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In a recent work (Mosyak, A.; et al.J. Chem. Phys. 1996, 104, 1549), we investigated numerically electron
tunneling through water layers confined between two solid walls. In the present paper, the effect of some of
our model assumptions and parameters on the tunneling behavior is studied. In particular, we focus on the
role played by the water electronic polarizability. We find that the tunneling behavior computed with water
configurations prepared with a polarizable SPC water model is very similar to that obtained with configurations
prepared using the nonpolarizable RWK2-M water model used previously, provided that the same electron-
water pseudopotential is invoked. On the other hand, including the self-consistent many-body potential
associated with the water electronic polarizability in the model for the electron-water interaction has a profound
effect on the tunneling behavior, making the tunneling probability∼2 orders of magnitude larger than calculated
with the nonpolarizable model. This rectifies the disagreement found before between the tunneling behavior
computed with the nonpolarizable water model and experimental results. The strong effect of including the
many-body polarizability interactions found in the present study stands in marked contrast to the relatively
weak effect found in the context of electron hydration and hydrated electron spectroscopy. The origin of this
effect is traced to properties of the lowest excess electron states found for neutral water configurations in the
two models: The states associated with the polarizable model are of lower energy yet more extended than
the corresponding levels found for the nonpolarizable model. We suggest that the existence of these lower,
more extended electronic states in the polarizable model plays a decisive role in the observed lower effective
barrier to tunneling through water as compared with vacuum.

1. Introduction

Electron tunneling in condensed molecular environments is
a fundamental process which governs many important physical,
chemical, and biological phenomena. The study of such
processes has therefore been the focus of much experimental
and theoretical work for a long time.1 Two of us have recently
carried out a numerical study of electron tunneling through thin
water layers confined between two model metal walls.2 This
study has revealed the important role of the discrete three-
dimensional structure of the water layer in determing the
tunneling probability, demonstrating the inadequacy of con-
tinuum dielectric models for quantitative studies of electron
transmission in condensed environments. Obviously, however,
the results of such model calculations depend on the interaction
potentials employed. In the study of ref 2, we applied the same
model potentials that were used in earlier studies of electron
hydration and of hydrated electron spectroscopy:3 the flexible
RWK2-M water potential4 and the pseudopotential for the
electron-water interaction developed by Barnett et al.5 A
known deficiency of these potentials lies in the fact that the
effect of the many-body interaction associated with the electronic
polarizability of the water is only partly taken into accountsby
renormalizing parameters of the two-body interactions so as to
fit experimental behavior. This practice works relatively well
in reproducing gross features of the structure and the dynamical
behavior of liquid water and has been determined to cause errors
in the order of 10-15% in the solvation energy and in the lowest
excitation energy associated with the hydrated electron.6 A

better representation of the many-body aspect of the solvent
polarizability was found to be necessary in MD studies of more
subtle issues such as the coordination number in the solvation
shell of hydrated ions7 and the structure of ion-water clusters.8

For electron tunneling, the contribution of the electronic
polarizability of the medium can be far more important. First,
the relative contribution of permanent charge distributions is
smaller because tunneling processes are fast relative to char-
acteristic nuclear relaxation times; consequently, the relative
contribution of induced charge distributions, which respond on
electronic time scales, is larger. Second, variations of the
interaction potentials enter exponentially into the tunneling
probability. Indeed, simple considerations based on continuum
dielectric theory2 provide partial rationalization to the observed
reduction in the effective barrier height (by∼ 1.2 eV) for
electron tunneling through water relative to the corresponding
process in vacuum. In contrast, numerical simulations based
on the nonpolarizable model yield lower tunneling probability
in water relative to vacuum.2

In this paper, we investigate the effect of including the
interactions associated with the water electronic polarizability
on the calculated transmission probability for electron tunneling
through water. Two issues are involved: First, including the
water polarizability in the intermolecular water-water interac-
tion may affect the resulting water configurations experienced
by the tunneling electron. Second, the polarizability response
of the water affects the electron-water interaction. Intuitively,
we may expect that the second effect is more important, since
the available nonpolarizable water potentials have been opti-
mized to yield reliable structures. For the sake of completeness
and keeping in mind the exponential sensitivity of the tunneling
probability to the barrier structure, we study both effects, albeit
separately, in the present paper.
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In the following section, we discuss our polarizable water
model, as well as some basic issues associated with including
electronic polarizability in dynamical simulations. We then
briefly describe the numerical procedure used to calculate the
tunneling probability. Section 4 describes the main numerical
results of our work, showing the very significant effect of
including the many-body interactions associated with the water
polarizability in the calculation. The relation between the
resulting transmission probability and the properties of excess
electron states in the corresponding bulk medium is also
discussed. Section 5 summarizes our conclusions.

2. Polarizable Water Models

As in our previous study,2 the transmission properties of thin
water layers are investigated using static water structures. Now
that electronic polarizability is included, this issue warrants extra
caution and is discussed below. As before, the water structures
are prepared by running classical MD trajectories at 300 K for
192 water molecules in a rectangular box confined in thez
direction by two walls, using periodic boundary conditions in
the xy plane. The length of the periodic cell in thex and y
directions is 23.5 Å, and the distance between the walls is 10
Å. This spacing accommodates three layers of water molecules
at normal density. The water-wall interaction is a superposi-
tion, for all O and H atoms of 3-9 potentialsVw ) A/d9 -
B/d3, whered is the distance from the wall and the parameters
A andB are chosen to mimic the water-gold potential.9 For
the water-water interaction, we also use, in addition to the
RWK2-M model that was used before, a flexible version of the
polarizable SPC (PSPC) model, based on the rigid PSPC model
developed and parametrized by Dang.10

Consider now the effect of water electronic polarizability in
the electron-water pseudopotential. In principle, including the
dynamic response of the water electrons with the dynamics of
the excess electron amounts to tackling the many-electron aspect
of the system. A complete solution of this many-body quantum
problem is currently not feasible, and one must resort to
approximations based on the relative time scales. A procedure
adopted by Staib and Borgis6a treats the excess electron on equal
footing with the solvent (water) electronic polarizability. These
authors use a separable, self-consistent representation in which
the polarization charges induced on the water are computed in
an electrostatic field which includes the effect of the excess
electron charge distribution, while the latter is evaluated self-
consistently in the presence of the solvent polarization charges.
The nuclear motion is then carried out on a potential hyper-
surface which represents a ground state forall electronic (solvent
polarization and excess electron) degrees of freedom. In
contrast, Cao and Berne11 simulate the solvated electron in a
polarizable solvent under the assumption that the excitation
energy of the former is considerably lower than the electronic
excitation energy of the latter. Therefore, the Born-Oppen-
heimer approximation is invoked by these authors twice: first
when evaluating the electronic state of the system, taking the
solvated electron as slow relative to the solvent electronic
response, and again when moving the even slower nuclei on
the potential surface associated with the electronic state obtained
in the first step.
In the present calculation, we adopt a viewpoint similar to

that of Cao and Berne, in assuming that the tunneling process
is slowrelative to the electronic response of the water molecules.
This assumption cannot be justified on general terms, because
its validity stems from consideration of relative time scales, and
that associated with the tunneling process cannot be uniquely
defined for our three-dimensional barriers since no well-defined
tunneling path can be identified. The Buttiker-Landauer time12

for an electron tunneling through a rectangular barrier of height
1 eV and width 10 Å is of the order of 1 fs, while the lowest
electronic energy gap of water corresponds to a time scale of
ca. 0.1 fs. This shows that situations corresponding to our
assumption are possible; however, the time scales are not far
enough from each other to make such situations the rule. It is
easy to realize that in cases where the barrier electronic response
is not immediate on the time scale of the tunneling process, the
present approximation will overestimate the effect of water
electronic polarizability, and our results should be regarded in
this light. It should be emphasized that a separable self-
consistent approximation of the type used by Staib and Borgis6a

is not applicable in the present calculation, because the wave
function associated with the transmitted electron becomes
strongly fragmented.

3. Numerical Procedure

As mentioned above, the tunneling calculations are done with
static water configurations. These configurations are sampled
from an equilibrium trajectory for the system described above:
192 water molecules confined between 2 walls separated by 10
Å, with periodic boundary conditions with period 23.5 Å in
the directions parallel to the walls, at 300 K, using either the
RWK2-M potential or the flexible PSPC model. The new
element in the tunneling calculation is the inclusion of the self-
consistent effect of the many-body polarizability in the electron-
water interaction.
The tunneling probability for an electron between the two

walls is calculated, as described in ref 2, by propagating an
electron wavepacket through the barrier using the Chebyshev
polynomial expansion of the time evolution operator.13 The
water structure is kept frozen in this calculation. The potential
barrier experienced by the electron is a superposition of a
rectangular barrier of height 5 eV and width 10 Å representing
the vacuum barrier and the electron-water interaction. For the
latter, we use a modification, described below, of the pseudo-
potential developed by Barnett et al.5 that was used successfully
in previous studies of electron solvation and of solvated electron
spectroscopy in water and in water clusters. The original
pseudopotential5 contains, in addition to Coulomb, exchange
and exclusion contributions, terms also associated with the water
spherical polarizability, represented by a fictitious polarizable
particle of polarizability R located on the oxygen atom.
However, only the two-body part of this interaction is taken
into account; i.e., the corresponding term in the potential is
written for each electron-water pair disregarding the other water
molecules. Accordingly, this term has the form

wheree is the electron charge, whiler andR are the positions
of the electron and an oxygen atom, respectively. The parameter
Rc is a cutoff radius (rationalized by the presence of a strong
electron-oxygen repulsion) which eliminates the zero distance
singularity in this interaction. The values adopted forR and
Rc are 9.745 au (the spherical polarizability of water) and 1.6
au (order of the OH bond length in water), respectively.
In the present evaluation of the electron-water potential, we

have retained the same form of the polarizability interaction
(i.e., the same term, eq 1, corresponds to the interaction of the
electron with a single water molecule); however, we have now
determined the overall potential self-consistently; i.e., the
corresponding contribution to the potential experienced by the
electron at positionr is given by14,15

Vp(r ,R) ) - 0.5Re2

[|r - R|2 + Rc
2]2

(1)
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whereEj
coul is the electric field at the position of thejth oxygen

atom due to the electron

andµj is the dipole induced on thejth oxygensthe solution of
the set of equations

In eqs 3 and 4,r jk is the distance vector between the oxygen
atoms belonging to thejth andkth water molecules,r j is the
distance vector from the electron to thejth oxygen atom, andr̃ j
is modified by the cutoff distance; i.e.,r̃ j2 ) [|r - Rj|2 + Rc2].
To simulate the tunneling process, the electron’s wave function
is evolved on a rectangular 16× 16 × 1024 grid, with grid
spacing 2.77 au in thex andy directions and 0.4 au in thez
(i.e., the tunneling) direction. Keeping in line with the
assumption that the tunneling dynamics is slow relative to the
response of the water electronic polarizability, the polarization
induced in the water due to the electrostatic field of the electron
and the resulting electrostatic potential at the electron are
calculatedat each grid point, resulting in a modified potential
grid for the electron. An example of the resulting potential is
seen in Figure 1, which shows thex-y average of the potential
V(x,y,z)experienced by the electron in one particular water
configuration. The qualitative effect of including the many-
body aspect of the water electronic polarizability in obtaining
this potential is seen to be a substantial lowering and some
smoothing of thexy-averaged potential barrier.
The actual computation of the tunneling probability proceeds

as follows (see also ref 2). The initial wavepacket is chosen in
the form

whereg(z) is centered left to the barrier and contains wavevec-
tors in the positivezdirection only. A final timetf is determined
such that the integral of|ψ(r ,tf)|2 over the barrier is smaller
than some predetermined small number. The transition prob-
ability from an initial free particle statek0 to a final statekf is
then obtained from

Since the process is elastic,|k0| ) |kf|. The total transmission
probability is obtained by summing eq 6 over all finalkf which
satisfy this energy conservation condition together with the
condition that theirzcomponent is positive. The results shown
below correspond to this total transmission probability for an
incidentk0 in the z direction, i.e., normal to the barrier.

4. Results and Discussion

Consider first the effect that replacing the nonpolarizable
RWK2-M model by a polarizable SPC has on the tunneling
probability. In order to check this, we have generated equilib-

rium MD trajectories using both potential models and have
tested several configurations sampled from the two trajectories.
As we anticiptated, electron transmission probabilities through
the resulting water films, calculated using the same electron-
water pseudopotential, are very similar in both cases. In fact,
they lie within the statistical range which characterizes an
ensemble of such water structures (see Figure 2 below and also
Figure 5 of ref 2). This insensitivity to the water intermolecular
potential results from the fact that the film structure is
determined largely by the confinement imposed by the walls
and by the preferred orientation (dipole pointing outwards) of
water molecules adjacent to them. Finer details of the inter-
molecular water interactions make only small effects on the
resulting water structures. Keeping this in mind, we disregard
this issue in the remainder of our discussion, and the results
shown below are all based on configurations prepared using
the RWK2-M water model.
The tunneling probability, as a function of electron energy,

through six equilibrium water configurations prepared as
described in the previous section is shown in Figure 2. The
difference of 0.5-1 order of magnitude in the tunneling
probabilities obtained from different configurations seems to
be typical of the system studied. This scatter in the results will
disappear for larger systems. More important are the qualitative
differences between the tunneling behavior in the present model
compared with our previous study2 in which the many-body
aspect of the water electronic polarizability response was

Vpol ) -
1

2
∑
j

µj‚Ej
coul (2)

Ej
coul ) e

r j/|r j|
r̃ j
2

(3)

µj ) R[Ej
coul - ∑

k*j
T jk‚µk] (4a)

T jk ) (I - 3
r jk‚r jk
|r jk|2 ) 1

|r jk|3
(4b)

ψ(r ,t)0)) Ceikx0xeiky0yg(z) (5)

Pk0fkf
)
|∫dr e-ik0‚rψ(r ,0)|2

|∫dr e-ikf‚rψ(r ,tf)|2
(6)

Figure 1. xy-averaged potential barrier. Plotted isV(z) ) (V + V0)/
V0, whereV is thexy-averaged electron-water potential andV0 is the
bare potential (5 eV, see text). Full line: polarizable model for the
electron-water interaction. Dashed line: the nonpolarizable model
used in ref 2.

Figure 2. Transmission probability vs electron energy for six equi-
librium water configurations, using the polarizable model for the
electron-water interaction. The electron is incident in the normal (z)
direction, andT(E) denotes the sum over all final directions.
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disregarded. First, the tunneling probabilities obtained here are
∼2 orders of magnitudes higher than in the previous study.
Second, unlike in that study, some configurations now support
resonances, as signaled by the corresponding peaks in the
tunneling probability vs energy plots.
A clearer picture of the difference between the two electron-

water interaction models with regard to the tunneling behavior
is seen in Figure 3. Here we show, as functions of the incident
electron energy, the averaged (over eight configurations)
electron-through-water tunneling probabilities in the models
which take (full line) or do not take (thin dashed line) into
account the many-body aspect of the water electronic polariz-
ability. Also shown are the corresponding results (dotted line)
for tunneling through vacuum, i.e., through a bare rectangular
potential barrier of height 5 eV, and a similar result (thick dashed
line) for a barrier of 3.8 eV which corresponds to the expected
lowering of the effective barrier for tunneling through water.
The results for the polarizable model are seen to be in
remarkable agreement with the expectation based on lowering
of the effective rectangular barrier by 1.2 eV.
Figure 3 shows that taking into account the full many-body

character of the water electronic polarizability is crucial in the
present context. The effect of water on the tunneling behavior
is associated with several factors: First, the fact that much of
the physical space between the electrodes is occupied by oxygen
atom cores which are practically impenetrable to the electron
forces the tunneling to take relatively long winding pathways
rather than the shortest path perpendicular to the electrodes. This
makes the tunneling less probable; namely, the effective barrier
for tunneling is higher. Second, the ordering of the water
molecules at the metal walls, with the negative oxygen sites
nearest to the wall and a net positive dipole pointing away from
the surface, amounts to a surface dipole layer which reduces
the electrode work function, i.e., the effective barrier to
tunneling. We have studied this effect in ref 2 within the
nonpolarizable water model and have found that when the
specific oxygen-wall attraction is eliminated from the water-
wall model potential, the tunneling probability in a system of
the type studied here decreases by 0.5-1 order of magnitude.
Finally, the properties of excess electron states in the

polarizable water environment can also affect the transmission
properties of this medium. We focus on low energy states of
an excess electron in equilibrium configurations of bulk neutral
water. Such states may be weakly bound (“preexisting localized

state” in discussions of electron solvation) or unbound. The
lowest extended states correspond to what is sometimes referred
to as “the bottom of the water conduction band”. The latter is
believed to lie∼1 eV below vaccum energy; however, non-
polarizable water models put this energy at∼0 relative to
vacuum.16 Obviously, a low-lying conduction band implies a
lower effective potential barrier for electron tunneling.
In Figure 4, we compare the density of excess electron states

as a function of energy, for the nonpolarizable and for the
polarizable water models described in Section 2. In these
calculations, we have used “bulk” water configurations sampled
from an equilibrium MD trajectory for 192 water molecules in
a simulation cube of size (17.56 Å)3 (density 1 g/cm3) with
minimum image convention and at 300 K. The low-energy
eigenvalues of an excess electron in the resulting water
configurations were calculated on a 16× 16 × 16 grid with
grid spacing 2.11 au, using a block Lanczos algorithm. The
accuracy of the results shown in Figure 4 is not high, because
only 10 water configurations were used. However, the differ-
ence between the polarizable and the nonpolarizable model is
evident: The band of excess electron states in the nonpolarizable
water model starts essentially atE ) 0 (relative to vacuum),
similar to what was seen in ref 16 using a somewhat different
nonpolarizable model. In contrast, using the same water
configurations with the electron-water interaction modified to
take into account the many-body aspects of the water electronic
polarizability leads to a band edge at∼-0.5 eV relative to
vacuum. Another source of error in this determination of the
band edge is the fact that for the polarizable model, the
corresponding electron wave functions are of spatial size
comparable to or larger than our grid. This implies that the
computed energies are higher than the actual ones and that the
values of-0.5 eV is, in fact, an upper limit.
Because the spatial spread of the eigenfunctions associated

with the low-energy excess electron states in the polarizable
water model is comparable to the grid size used, it was not
possible to determine whether these states are localized or
extended (obviously, no finite grid calculation can unquestion-
ably determine that a state is extended). This is, however, of
little importance to our discussion, since it is sufficient to assert
that a state is extended enough to span the space between the
electrodes. It is interesting to compare the polarizable and the
nonpolarizable models with respect to this issue. Figure 5
compares the spread of the eigenfunctions associated with the
eigenenergies used to generate the densities of Figure 4. Plotted
in Figure 5 are the “entropies”

Figure 3. Transmission probability,T(E), averaged over six equilibrium
water configurations as described in the text. Full line: using the
polarizable model. Thin dashed line: using the nonpolarizable model
of ref 2. Also shown are the transmission probabilities through a
rectangular barrier of height) 5 eV, which corresponds to the model
vacuum barrier (dotted line), and through a rectangular barrier of height
3.8 eV (thick dashed line).

Figure 4. Histogram plot of the density of levels for an excess electron
in a neutral “bulk” water configuration. Full line: polarizable model.
Dashed line: nonpolarizable model.
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where the sum is over all grid points. This function measures
the extent of the spatial dispersion of the corresponding wave
function. It becomes unity when the electron is equally likely
to be at any grid point, i.e., if|ψj|2 ) 1/N, whereN is number
of grid points (here 163), and is zero if the electron is located
in one particular grid pointk, i.e., |ψj|2 ) δjk. It is clear from
Figure 5 that the electron wave functions associated with the
low-energy states of the polarizable water model are consider-
ably more extended than the corresponding states in the
nonpolarizable model. This may be another factor affecting
the electron tunneling probability. The combined effect of all
these factors, the expulsion of the electron from the oxygen
cores, the effect of ordered surface water on the work function,
and the properties of excess electron states in neutral water,
combine to yield the overall reduction in the effective barrier
to tunneling, which leads to the strongly enhanced tunneling
probability seen in the polarizable model (Figure 3).

5. Summary and Conclusions

In this paper, we have examined the effect of including the
water electronic polarizability in the force fields which determine
electron tunneling through water layers. First, we have prepared
water equilibrium configurations by sampling from MD trajec-
tories obtained with the flexible version of the PSPC potential
for water due to Dang.10 We have found that tunneling through
these configurations behaves very similarly to our previous
results which use configurations obtained with the nonpolariz-
able RWK2-M water potential. We have concluded that in the
confined geometry of water between the two walls, finer details
of the water structure which are determined by the inter-
molecular water potential make little difference on the resulting
water structure.
We have also incorporated the many-body aspect of the water

electronic polarizability response into the electron-water
interaction and examined its effect on the effective barrier for
tunneling of an electron through thin layers of water. Strictly
speaking, the potential used in our study is inadequate for
quantitative computations, because we have introduced this extra

feature into the electron-water interaction without reparam-
etrizing the whole pseudopotential, so our results should be
regarded only as qualitative indications. For example, we have
found that changing the parameterRc of eq 1 from 1.6 to 1.8
changes the resulting tunneling probability by a factor of∼2-
3, while the effect of interest here is the increase by 2 orders of
magnitudes of the tunneling probability in the polarizable water
model relative to the nonpolarizable model.
This substantial increase in the tunneling probability through

water described by the polarizable model for the electron-water
interaction changes qualitatively the picture which emerged from
our previous calculation:2 The tunneling probability through a
thin layer (10 Å) of water is found to be larger by more than an
order of magnitude than the corresponding value in vacuum, in
accord with expectations for lowering an effective rectangular
barrier by 1-1.5 eV. The physical origin of this effect has
been determined to be the combination of three factors: The
effective increase in the barrier height associated with the
insurmountable oxygen cores is more than compensated by the
effective decrease in the barrier caused by the lowering of the
metal work function due to the ordering of the water dipoles at
the surface and to the existence of “conducting” states below
the vacuum energy in the barrier.
The use of static water configurations in the present study

was a highly simplifying feature which seemed to be justifiable
in the circumstances studied. However, it is important to keep
in mind that the dynamics of the barrier electronic and nuclear
response may be important in electron tunneling processes. This
issue will be considered in future work.
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