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A method for constant pressure Monte Carlo simulations in lattice gas models is described. The
simulation box is placed between two hard walls with fluctuating distance, and periodic boundary
conditions are applied in the perpendicular directions. Continuous volume fluctuations in the
bounded direction are made possible by introducing a generalized volume, which interpolates
between the discrete values that correspond to the given lattice. This is achieved by using a surface
potential variable which makes the lattice surface layer next to the hard wall gradually less
accessible to particle occupation. The method is applied to the equation of state of noninteracting
lattice gas models, where exact results are available for comparison, and also to less trivial models
of interacting point-particles and athermal lattice chains, for which the quasichemical approximation
~QCA! provides reliable results to compare with. For the chain simulations the method can be used
in conjunction with the configuration biased Monte Carlo procedure in order to enhance its
performance. However, since the Monte Carlo moves can be chosen to fit any desired kinetic model,
our method can be used not only to generate constant pressure equilibrium ensembles, but also in
the context of dynamic Monte Carlo studies. The center of mass diffusion in dense systems of
athermal chains is investigated as an example. In all our static applications the method performs
very well in comparison with exact or with QCA results, provided that the system size is large
enough in the bounded direction. For small systems finite size effects are observed and analyzed,
suggesting potential applications in the study of confined systems. ©1997 American Institute of
Physics.@S0021-9606~97!50406-5#
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I. INTRODUCTION

Lattice gas~LG! models are widely used in theoretic
studies of complex condensed phase systems such as
mixtures, alloys, polymer solutions and polymer mel
Monte Carlo~MC! simulations have greatly contributed
the theoretical understanding of static and dynamic prop
ties of such models.1 Provided one focuses on qualitativ
generic issues, which are not sensitive to the microsco
local structure and dynamics, lattice MC simulations can
ten replace the more realistic molecular dynamics~MD! and
MC calculations of continuous models. One obvious adv
tage of lattice models is the extended range of access
time scales. For example, Baschnagel and Binder2 have esti-
mated the accessible time in their bond fluctuation LG mo
for the glass transition in polymeric systems to be in
range 10212–1025 s. This should be compared with the tim
window shorter than;1029 s currently accessible for MD
and MC simulations of continuous systems.

In various applications, e.g., in investigations of t
equation of state or possible phase changes it is require
compute the pressure of a simulated system, or to execu
constant pressure simulation. The glass transition studie
Ref. 2 are an example. While these studies demonstrate
a glass transitionlike behavior exists in a model simulated
constant volume, one expects both intuitively and with

a!Electronic mail: Peter.Pendzig@uni-konstanz.de
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background of free volume models,3 that the behavior at con
stant pressure may change significantly when the system
ume changes upon cooling. Similarly, when simulating tra
port properties as a function of temperature, a cons
pressure simulation is usually more relevant to experime
work than the usual constant volume simulations.

In simulations of continuous systems the pressure can
computed from the virial theorem. This procedure cannot
carried out in LG simulations when the potential as a fun
tion of position is not differentiable. Alternative method
were proposed and tested successfully.4–8 In particular,
Dickmann8 has shown that the pressure can be computed
simulating a system between two hard walls in, say,
x-direction. The walls are located atx50 andx/a5L11 ~a
is the lattice constant!, so the lattice is made ofL layers
denoted byl ( l51,...,L). An additional external positive
energyes is imposed uniformly on the surface layerl5L, so
that ases→` all particles are driven away from the laye
The equilibrium fractional population on the surface lay
f (es)5^ns&/S, where^ns& is the average number of particle
andS the number of sites in the surface layer, is monitor
The pressure can then be obtained from the relation

pv5E
0

`

desf ~es!, ~1!

wherev5a3 is the volume per site. Puttingl5exp~2bes!
with b5(kBT)

21 leads to the dimensionless form of Eq.~1!,
370303/7/$10.00 © 1997 American Institute of Physics
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3704 Pendzig, Dieterich, and Nitzan: Constant pressure simulations
bpv5E
0

1 dl

l
f ~es!. ~2!

The advantage of this elegant result over the previ
methods4–7 based on insertion algorithms is that it can
applied with equal ease to simple systems as well as to la
models of macromolecular systems.

Constant pressure simulations are performed by tak
the volume as a dynamical variable. For continuous syste
the methodology of constant pressure~NPT ensemble! MC
simulation has been described by Wood9 and by
McDonald,10 while the corresponding dynamical equatio
of motion were derived by Andersen.11 In lattice systems a
volume changing move constitutes a large perturbation w
a prohibitively low acceptance probability, particularly
simulations involving chain molecules. Mackieet al.,12,13

have overcome this problem by using the methodology
configurational bias Monte Carlo~CBMC! procedure14 while
performing volume changing steps involving the addition
removal of a whole lattice layer. This method has the adv
tage of efficiency~with limitations discussed by the author!
in creating a constant pressure ensemble. However, b
very nature of performing large unphysical steps it canno
used in estimating relative time scales of dynamical p
cesses such as diffusion. Another method advanced by
and Cifra15 uses a different methodology. The system is co
fined between two hard walls along one direction~periodic
boundary conditions are imposed in the perpendicular di
tions!, and the volume change is executed by buildin
destroying the wall site by site, using the Boltzmann fac
exp~2bpV! to decide on the acceptance of such a mo
Apart from producing a system interacting with a ragg
wall, this method is hampered by long equilibration times
particular when dealing with chain molecules.

The methods reviewed above were tested success
by comparing the simulated equation of state behavior
theoretical results for exactly solvable models as well as
systems where the quasichemical approximation~QCA Ref.
16! is known to perform well. In the present paper we pr
pose an alternative method that appears to be as efficie
the CBMC method of Mackieet al.12,13 for calculating equi-
librium properties, but which can also be used in the cont
of dynamical MC simulations. The proposed method
volves volume changes via the motion of a planar w
~‘‘piston’’ !, which provides the boundary to the system
the x-direction. In order to achieve volume fluctuations
acceptable time scales, we subdivide the removal or add
of a layer next to the wall into an arbitrary number of ste
This is done by assigning a repulsive potentiales to this
surface layer, which varies stochastically between zero a
valuees

max@ kBT. As es increases particles get removed fro
the surface layer, making it possible for the wall to mo
inward, thus reducing the volume of the system by one la
The opposite process of expansion involves the reve
gradual decrease ines . The method is naturally formulated i
terms of a generalized volume, which is equal to the ac
volume each time a layer is completely added or remov
and interpolates between these values according to the
J. Chem. Phys., Vol. 106
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sen steps in the potentiales . The energy of the system can b
written explicitely in terms of this generalized volume, th
making it possible to execute reversible and consistent
steps. For the constant pressure simulation of chain m
ecules the method can be combined with the CMB
procedure14 at the equilibration stage, while the fact that th
wall remains smooth at all times and that the step size o
motion can be made as small as needed, makes it pos
also to carry out physically meaningfuldynamicalMC simu-
lations at constant pressure.

Details of the method and an outline of the algorithm a
given in the next section. As a performance check of o
method we discuss a comparison of simulation results
exact predictions for a simple noninteracting lattice gas.
Sec. III we provide some simulation results for less triv
models; a simple lattice gas with nearest neighbour~nn! in-
teractions, and a system of athermal lattice chains. Th
results are compared with predictions made using the Q
an approximation known to work well for such systems. F
nally, in Sec. IV we demonstrate the applicability of th
method to dynamical MC simulations by showing prelim
nary results for diffusion in a system of athermal latti
chains. Further applications to transport are deferred t
later publication.

II. THE SIMULATION METHOD

In order to describe the implementation of our method
detail, consider a three-dimensional simple cubic lattice
spacinga and a volume per sitev5a3, which is confined
along thex-axis between impenetrable walls atx/a50 and
x/a5L11. In the directions perpendicular tox the system
size isaL' , and periodic boundary conditions are impose
The total number of sites is thereforeM5SL with S5L'

2 .
Sites can be occupied by particles or chain beads, which
interact with each other and move on the lattice in specifi
ways. Multiple occupation of sites is excluded.

As mentioned before, a site energyes>0 is uniformly
assigned to all sites of the surface layerx/a5L, whereas
sites in the bulk, 1<x/a<L21, have zero energy. The su
face potentiales can take a set of valueses(k8), 1<k8<K,
and decreases inK steps fromes

max5 es(1)@ kBT to es(K)50
as k8 increases from 1 toK. Volume fluctuations~in the
x-direction only! occur in the following way: Wheneverk8
moves during the MC evolution down from its lowest valu
k851, its value is set tok85K and the number of layersL is
reduced by 1,L→L21. Wheneverk8 is increased from its
maximum valuek85K, its value is set tok851 and the value
of L is reset according toL→L11. In this way we insure
that actual moves of the wall, i.e., the formal elimination
addition of a surface layer is only done when the removed
added layer is empty. The constantK denotes the number o
steps in which a surface layer is completely removed
added in this way. The actual form of the functiones(k8)
will be discussed later.

At this point it is convenient to introduce an integer va
able k, 0,k,`, which is related to the lengthL in the
x-direction by
, No. 9, 1 March 1997
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3705Pendzig, Dieterich, and Nitzan: Constant pressure simulations
k5~L21!K1k8; 1<k8<K. ~3!

Once the constantK is chosen, the integer variablek
uniquely determines both the number of layersL and the
integerk8, which determines the surface energy via

L215k mod K, k85k2~L21!K. ~4!

Keeping in mind that by decreasingk8 @i.e., increasing
es(k8)# particles get progressively repelled from the surfa
layer x/a5L, we may regard the quantityV /v5Sk/K as a
generalized volume of our system. Correspondingly, we
fine the generalized number of layers~dimensionless length!
by L5k/K. V andL coincide with the actual volumeV
and the dimensionless length parameterL wheneverk85K.

Configurations of the whole system, including both t
lattice gas particles and the generalized volume, are n
specified by the set of occupation numbers of lattice si
n5$nj%, together with the variablek. The partition function
of this system takes the form

Z~N,T,p!5(
n

9 (
k5kmin~N!

`

exp@2bH~n,k!#, ~5!

H~n,k!5H~n!1nses~k8!1pvSk/K, ~6!

whereH~n! is the configurational energy due to interpartic
interactions.ns denotes the number of particles in the surfa
layer x/a5L and the variablep is conjugate to the genera
ized volume and is hence regarded as the~generalized! pres-
sure. The prime in the first summation in Eq.~5! denotes
summation over particle configurations with a fixed to
number of particles,( jnj5N, and kmin(N) corresponds to
the smallest value of the generalized volume admittingN
particles. It determines the minimum number of layers by
relationLmin511kmin(N). Clearly, from Eqs.~5! and~6! we
have the standard relations

^V &52kBT
] ln Z

]p
~7!

and

^V 2&2^V &252kBT
]^V &

]p
5~kBT!2

]2 ln Z

]p2
. ~8!

The existence of a well defined Hamiltonian, Eq.~6!,
makes it possible to evaluate the thermodynamic prope
of our system using a MC simulation. Configurations$n,k%
are sampled using the standard Metropolis algorithm, w
the acceptance criterion is determined by the configura
energyH~n,k!.

Finally, consider the surface potentiales(k8). A conve-
nient choice of this function is

es~k8!52kBT ln
k8

K
, ~9!

which ensures that for a noninteracting system the ave
occupation of the surface layer changes linearly withk8. In
the calculations presented in the following sections we h
J. Chem. Phys., Vol. 106
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used the form~9! for the surface potential, but other choice
may be advantageous in certain cases. Note that the ch
value ofK defineses

max5 kBT ln K.
A MC move consists of changing eithern or k. The ratio

between the frequencies of attemptedk-moves and attempted
changes inn is denoted byR. In addition, the choice ofK
determines how smoothly wall moves affect the system. T
choice of these parameters is a technical issue which aff
the efficiency, but not the results of the equilibrium simu
tions.

It is instructive to examine the performance of o
method for a simple noninteracting lattice gas~NILG!, for
which the partition function Eq.~5! can be evaluated exactly
For this systemH~n!50, and Eq.~5! becomes after some
calculations

Z~N,T,p!5 (
L5Lmin

`

e2pS~L21! (
ns50

Ñ SS~L21!

N2ns
D S SnsD I ~ns!,

~10!

where in the present caseZ depends on temperature an
pressure only through the variablep5bpv. In addition, we
have introducedÑ5min(N,S) and

I ~n!5 (
k851

K

exp@2nbes~k8!#exp@2pS~k8/K !#. ~11!

From Eq.~10! the equation of state is obtained by ca
culating the generalized length^L&52~1/S!] ln Z/]p. In the
thermodynamic limit it is straightforward to reproduce th
well-known equation of state for a NILG

p52 ln~12c!, ~12!

where c5N/~S^L&!. As a test case we carried out Mon
Carlo simulations as described above for a NILG syste
using parametersK5103 andR51. Perfect agreement with
Eq. ~12! was found as long aŝL& was sufficiently large
~^L&*20!. Additional testes of our simulation algorithm fo
situations with smaller̂L& were carried out by compariso
with numerical calculations based on expression~10!.
Clearly, as^L& becomes comparable with one lattice co
stant, ^L&;1, the results will notably be affected by th
particular choice of the functiones(k8). This range, how-
ever, is physically not relevant.

Before we proceed to describe some applications of
simulation method to more complex systems, let us rem
here that the simple NILG model makes it possible to illu
trate some distinct properties of few particle systems, wh
are expected to hold also under more general conditio
Similar to Eq. ~10! we write the exact expression for th
distribution functionP~L! for length fluctuations at constan
pressure. Deviations from a Gaussian distribution are rea
obtained aŝL&&20. In that case it turns out thatP~L!
becomes asymmetric and develops a tail towards largerL.
This asymmetry gets enhanced by reducing the system
in the lateral direction. We find that large asymmetries
P~L! are associated with a shift of̂L& towards values
which are larger than in the corresponding bulk limit@Eq.
~12!#, indicating that the equation of state is modified f
, No. 9, 1 March 1997
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3706 Pendzig, Dieterich, and Nitzan: Constant pressure simulations
small confined systems. This latter theme has attracted s
attention in recent years,18 and we point out that such issue
are accessible also by the constant pressure algorithm
sented here.

III. EQUILIBRIUM SIMULATIONS OF INTERACTING
PARTICLES AND ATHERMAL CHAINS

In this section we describe results on simple model s
tems that do not admit exact solutions, but are known to
described fairly well by simple approximate methods. In p
ticular we compare the simulated equation of state behav
with results obtained using Guggenheim’s quasichemical
proximation~QCA!.16 The systems considered are~a! single
particles with repulsive nearest neighbor~nn! interactions
and ~b! systems of athermal chains. As previous work h
shown, the QCA renders a very good approximation for
equation of state of these systems. Therefore this inves
tion provides a further, more stringent test of our simulat
method.

The quasichemical approximation for a system ofnc
chemical species is based on the assumption that the sy
configurations can be enumerated and their energy e
uated, as a function of the number of particles of spec
a, $Na%, and of the number of nearest neighbor pa
$Nab%. The Gibbs free energyG5E($Na%,$Nab%)
2kBT ln V($Na%,$Nab%)1pV($Na%) is then minimized
with respect to$Nab% and to the number of vacanciesN0, for
given p, T, and $Na%. This leads to the following set o
equations:

fa

11f0

5xaa1 (
b,bÞa

xab , ~13!

xaaxbb5ebDeabxab
2 , ~14!

p[
pv

kBT
52F ~12z!ln f01

z

2
ln~11f0!1

z

2
ln x00

1S z
2

21D ln M

N̄q
G , ~15!

with

xab5
Nab

Nq1N0

; fa5
qaNa

Nq

, ~16!

Nq5 (
a51

nc

qaNa ; qa5
r a~z22!12

z
; ~q051!, ~17!

Deab5eaa1ebb22eab , ~18!

wherer a is the number of beads in a chain of typea, eab is
the nn interaction energy between nonbonded beads of t
a andb, M is the total number of lattice sites andz is the
lattice coordination number. The subscript 0 correspond
the vacancy ‘‘species’’ ande0a is taken to be zero. For a
system ofN identical single particles interacting with a n
J. Chem. Phys., Vol. 106
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energye, Eqs.~13! and ~14! are solved numerically forxab

in terms ofN andM5N1N0 . Equation~15!, in which the
rhs is only expressed in terms ofz, N, andM , is the desired
equation of state. This procedure yields the QCA line in Fi
1. For a system ofN identical homogenous athermalr -mers
~Deab50! Eqs. ~13! and ~14! can be solved analytically,
yielding the equation of state

2p5 ln~12c!2
z

2
lnS 12

2~r21!

zr
cD , ~19!

wherec5Nr/M . The QCA lines in Fig. 2 are obtained from
Eq. ~19! with z56.

In Fig. 1 we show a comparison between our simulation
and the corresponding results of the QCA approximation f
a system of simple point-particles with repulsive nn intera
tions e on a simple cubic lattice. Shown is the specific vol
ume, ^M &/N5^V &/Nv as a function of the dimensionless
pressure,pv/e, for two systems with different temperatures
and numbers of particles. The experience from the NIL
simulations directs us to use a system that is strongly e
tended in thex-direction~along which the system is bounded
by the moving wall!. In the present simulations we took
S516, which implies thatL5M /S varies in the range 30–
200. The inset to Fig. 1 shows the fluctuations in the gene
alized lengthL along the MC trajectory for the point
marked by an arrow in the main figure~N5400,kBT/e55.0,
pv/e52.0!. In these simulations we have usedK5200 and
R51, however the results are not sensitive to this choic
within relatively broad limits. In the cases displayed, th
agreement between the simulation results and the QCA p
dictions is excellent. Preliminary results for temperature
lower than the critical temperature for the order–disord

FIG. 1. The specific volumêM &/N5^V &/(Nv) plotted against the reduced
pressurepv/e for two systems of single particles with repulsive nn interac
tion e. Squares, simulation results for 400 particles andkBT/e55.0. Circles,
simulation results for 250 particles andkBT/e52.0. Dotted lines, QCA re-
sults for the same systems. In these simulationsS516, K5200 andR51.
The inset shows the ‘‘evolution’’ of the generalized lengthL along the MC
‘‘trajectory’’ for the 400 particle system in the macroscopic state defined b
kBT/e55.0 andpv/e52.0 ~the point marked by an arrow in the main figure!.
The horizontal line in the inset denotes the corresponding average^L&.
, No. 9, 1 March 1997
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3707Pendzig, Dieterich, and Nitzan: Constant pressure simulations
transition in our system~kBTc/e.1.23 in the QCA while the
exact value is.1.13! indicate a discrepancy of;10% be-
tween the simulation results and the QCA, part of it, ho
ever, may be related to the slow convergence to equilibr
of the ordered phase.

Next consider athermal chains. Figure 2 shows the v
ume vs pressure behavior of a system of noninteracting
tice chains made of linearly connected beads with site ex
sion. The systems simulated contain 500 chains withr55
~2500 beads in total! and 400 chains withr513 ~5200
beads!. We have chosen a simulation box of sizeL'510
~i.e., S5100!. After the preparation of the system with th
desired number of chains, we have equilibrated it using
CBMC procedure for changing the chain configuration. T
wall evolution was carried out withK5100 andR5500 for
r55 andR5800 for r513 ~i.e., 500 resp. 800 attempts t
change the energy of the surface layer were made for e
attempt to change a chain configuration by the CBM
procedure!.19 In principle we could use the same procedu
to generate all the needed equilibrium configurations. Ho
ever, in some cases, once equilibrium was reached, we
switched to using small configurational changes~see Sec.
IV ! and correspondingly smaller values ofR.

As before, the equilibrium behavior of this system,
shown in Fig. 2, is very well reproduced by the QCA. Th
remarkable agreement provides an additional demonstra
of the success of this approximation for systems of this ty
while at the same time it shows the validity of our numeric
procedure for simulating lattice chains at constant press
In addition, since the elementary steps of our volume fl
tuations are always small~individual beads are pushed o
of, or reintroduced into the surface layer!, our procedure can
be used also in the context of dynamic MC calculations,
we show next.

FIG. 2. MC simulation results for the specific volume~per bead!, ^M &/Nr
5^V &/Nrv, in a system of 500 noninteracting linearly connected cha
made of 5 beads~circles! and a system of 400 similar chains with 13 bea
~squares!, plotted against the reduced pressurep5pv/kBT. The full lines are
the corresponding QCA results, Eq.~19!. In these calculations we chos
S5100,K5100,R5500 for r55 andR5800 for r513 in the equilibrium
stage~during which the CBMC procedure was used!, while R550 resp.
R580 during the rest of the equilibrium MC ‘‘trajectory’’~in which end-
jump, kink-jump, and crankshaft moves were used!.
J. Chem. Phys., Vol. 106
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IV. DYNAMIC MC CALCULATIONS

This section provides some preliminary results whi
demonstrate the potential usefulness of our method in
context of dynamic MC calculations. Concerning the d
namic interpretation of MC simulations, it suffices to emph
size that we are dealing with a dynamical model, similar
what is implied by any phenomenological master equati
The process studied therefore depends on the nature o
MC steps allowed, and such a study can yield informat
aboutrelative transport coefficients at different temperature
pressures, chain lengths, etc.

In the present study we have calculated the self-diffus
coefficient in a system of noninteracting simple chain m
ecules, made of simply connected beads whose motion
our cubic lattice takes place via end-jump, kink-jump, a
crankshaft moves.20,21 The constant volume dynamics o
such models has been studied before, for relatively sh
chains, and the results are in close agreement with pre
tions based on Rouse theory.22,23 In performing these calcu
lations we have equilibrated the system first using the CBM
procedure~;105 such steps per chain were used at t
stage!, then restricted the MC steps to ‘‘elementary’’~end,
kink, and crankshaft moves! and evolved the system for ad
ditional ;106 steps per bead. The wall attempt rate w
R5500 for r55 andR5800 for r513 in the equilibrium
stage andR550 resp,R580 in the following equilibrium
‘‘trajectory.’’ The difference in the values ofR is taken be-
cause it compares the wall rate to the frequency of a CB
step in the former case, and to the frequency of a sm
elementary move in the latter. The diffusion coefficient w
obtained from the mean-square displacement, which, afte
initial transient should be given byD5^R2&/6t, whereR is
the chain center of mass distance at ‘‘time’’t from its posi-
tion at time 0,t being the number of MC attempts per bea
It should be pointed out that due to the reflecting bounda
imposed on the system in thex-direction, care has to be
taken to make the system long enough in this direction.
ternatively ~and more efficiently! one can extract the diffu-
sion coefficient from (Y21Z2)/4t, using the displacement
in the perpendicular directions only where periodic bound
conditions are imposed.

The results shown in Fig. 3 were obtained using t
latter procedure. In this figure we have plotted the cente
mass diffusion constantD as a function of pressure for th
two systems studied.~The data are normalized so thatD51
corresponds to the diffusion of a freely moving single p
ticle on the lattice.! Taken as a function of pressure,D is
roughly proportional to an Arrhenius-type term exp~2pṽ/
kBT!, with ṽ.23v. Note that forp*1 the two curves dis-
play a small oscillatory component superimposed onto
smoothly decaying function. This appears to be a con
quence of small structures in the equation of state, kno
already from the calculations for the noninteracting latt
gas in cases, where^L& becomes of the order of a few lattic
constants.

Next we show that when ignoring these structures
relatively simple relationship exists betweenD and the free
volumeV05(^M &2rN)v. This can be seen in Fig. 4, wher

s
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3708 Pendzig, Dieterich, and Nitzan: Constant pressure simulations
the scaled diffusion constantD is plotted vs the relative free
volume v f5V0/^M &v5(12c)/c, with c5rN/^M & denot-
ing the concentration of sites occupied by a polymer be
First we note that asv f becomes small,D depends linearly
on v f within a certain range,D } v f 2 v f* , see the dashed
straight lines in the inset of Fig. 4. Evidently, the quant
v f* 5 v f* (r ) increases with increasing chain lengthr : v f* (r )
5 0.05, 0.12, 0.15 forr55, 13, 20, respectively.~In Fig. 4
we also included some data forr520 in addition to the chain

FIG. 3. The center of mass self-diffusion coefficient@calculated from
D5(^Y2&1^Z2&)/(4t), wheret is the number of attempted MC steps p
particle# for the systems described in Fig. 2, plotted against the redu
pressurep5pv/kBT. Circles and squares correspond to the systems w
500 beads with 5 beads and 400 chains with 13 beads, respectively
values forD are normalized, so thatD51 corresponds to the diffusion of
freely moving single particle on the lattice. These results were obta
from the equilibrium MC ‘‘trajectory’’ which has generated the data
Fig. 2.

FIG. 4. The self-diffusion coefficientD for chains with 5 beads~circles!, 13
beads~squares!, and 20 beads~diamonds!, in the inset plotted as a function
of the specific free volume,v f5(12c)/c, and in the main figure as a scale
function ofv f 2 v f* (r ) @see Eq.~20!#, wherev f* (r ) is given by the intersec-
tion points of the the dotted lines in the inset with thex-axis; v f* (r )
5 0.05, 0.12, 0.15 forr55, 13, 20, respectively. The values for the diffusio
coefficient in the limit v f→` are D0(r )56.0331022, 2.2431022,
1.3731022 in units ofD0~1!, anda was found to bea(r )51.2, 1.02, 1.00
for r55, 13, 20, respectively.
J. Chem. Phys., Vol. 106
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lengths considered before.! This behavior ofD is reminiscent
of a recent investigation by de la Batieet al.24 and Kolinski
et al.25 who reported a tendency of the diffusion constant
vanish at a finite volume fraction in a model of atherm
chains, indicating the appearance of a liquid-glass-type tr
sition. Our data confirm the existence of a ‘‘critical’’ fre
volume v f* in dense systems. Asv f approachesv f* , how-
ever, our data for the diffusion constant fall above tho
straight lines and seem to extrapolate to zero only in the li
v f→0.

Moreover, we observe from Fig. 4 that data for the d
fusion constantD(v f ,r ) for different chain lengthsr>5 fall
onto a single curve when we use the representation.

D~v f ,r !

a~r !D0~r !
5 f ~v f2v f* !. ~20!

HereD0(r ) denotes the diffusion constant at infinite dilutio
For the factora(r ) we find a(r ).1.2, 1.02, 1.00 forr55,
13, 20, respectively, suggesting thata(r ) can be replaced by
unity for larger chains.

Given this dependence ofD on the free volume, its ap
parent exponential dependence on the pressure menti
above is seen to reflect the dependence of the free volum
the pressure in this system. As seen from Eq.~20! this ap-
proximate exponential dependence is expected to be v
only in a limited range of pressures.

V. CONCLUSIONS

We have described a new method for constant pres
simulations in lattice gas systems and have demonstrate
usefulness. Given the importance of lattice models for flui
polymer solutions and melts, glasses and alloys, the abilit
carry out constant pressure simulations in such models
creases their range of applicability. Several applications
problems of the glass transitions or to the temperature de
dence of transport coefficients in polymer solutions and
glasses that were hampered before by the restriction of c
stant volume are now open for renewed studies.
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