Constant pressure simulations of lattice gas models
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A method for constant pressure Monte Carlo simulations in lattice gas models is described. The
simulation box is placed between two hard walls with fluctuating distance, and periodic boundary
conditions are applied in the perpendicular directions. Continuous volume fluctuations in the
bounded direction are made possible by introducing a generalized volume, which interpolates
between the discrete values that correspond to the given lattice. This is achieved by using a surface
potential variable which makes the lattice surface layer next to the hard wall gradually less
accessible to particle occupation. The method is applied to the equation of state of noninteracting
lattice gas models, where exact results are available for comparison, and also to less trivial models
of interacting point-particles and athermal lattice chains, for which the quasichemical approximation
(QCA) provides reliable results to compare with. For the chain simulations the method can be used
in conjunction with the configuration biased Monte Carlo procedure in order to enhance its
performance. However, since the Monte Carlo moves can be chosen to fit any desired kinetic model,
our method can be used not only to generate constant pressure equilibrium ensembles, but also in
the context of dynamic Monte Carlo studies. The center of mass diffusion in dense systems of
athermal chains is investigated as an example. In all our static applications the method performs
very well in comparison with exact or with QCA results, provided that the system size is large
enough in the bounded direction. For small systems finite size effects are observed and analyzed,
suggesting potential applications in the study of confined systemsl9%7 American Institute of
Physics[S0021-960807)50406-3

I. INTRODUCTION background of free volume modeélshat the behavior at con-
, , . . stant pressure may change significantly when the system vol-
Lattice gas(LG) models are widely used in theoretical e changes upon cooling. Similarly, when simulating trans-

studies of complex condensed phase systems such as flylt hroperties as a function of temperature, a constant

mixtures, alloys, polymer solutions and polymer melts.yroqqre simulation is usually more relevant to experimental
Monte Carlo(MC) simulations have greatly contributed t0 \,1ri than the usual constant volume simulations.

the theoretical understanding of static and dynamic proper- |, simulations of continuous systems the pressure can be

ties of such modelS.Provided one focuses on qualitative omnpyted from the virial theorem. This procedure cannot be

generic issues, which are not sensitive to the MICrosCopig,ried out in LG simulations when the potential as a func-
local structure and dynamics, lattice MC simulations can ofyjon of position is not differentiable. Alternative methods

ten replace the more realistic molecular dynanid®) and ;o0 proposed and tested successftify.in particular,

MC calcula’Fions of contﬁnuous models. One obvious adV"’_‘”Dickmanr? has shown that the pressure can be computed by
tgge of lattice models is the extended range of acce?s'b@mulating a system between two hard walls in, say, the
time scales. For example, Baschnagel and Bilblave esti- ,_jirection. The walls are located &0 andx/a=L + 1 (a
mated the accessib_le_ tim_e in their bpnd fluctuation LG _mode,s the lattice constaitso the lattice is made df layers
for the gllazss transition in polymeric systems to be in theyengted byl (1=1,...L). An additional external positive
range 10°°-10""s. This thOUId be compared with the time gnarqye i imposed uniformly on the surface layler L, so
window shorter than-10"" s currently accessible for MD  that ase, o0 all particles are driven away from the layer.
and MC simulations of continuous systems. The equilibrium fractional population on the surface layer,
In various applications, e.g., in investigations of thef(es)=<ns>/8, where(n,) is the average number of particles

equation of state or possible phase changes it is required t4,4's the number of sites in the surface layer, is monitored.
compute the pressure of a simulated system, or to executeg,o pressure can then be obtained from the relation
constant pressure simulation. The glass transition studies of

Ref. 2 are an example. While these studies demonstrate that o
a glass transitionlike behavior exists in a model simulated at  Pv= Jo desf(es), 1)
constant volume, one expects both intuitively and with the

wherev=a® is the volume per site. Putting=exp(— B¢,
dElectronic mail: Peter.Pendzig@uni-konstanz.de with 8=(kgT) ! leads to the dimensionless form of Ha),
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3704 Pendzig, Dieterich, and Nitzan: Constant pressure simulations

1 da sen steps in the potential. The energy of the system can be
p p ay Yy
Bpv = fo ~ fles) (2)  written explicitely in terms of this generalized volume, thus
making it possible to execute reversible and consistent MC

The advantage of this elegant result over the previouSteps. For the constant pressure simulation of chain mol-
method4~’ based on insertion algorithms is that it can beecules the method can be combined with the CMBC
applied with equal ease to simple systems as well as to lattiderocedure® at the equilibration stage, while the fact that the
models of macromolecular systems. wall remains smooth at all times and that the step size of its
Constant pressure simulations are performed by takingnotion can be made as small as needed, makes it possible
the volume as a dynamical variable. For continuous system@lso to carry out physically meaningfdynamicalMC simu-
the methodology of constant pressiMPT ensemblgMC  lations at constant pressure.
simulation has been described by W-8odind by Details of the method and an outline of the algorithm are
McDonald® while the corresponding dynamical equationsgiven in the next section. As a performance check of our
of motion were derived by Anderséhln lattice systems a method we discuss a comparison of simulation results to
volume changing move constitutes a large perturbation wittexact predictions for a simple noninteracting lattice gas. In
a prohibitively low acceptance probability, particularly in Sec. Ill we provide some simulation results for less trivial
simulations involving chain molecules. Mackit al,*>1®  models; a simple lattice gas with nearest neighbouy in-
have overcome this problem by using the methodology oferactions, and a system of athermal lattice chains. These
configurational bias Monte Carl€BMC) procedur&* while  results are compared with predictions made using the QCA,
performing volume changing steps involving the addition oran approximation known to work well for such systems. Fi-
removal of a whole lattice layer. This method has the advannally, in Sec. IV we demonstrate the applicability of this
tage of efficiency(with limitations discussed by the authprs method to dynamical MC simulations by showing prelimi-
in creating a constant pressure ensemble. However, by igary results for diffusion in a system of athermal lattice
very nature of performing large unphysical steps it cannot b&hains. Further applications to transport are deferred to a
used in estimating relative time scales of dynamical prolater publication.
cesses such as diffusion. Another method advanced by Nies
a_md Cifrd® uses a different methodology. Th_e sy_ster_n iS CONY) THE SIMULATION METHOD
fined between two hard walls along one directigeriodic
boundary conditions are imposed in the perpendicular direc- In order to describe the implementation of our method in
tions), and the volume change is executed by building/detail, consider a three-dimensional simple cubic lattice of
destroying the wall site by site, using the Boltzmann factorspacinga and a volume per site=a3, which is confined
exp(—BpV) to decide on the acceptance of such a movealong thex-axis between impenetrable walls xa=0 and
Apart from producing a system interacting with a raggedx/a=L+1. In the directions perpendicular tothe system
wall, this method is hampered by long equilibration times insize isalL, , and periodic boundary conditions are imposed.
particular when dealing with chain molecules. The total number of sites is thereford=SL with S=L2.
The methods reviewed above were tested successfullgites can be occupied by particles or chain beads, which may
by comparing the simulated equation of state behavior tanteract with each other and move on the lattice in specified
theoretical results for exactly solvable models as well as foways. Multiple occupation of sites is excluded.
systems where the quasichemical approximat@CA Ref. As mentioned before, a site energy=0 is uniformly
16) is known to perform well. In the present paper we pro-assigned to all sites of the surface layga=L, whereas
pose an alternative method that appears to be as efficient ages in the bulk, £x/a<L—1, have zero energy. The sur-
the CBMC method of Mackiet al1***for calculating equi- face potential, can take a set of values(k’), 1<k’<K,
librium properties, but which can also be used in the contexaind decreases K steps fromel > = €((1) > kgT to €,(K) =0
of dynamical MC simulations. The proposed method in-as k’ increases from 1 td. Volume fluctuations(in the
volves volume changes via the motion of a planar wallx-direction only occur in the following way: Whenevet’
(“piston” ), which provides the boundary to the system inmoves during the MC evolution down from its lowest value
the x-direction. In order to achieve volume fluctuations onk’=1, its value is set t&' =K and the number of layels is
acceptable time scales, we subdivide the removal or additioreduced by 1. —L—1. Whenevelk' is increased from its
of a layer next to the wall into an arbitrary number of steps.maximum valu&k’ =K, its value is set t&’=1 and the value
This is done by assigning a repulsive potentglto this  of L is reset according th —L+1. In this way we insure
surface layer, which varies stochastically between zero and that actual moves of the wall, i.e., the formal elimination or
valueel™ > kgT. As ¢ increases particles get removed from addition of a surface layer is only done when the removed or
the surface layer, making it possible for the wall to moveadded layer is empty. The constéhidenotes the number of
inward, thus reducing the volume of the system by one layersteps in which a surface layer is completely removed or
The opposite process of expansion involves the reversadded in this way. The actual form of the functieg(k’)
gradual decrease iy . The method is naturally formulated in will be discussed later.
terms of a generalized volume, which is equal to the actual At this point it is convenient to introduce an integer vari-
volume each time a layer is completely added or removedable k, 0<k<w, which is related to the length in the
and interpolates between these values according to the chr-direction by
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k=(L-1)K+k'; 1<k'=K. ©) used the form(9) for the surface potential, but other choices

_ _ . may be advantageous in certain cases. Note that the chosen
Once the constanK is chosen, the integer variable \3jye ofK definese™ = kT In K.

uniquely determines both the number of layérsand the A MC move consists of changing eitheror k. The ratio
integerk’, which determines the surface energy via between the frequencies of attempkethoves and attempted
L—1=k mod K, k'=k—(L—1)K. 4) changes im is denoted byR. In addition, the choice oK

determines how smoothly wall moves affect the system. The
Keeping in mind that by decreasink’ [i.e., increasing choice of these parameters is a technical issue which affects
e,(k')] particles get progressively repelled from the surfacethe efficiency, but not the results of the equilibrium simula-
layer x/a=L, we may regard the quantity7v=Sk'K as a  tions.
generalized volume of our system. Correspondingly, we de- It is instructive to examine the performance of our
fine the generalized number of layétimensionless length method for a simple noninteracting lattice glLG), for
by #=k/IK. 7" and ¥ coincide with the actual volum¥  which the partition function Eq(5) can be evaluated exactly.
and the dimensionless length paramétaevheneverk’ =K. For this systenH(n)=0, and Eq.(5) becomes after some

Configurations of the whole system, including both thecalculations

lattice gas particles and the generalized volume, are now . rt
specified by the set of occupation numbers of lattice sites _ —aS(L—1 S(L—-1)\(S
n={n;}, together with the variablk. The partition function Z(N,T,p)—L:Eme e "™ )nszzo ( N—n )(ns)l(nS)’
of this system takes the form (10)

A where in the present casé depends on temperature and
ZINT,p)=2" >  exd—B7nK], (5)  pressure only through the variabte=8pu. In addition, we
N k=Kmin(N) have introduced=min(N,S) and

JA(n,K)=H(n)+nees(k’) + pvSKK, (6) K
I(n)= >, exd—nBesk’)]exd —7S(k'/K)]. (12

whereH (n) is the configurational energy due to interparticle K =1
interactionsng denotes the number of particles in the surface
layerx/a=L and the variablg is conjugate to the general-
ized volume and is hence regarded as(tieneralizedpres-
sure. The prime in the first summation in E¢) denotes
summation over particle configurations with a fixed total
number of particlesE;n;=N, andkp,,(N) corresponds to m=—In(1-c), (12

the smallest value of the generalized volume admittihg _ o .
particles. It determines the minimum number of layers by theWhereC_N/(&[’/))' As a test case we carried out Monte

relationL . =1+k_. (N). Clearly, from Eqs(5) and(6) we Carlo simulations as described above for a NILG system,
: using parameterk =10° and R=1. Perfect agreement with
have the standard relations : -
Eqg. (12) was found as long a§%) was sufficiently large
Jlnz ((¥£)=20). Additional testes of our simulation algorithm for
ap (7)  situations with smallet %) were carried out by comparison
with numerical calculations based on expressit0).
and Clearly, as(¥) becomes comparable with one lattice con-
stant, (¥)~1, the results will notably be affected by the
— (8) particular choice of the functior(k’'). This range, how-
ap ever, is physically not relevant.
The existence of a well defined Hamiltonian, H6), _ Bef_ore we proceed to describe some applications of our
makes it possible to evaluate the thermodynamic propertieS"’nUI"’ltlon method to more complex systgms, I?t us remark
Rere that the simple NILG model makes it possible to illus-

of our system using a MC simulation. Configuratidmsk} L . : .
are sampled using the standard Metropolis algorithm, Wh"etrate some distinct properties of few particle systems, which

L ; ) ._are expected to hold also under more general conditions.
the acceptance criterion is determined by the conflguratloré. : : :
energy. 7(nK). imilar to Eq.(10) we write the exact expression for the

) . s distribution functionP (%) for length fluctuations at constant
Finally, consider the surface potential(k’). A conve- L : e .
nient choice of this function is pressure. Deylatlons from a Gaussgan distribution are rreadlly
obtained as{(%)=<20. In that case it turns out thd(%)
k' becomes asymmetric and develops a tail towards latger
es(k)=—kgT In -, (9 This asymmetry gets enhanced by reducing the system size
in the lateral direction. We find that large asymmetries in
which ensures that for a noninteracting system the average(%) are associated with a shift gf¥) towards values
occupation of the surface layer changes linearly within ~ which are larger than in the corresponding bulk lifig.
the calculations presented in the following sections we havél2)], indicating that the equation of state is modified for

From Eq.(10) the equation of state is obtained by cal-
culating the generalized leng{t¢)=—(1/S)d In Z/d=. In the
thermodynamic limit it is straightforward to reproduce the
well-known equation of state for a NILG

H7) ,#InzZ
D =(kgT)

(7%)=(72=—kgT
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small confined systems. This latter theme has attracted some 60
attention in recent year§,and we point out that such issues
are accessible also by the constant pressure algorithm pre-
sented here.

50 -

40

I1l. EQUILIBRIUM SIMULATIONS OF INTERACTING P ol W . ‘
PARTICLES AND ATHERMAL CHAINS § o 0 L
3.0 .

In this section we describe results on simple model sys- ., D
tems that do not admit exact solutions, but are known to be °- -
described fairly well by simple approximate methods. In par- 20} O, o i — .
ticular we compare the simulated equation of state behaviour O g C
with results obtained using Guggenheim’s quasichemical ap- Oy ‘
proximation(QCA).'® The systems considered &@ single BT 20 80 e a0 50 60

particles with repulsive nearest neighb@m) interactions
and (b) systems of athermal chains. As previous work has: s 1. the specific voluméM)/N=(7"Y(Nv) plotted against the reduced
shown, the QCA renders a very good approximation for theyressurguw/e for two systems of single particles with repulsive nn interac-
equation of state of these systems. Therefore this investigdion e. Squares, simulation results for 400 particles &g@/e=>5.0. Circles,

tion provides a further, more stringent test of our SimU|ati0n5imUIation results for 250 particles ankg_T/e=2_.O. Dotted lines, QCA re-
methpod 9 sults for the same systems. In these simulati®rd6, K=200 andR=1.

] ) ] ] The inset shows the “evolution” of the generalized lengthalong the MC
The quasichemical approximation for a systemmf  “trajectory” for the 400 particle system in the macroscopic state defined by

chemical species is based on the assumption that the systekai/e=5.0 andpv/e=2.0(the point marked by an arrow in the main figure
configurations can be enumerated and their energy eva'll'_he horizontal line in the inset denotes the corresponding aveéraye
uated, as a function of the number of particles of species

a, {N,}, and of the number of nearest neighbor pairs,

{Nygl. The Gibbs free energy G=E({N.},{Nogl)  energye, Egs.(13) and(14) are solved numerically fog,s
—kgT In Q({N,},{N,p}) +PV({N,}) is then minimized iy terms ofN andM=N+N,. Equation(15), in which the
with respect tdN,,5} and to the number of vacancibly, for s is only expressed in terms BfN, andM, is the desired
given p, T, and {N,}. This leads to the following set of equation of state. This procedure yields the QCA line in Fig.
equations: 1. For a system oN identical homogenous atherntaimers

d>_ (A€,=0) Egs. (13) and (14) can be solved analytically,
e = Xaat 2 Xap: (13)  Yvyielding the equation of state
1+ by oy

2(r—=1)

XaaXBB: eBAeaBXiB’ (14) C) !

z
—wzln(l—c)—zln(l— (19
4 — z wherec=Nr/M. The QCA lines in Fig. 2 are obtained from
(1=2)In ¢o+ — In(1+ o)+ — In xqo Eq. (19) with z=6.
2 2 In Fig. 1 we show a comparison between our simulations
. and the corresponding results of the QCA approximation for
2

pv

T=—=—

kg T

M
In —
Nq

(15) a system of simple point-particles with repulsive nn interac-
tions € on a simple cubic lattice. Shown is the specific vol-
ume, (M)/N=(Z)/Nv as a function of the dimensionless
pressurepu/e, for two systems with different temperatures
Nog — GuN, and numbers of particles. The experience from the NILG

Xap== Pa= ——, (16 simulations directs us to use a system that is strongly ex-

q tended in thex-direction(along which the system is bounded

n by the moving wall. In the present simulations we took

AN, : qa:ra(z—2)+2; (qo=1), (17 S=16, which implies that =M/S varies in the range 30~

1 z 200. The inset to Fig. 1 shows the fluctuations in the gener-

alized length # along the MC trajectory for the point

marked by an arrow in the main figu(8=400,kzT/e=5.0,
wherer , is the number of beads in a chain of typee,zis  pv/e=2.0). In these simulations we have uske=200 and

the nn interaction energy between nonbonded beads of typé&=1, however the results are not sensitive to this choice

a and B, M is the total number of lattice sites amds the  within relatively broad limits. In the cases displayed, the

lattice coordination number. The subscript O corresponds tagreement between the simulation results and the QCA pre-

the vacancy ‘“species” andy, is taken to be zero. For a dictions is excellent. Preliminary results for temperatures
system ofN identical single particles interacting with a nn lower than the critical temperature for the order—disorder

Aeaﬁ=6aa+eﬁﬁ—26aﬁ, (18)

J. Chem. Phys., Vol. 106, No. 9, 1 March 1997

Downloaded-21-Mar-2004-t0-132.66.16.12.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



Pendzig, Dieterich, and Nitzan: Constant pressure simulations 3707

40 ‘ ‘ - IV. DYNAMIC MC CALCULATIONS

This section provides some preliminary results which
demonstrate the potential usefulness of our method in the
context of dynamic MC calculations. Concerning the dy-
30 ] namic interpretation of MC simulations, it suffices to empha-
size that we are dealing with a dynamical model, similar to
what is implied by any phenomenological master equation.
The process studied therefore depends on the nature of the
20 | 1 MC steps allowed, and such a study can yield information
aboutrelativetransport coefficients at different temperatures,
13:8\ pressures, chain lengths, etc.

Hﬁtﬁﬁmﬁig& In the present study we have calculated the self-diffusion

‘ __roeeot—o coefficient in a system of noninteracting simple chain mol-
0.0 0.5 1.0 15 . .
™ ecules, made of simply connected beads whose motion on
our cubic lattice takes place via end-jump, kink-jump, and
FIG. 2. MC_simuIation results for thg specifi_c vo_Iurqmr beagl (M)/Nr  crankshaft move@2! The constant volume dynamics of
=(7)INrv, in a system of 500 noninteracting linearly connected chains . .
made of 5 bead&ircles and a system of 400 similar chains with 13 beads such models has been studied before, for relat'vely short
(squarey plotted against the reduced presstrepu/ksT. The full linesare  chains, and the results are in close agreement with predic-
the corresponding QCA results, E@L9). In these calculations we chose tions based on Rouse the(ﬁ?yz.3 In performing these calcu-
S$=100,K=100,R=500 forr =5 andR=800 forr=13 in the equilibrium | a4ions we have equilibrated the system first using the CBMC
stage(during which the CBMC procedure was ugewhile R=50 resp. . .
R=80 during the rest of the equilibrium MC “trajectory{in which end- procedure(~105 such steps per chain were used at this
jump, kink-jump, and crankshaft moves were used stage, then restricted the MC steps to “elementarg&nd,
kink, and crankshaft movgsnd evolved the system for ad-
ditional ~10° steps per bead. The wall attempt rate was
transition in our systenkgT./e=1.23 in the QCA while the R=500 for r=5 and R=800 for r=13 in the equilibrium
exact value is=1.13 indicate a discrepancy of10% be- stage andR=50 resp,R=80 in the following equilibrium
tween the simulation results and the QCA, part of it, how-"trajectory.” The difference in the values @R is taken be-
ever, may be related to the slow convergence to equilibriuntause it compares the wall rate to the frequency of a CBMC
of the ordered phase. step in the former case, and to the frequency of a small

Next consider athermal chains. Figure 2 shows the volelementary move in the latter. The diffusion coefficient was
ume vs pressure behavior of a system of noninteracting labbtained from the mean-square displacement, which, after an
tice chains made of linearly connected beads with site excluinitial transient should be given by =(R?)/6t, whereR is
sion. The systems simulated contain 500 chains wittb  the chain center of mass distance at “timefrom its posi-
(2500 beads in totaland 400 chains withr=13 (5200 tion at time 0.t being the number of MC attempts per bead.
bead$. We have chosen a simulation box of sikg=10 It should be pointed out that due to the reflecting boundaries
(i.e., S=100). After the preparation of the system with the imposed on the system in thedirection, care has to be
desired number of chains, we have equilibrated it using théaken to make the system long enough in this direction. Al-
CBMC procedure for changing the chain configuration. Theternatively (and more efficiently one can extract the diffu-
wall evolution was carried out withk =100 andR=500 for  sion coefficient from Y2+ Z?)/4t, using the displacements
r=5 andR=800 forr=13 (i.e., 500 resp. 800 attempts to in the perpendicular directions only where periodic boundary
change the energy of the surface layer were made for eaawonditions are imposed.
attempt to change a chain configuration by the CBMC  The results shown in Fig. 3 were obtained using the
procedurg® In principle we could use the same procedurelatter procedure. In this figure we have plotted the center of
to generate all the needed equilibrium configurations. Howmass diffusion constarid as a function of pressure for the
ever, in some cases, once equilibrium was reached, we haveo systems studiedThe data are normalized so tHat=1
switched to using small configurational changese Sec. corresponds to the diffusion of a freely moving single par-
IV) and correspondingly smaller values Rf ticle on the lattice. Taken as a function of pressum, is

As before, the equilibrium behavior of this system, asroughly proportional to an Arrhenius-type term éxipv/
shown in Fig. 2, is very well reproduced by the QCA. ThiskgT), with v=23v. Note that form=1 the two curves dis-
remarkable agreement provides an additional demonstratigulay a small oscillatory component superimposed onto a
of the success of this approximation for systems of this typesmoothly decaying function. This appears to be a conse-
while at the same time it shows the validity of our numericalquence of small structures in the equation of state, known
procedure for simulating lattice chains at constant pressuralready from the calculations for the noninteracting lattice
In addition, since the elementary steps of our volume fluc-gas in cases, whefe”) becomes of the order of a few lattice
tuations are always smafindividual beads are pushed out constants.

(V)/Nry

of, or reintroduced into the surface layeour procedure can Next we show that when ignoring these structures, a
be used also in the context of dynamic MC calculations, aselatively simple relationship exists betweBnand the free
we show next. volumeVy= ((M)—rN)v. This can be seen in Fig. 4, where
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‘ ‘ lengths considered befoy&his behavior oD is reminiscent
o of a recent investigation by de la Ba#¢ al?* and Kolinski
% © et al?® who reported a tendency of the diffusion constant to
RS . 1 vanish at a finite volume fraction in a model of athermal
o ° o chains, indicating the appearance of a liquid-glass-type tran-
. ° sition. Our data confirm the existence of a “critical” free

! © o o0 o _ volumevf in dense systems. As; approaches; , how-
o | ever, our data for the diffusion constant fall above those
Poo straight lines and seem to extrapolate to zero only in the limit
0 Uf*>0.
0o Moreover, we observe from Fig. 4 that data for the dif-
° fusion constanD(v¢,r) for different chain lengths=5 fall
N ‘ ‘ ‘ onto a single curve when we use the representation.

0.0 05 1.0 16
D(vf ,r)

FIG. 3. The center of mass self-diffusion coefficidialculated from a(r)Do(r)

D=({Y?+(Z?))/(4t), wheret is the number of attempted MC steps per e P
particlg| for the systems described in Fig. 2, plotted against the reducedd€reDo(r) denotes the diffusion constant at infinite dilution.

pressurer=pu/kgT. Circles and squares correspond to the systems withFor the factora(r) we find «(r)=1.2, 1.02, 1.00 for =5,

50|0 be?dg with 5 beal(_’s 3”d 43&“?'”5 with 13;‘ b’fa‘;‘ﬁv fd?fsfpe_Ct'Ve'fy- The3, 20, respectively, suggesting ther) can be replaced by
rD are norm =1 corr n n ; .

values forD are normalized, so corresponds to the diffusion of a Jinity for larger chains.

freely moving single particle on the lattice. These results were obtaine . _ .

from the equilibrium MC “trajectory” which has generated the data of Given this dependence & on the free volume, its ap-

Fig. 2. parent exponential dependence on the pressure mentioned
above is seen to reflect the dependence of the free volume on

o ) _ the pressure in this system. As seen from E§) this ap-

the scaled diffusion constabt is plo_tted vs the relative free proximate exponential dependence is expected to be valid

volume v¢=Vo/(M)v=(1-c)/c, with c=rN/(M) denot- 4|y in a limited range of pressures.

ing the concentration of sites occupied by a polymer bead.

First we note that as; becomes smallp depends linearly V. CONCLUSIONS

onv; within a certain range « v; — v} , see the dashed .
straight lines in the inset of Fig. 4. Evidently, the quantity =~ We have described a new method for constant pressure

v¥ = v¥(r) increases with increasing chain lengthu§ (r) simulations in lattice gas systems and have demonstrated its
= 0.05, 0.12, 0.15 for =5, 13, 20, respectively(in Fig. 4  usefulness. Given the importance of lattice models for fluids,

we also included some data for=20 in addition to the chain polymer solutions and melts, glasses and alloys, the ability to
carry out constant pressure simulations in such models in-

creases their range of applicability. Several applications to

problems of the glass transitions or to the temperature depen-
dence of transport coefficients in polymer solutions and in

o " glasses that were hampered before by the restriction of con-
e stant volume are now open for renewed studies.

=f(vi—vy). (20
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