin of this sensitivity is the factros” (direct Fourier transforjnand the “all poles” (maxi-
that the very small response at high frequency may be afmum entropy forms for the estimate of the spectral re-
fected by unphysical contributions to the force associatedponse. An agreement between computations based on these
with particles that cross the interaction cutoff range. Suchdifferent approximations provides a strong indication for the
unphysical contributions are usually too small to affect mostntegrity of the result. Figure 4 shows an example of such a
other properties, but may not be too small in the presentomparison. The data set used to produce these results rep-
context. Figure @) shows that a careful choice of model, resents the forcE[n] sampled at 40 000 points along a tra-
system size, and boundary conditions may significantly imjectory obtained for the Stockmayer fluid wikt=1 fs (pe-
prove the reliability of the computed friction; however, cal- riodic boundary conditions using Ewald sums with
culational artifacts associated with the system boundary may: 10~ 4). The dashed line is obtained by first dividing the
contaminate the results if such precaution is not taken. data set into overlapping segments of 1024 points each
It is interesting to note in passing the effect of Coulom- (neighboring segments overlap over half of their lengths
bic interactions on the relaxation rates. Figure 3 compareperforming the Fourier transform on each segment using a
the two best(lowes) lines from Figs. 2a) and Zb) which  triangular window, and averaging the absolute squares of the
correspond to systems that differ from each other only by theesulting transforms over all segments. The dotted line is
existence of a permanent molecular dipole in the latter. Th@btained from the same procedure, using segment lengths of
potentially important role of electrostatic interactions in af-8192. This gives an overall increase in accuracy at high
fecting vibrational energy transfer to the solvent has beemowever, the fewer segments used imply larger noise. The
discussed by several workets:82°It has been pointed out full line is obtained from the maximum entropy method us-
that the availability of rotational and librational modes in ing 71 parameter§70 poles.
polar solvents can enhance vibrational relaxation of solute Knowledge of the asymptotic form ¢fw) for o—w can
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facilitate its evaluation in this regime_ Arguments based onfABLE I. Parameters for the vibrational relaxation rate,‘l,-"bZ), for sev-

the saddle point approximation, as well as numerical evamgral model system_s. The _standard and the correspondlng LJ systems, the
tion of the Fourier transform of simulated force—force Cor_related systems with restricted solute rotational motion, and systems related

a lation f fi i tial " | o the “standard” systems with different solvent mass or moment of inertia.

relation functions, suggest an exponential “energy gap law,

{(w)=A exp(—aw), whereA and « are positive constants.  System A (psh wo (cm™Y)
Assummg that th!s indeed is .the correct asymptotic form; ~standard” %64 1125
i.e., that the functiorC(t) satisfies LJ 26.7 103.3
- “standard”-nonrotating solute 36.3 91.2
é(w)E j dte“'C(t)~Ae “/®0; @, (23 LJ-nonrotating solute 20.6 82.9

— “standard”; mx 10 73.2 88.6

. . “standard”; I X 10 36.3 94.2

our task reduces to calculatingand w,. Figures 2a) and “standard”; | X 100 40.2 104.6

2(b) show that we could extract the parameters for an expo:
nential dependence of the rate from any of the lines dis-

played. Alternatively, the following procedure was found to

be useful wherC(t) is the force—force correlation function: these systems. These variations are derived from the standard
Since we look for the asymptotic behavior at largeit is ~ System by changing the solvent molecular mass, its moment
reasonable to expect that it is dominated by the short tim@f inertia, and the rotational characteristics of the solute mol-
part of C(t). It therefore makes sense to apply a Gaussiargcule: In some of the simulations the solute is not allowed to
window in the time domain rotate, making it possible to examine the role played by the
corresponding local libration in the relaxation process. In all

G(t)=C(t)exp(— y1?), (24) cases, the fit to the forrf27) is based on the results obtained
so that in a finite frequency range, typically 500—1300 chior the
. case of a polar solveri.
é(w):f dte “'G(t) It is seen that bot and wy depend on the solvent and

impurity parameters. The effect ang is more significant
because it appears exponentially in the rate expression. In
o ~ 12 . . . . .
= \ﬁj dw' C(w—w')e @ 747 (25) particular, the importance of the local librational mode is
VJ-e seen by comparing the values @f for rotating and nonro-
for large o (i.e., if the asymptotic form(23) holds for the tating solute. The effect of solvent rotational motion, inferred

frequencyw— 2942, and Eq.(25) can be evaluated in the from comparing results obtained for different moments of

form inertia |, is relatively small for the present model system.
Note that Fig. 1 similarly shows a relatively weak effect of
é(w): \/E Af” dw’ e~ (0— 0" Vwog—o'?(4y) the molecular rotations on the translational spectttim.
Y —»
02— o V. QUANTUM EFFECTS: THE CO-Ar SYSTEM
=2mAe"“oe” @0, (26)

. - . Figures 5 and 6 show our results for the classical vibra-
Thus plotting[In G(w)] vs @ we can obtainx from the slope tional relaxation ratdbased on Eqs(1) and (2)] for the

andA from the intercept. It should be noted that while we .~ system(see Sec. Il for details of the model system
have found this method to be quite useful for obtaining high-Figure 5 displaydyr() as a function of mode frequenay

fr_equgncy in_formation from the correlation_ functio_n, N MOSt o+ three temperatures: 20, 150, and 300 K, while Fig. 6 com-
situations this procedu_re was not used, since using thg Foﬁ'ares, at 20 K, the vibrational relaxation rate computed using
rier transform ofF(1) itself within the Wiener—Khinchin a model which allows rotational/librational motion of the CO
theorem was found to work better. impurity and the rate obtained from a model which forbids
this motion. Note that the full lines in Figs. 5 and 6 are

IV. EFFECT OF PHYSICAL PARAMETERS identical. Based on our discussion above we can assert that

Typical results for the vibrational relaxation rates werekvr is of the form(27). A fit to this form yields the results in
shown (Figs. 2 and 3 and discussed above. It was estab-Table Il For the CO frequencyy=2140 cm* in the ma-
lished that in the high-frequency regime, well above the solliX; using these parameters in EQ7) yields kyg (classical
vent cutoff frequency, the vibrational relaxation rate associSimulation= 2.14 10"?°s™* at T=20 K. This unphysically
ated with an isolated molecular mode.g., a diatomic low result must be multiplied by the quantum correction fac-
impurity molecul® can be represented by an exponentialtor Q [cf. Egs.(1)—(5)],

function of the mode frequency: _ tan{Bhw/2) Jodt cogwt)([F(t),F(0)]+)om
kyr=Ae~ /@0, (27  Bhol2 JZ..dt cog wt)(F(0)F(t))¢c

Table | gives fitted values for the parametérsand w (28)
obtained for the “standard” system defined in Sec. Il and forWe recall that Q=1 for a system characterized by a linear
its Lennard-Jones counterpart, as well as for variations ofoupling between a harmonic bath and a harmonic impurity;
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TABLE Il. Parameters for vibrational relaxation rate, E@7), for the

10 Ar—CO system.
System A (psh wo (em™)
20 K 33.4 28
20 K (nonrotating CQ 28.8 22
150 K 1550. 65
. 300 K 880. 103
A
RN - om =1 (Bhoo)" 29
N ~ (efroo—1)N BANwp
\\\ where wp is the “Debye frequency” of the bath andtl
- = w/ wp is the order of the dominant multiphonon process. It
should be emphasized thal appearing in this expression
represents the highest frequency bath mode coupled to the

impurity, irrespective of the validity of the Debye model for
the environment.
For solid argonwp=64 cm !, henceN=33.4. Using

FIG. 5. Theclassical vibrational relaxation rat¢Egs. (1) and (2] as a  these numbers in(29) yields Q=1.2- 10 and kyg
function of impurity frequency for a system characterized by the interaction=2.5 s, which is compared favorably to the upper bound
parameters Qf a CO molecule embed_ded in an Ar matrix=a20 (full line), for this rate estimated from experimenta| resazftﬁ_ should
150 (dotted ling, and 300 K(dashed lin: be emphasized that the theoretical result may be too high:
The wp=64 cm corresponds to the pure solid argon and
disregards the higher frequency local modes associated with
the CO impurity. Such modes arise both because the mass of

O is smaller than that of Ar and because of the libration

0 200 400 600 800 1000 1200 1400

w(cm'l)

however, this is no longer the case for processes dominat

by multiphonon transitions. In generag cannot be calcu- of the CO molecule in the solvent cage. We may estimate

lated exactly, and several ways to approximate it Werhe effect of the librational motion from the data dis-
suggested®—° Here we use an approximate expression de-

rived by Nitzan and Jortn&3"for a model which assumes a played in Fig. 6. Assuming that for the nonrotating CO

simple nonlinear coupling between a harmonic impurity Ofcase wp=64 cmi?, and that the rate is proportional to
. —a- h in Eq. (27) i ith th
frequencyw and a harmonic bath: exp(—a- wlwp) [so thatw, in Eq. (27) is wp/a], with the

sameq in the rotating and nonrotating CO cases, yields for
the rotating CO systenfusing numbers from Table)llwy
=64-28/22=82 cm ! and correspondinglyN=26.1. With
these parameters, Eq29) yields Q=1-10" and kyr
10” , , =0.021 st

While the absolute values given by the above estimates
should not be taken too seriously, the trends observed sug-
gest that we have indeed identified the main physical factors
affecting vibrational relaxation in such systems. In particular,
the magnitude of the quantum correction factor emphasizes
the need to include it in any computation of the relaxation
rate. The large sensitivity to the local mode structure associ-
ated with the impurity motion in the solvent cage makes it
clear that any estimate of the relaxation rate should take this
input into consideration. These observations suggest that a
direct numerical computation of the quantum correction fac-
tor, EqQ. (28), is needed in any simulation approach to the
vibrational relaxation of high-frequency modes.

VI. CONCLUSIONS

0 200 400 600

-1 Numerical computation of vibrational energy relaxation
w(cm )

rates of high-frequency modes in condensed phases is facili-
FIG. 6. The full line is identical to the corresponding line of Fig. 5. The tated by using appropriate time correlation functions derived

dotted line represents the vibrational relaxation rate computed for the samféor_n linear response theory. Two sources of difficulty re-
system under the restriction that the CO molecule is not allowed to rotatemain: (a) The numerical problem posed by the need to evalu-
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ate high-frequency Fourier transforms of the computed timevhere

correlation functions, andb) the uncertainty involving the N—1
relation between_ the cor_nputed c_lassmal and the needed AN(w):E i1 (@) " leion, (A4)
guantum correlation function. In this paper we have shown n=0
that evaluating the needed Fourier transform, a very weak N—1

signal in the presence of much stronger irrelevant ones, can B _ =1 4(n) —n—140B
. ) ) . = i e'“p,
be done in a satisfactory way using available methods from N(@) nZO ¢ (Bw
the signal processing literature. The need for great accurac () _ an n .
in this calculation is relaxed considerably using the observa—a/ndoov\/:rereqﬁOo _?0\%2; 'thi?ug‘t)l?tr)] (Ag) f::)ltds ?_Ifoof;\;hr?n
tion that the resulting signal, and correspondingly the rate® % ©f A= P ()~ e

: =0,1,..N—1 and thatp™)(t) is integrable in(e,B). Using
depends exponentially on the frequency. We have also an ese results in Eq7) leads to the asymptotic expansion

lyzed the quantum correction factor using an approximat
expression derived for harmonic solid environments. The
quantum correction factor can change the rate by many or- J(@)~2 >, (—=1)"C?™ Y(0)w 2™ w—». (A5)
ders of magnitude for high-frequency modes at low tempera- m=1

tures, and its numerical value depends sensitively on systeffor the Kubo function, Eq(6), we find C?™~1(0)=0 for
parameters, in particular the relaxing frequency and the sol=1andC®™ Y(0)=1/a for m=2, and thus)(w)~w *
vent cutoff frequency. Analysis of the computational resultsas w—. For largea, we have found that a good approxi-
also underline the importance of local modes associated witmation forJ(w) is given by the ansatz

the relaxing impurity molecule, e.qg., its center of mass mo-

o)

tion and its librational motion in the solvent cage. Jw)= 2 e (@%12) 1 % 0 4 (AB)
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