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The phenomenology of electron solvation in polar solvents is studied by investigating the characteristics of
electron solvation in a model polar solvent, a Stockmayer liquid characterized by a combination of Lennard-
Jones and dipolar intermolecular interactions which interacts with the electron with a combination of short
range repulsive and of electrostatic (dipole-charge) interactions. Energetics and dynamical properties of the
solvated electron are studied as functions of the solvent density and of solvent molecular parameters which
determine the electron solvent interaction and the solvent dynamical response. We find that electron localization
in this solvent is caused primarily by the repulsive part of the electron-solvent interaction. Upon increasing
the solvent molecular dipole from zero, the electron becomes more localized; however, this effect seems to
saturate at moderate solvent polarities, and further increase of the polarity changes the ground (and excited)
state energies without affecting strongly the electron size. In this regime the electron behaves approximately
like a classical charge distribution as far as the dependence of its solvation energy on the solvent polarity is
concerned. The dynamical response of the solvent to the solvated electron is investigated by studying the
solvent-induced fluctuations of the electron’s energy levels. As expected we find that fluctuations in the
ground and excited state energies are dominated by the electrostatic part of the electron-solvent interaction,
and their dynamics therefore reflects the solvent rotational motion. Surprisingly, however, the electrostatic
contributions mostly cancel in the fluctuations of the gap between the ground and first excited state.
Consequently the gap fluctuations are dominated by the solvent translational motions. The implications of
these observations on the dynamics of electron solvation are discussed.

1. Introduction

Recent studies of solvation dynamics in polar liquids may
be divided into two categories. On one hand, intensive work
has been carried out in order to elucidate the nature of the
solvent dynamical response to a sudden change (usually induced
by an optical transition) in the solute charge distribution.1

Theoretical studies of such processes have assumed that the
process is classical in nature: the dynamics of charge rear-
rangement in the solute (itself a quantum process) is assumed
to be instantaneous on the observable time scale, and the
consequent solvent motion is treated using classical mechanics
and electrostatics. The underlying assumption (confirmed by
numerical simulations) is that solvent intramolecular vibrations
(for which classical mechanics is questionable at room temper-
ature) do not play an important role in the solvation process.
Theoretical studies and numerical simulations of such processes
have yielded important information about the nature of solvation
dynamics in simple polar solvents. In particular, the existence
of an important inertial ultrafast component in the solvation
processes was discovered,1,2 and the predominance of solvent
rotational and librational motions has been established.1,3,4

On the other hand, electron solvation has also been the focus
of a considerable amount of recent work. In a typical experi-
ment the formation of the solvated electron following electron
injection into, e.g., water is monitored.5 Such experiments
together with numerical simulations have established that an
important route to the formation of the fully solvated electron
involves as a rate-determining step thenonadiabatictransition
from the lowest excited (“p-like”) to the ground (“s-like”) state

of the solvated electron in its already formed solvent cavity.5-7

The process is thus essentially quantum mechanical. The same
nonadiabatic transition can be probed directly by monitoring
the relaxation following photoexcitation of the solvated elec-
tron.8

While the nature of the solvent motions which dominate
solvation dynamics in polar solvents has been addressed in
several studies,1-3 this issue has not been explicitly raised with
respect to electron solvation. It is first important to distinguish
between adiabatic solvation (processes which occur on a single
electronic state) and nonadiabatic relaxation as described above.
Adiabatic solvation can be generated in computer simulations
by confining the electron to a single electronic state throughout
the relaxation, but the corresponding dynamics is an important
ingredient also of the nonadiabatic relaxation, since it determines
the fluctuations of the energy gaps between the electronic states.
Barnett et al.9 have pointed out that the short time component
of theadiabatichydration dynamics of an electron is sensitive
to H-D substitution, indicating that librational motions of the
water hydrogens as well as H-bond dynamics dominate this part
of the solvation. In fact, this process is very similar to the
classical dynamics which takes place following the sudden
generation of an anion of size similar to the final size of the
hydrated electron (∼2 Å). More detailed studies have been
carried out by Rossky and co-workers.10 In particular Schwartz
and Rossky10a have recently performed numerical simulations
of electron hydration dynamics in the ground state as well as
in the excited (p-like) state manifold of the hydrated electron,
using a flexible SPC water model together with an electron water
pseudopotential developed by Schnitker and Rossky.11 They
have concluded that low-frequency translational motions of theX Abstract published inAdVance ACS Abstracts,November 1, 1996.
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solvent play an important role in both the inertial and the
diffusive portions of the relaxation. This observation is related
to the fact that unlike in the solvation process which follows
the instantaneous change in the charge distribution of classical
solutes, much of the local change in the solvation structure about
a solvating electron is associated with a significant change in
size and shape of the electron upon change in its quantum state.
Another important observation is that for this system the solvent
linear response function

whereU(t) is the value of the quantum energy gap at timet
andδU(t) ) U(t) - 〈U〉 represents the fluctuation of the gap
from its equilibrium average value, provides a good approxima-
tion to the nonequilibrium response function

where the〈 〉ne denotes a nonequilibrium ensemble average.
The importance of solvent translational modes in electron

hydration dynamics has been highlighted by a recent suggestion
by Rips12 that the rate-determining step in the formation of the
ground state solvated electron is not the nonadiabatic pf s
transition but the compression of the cavity toward its final size.
Rips has shown that, assuming that water is essentially
incompressible, the time scale associated with this process is
comparable to that observed experimentally. Furthermore, the
dominance of watertranslationalmotion explains in this model
the observed smallness of H-D isotope effect on the relaxation
rate.5b,4f,8 Rips’ simplistic picture is not confirmed by numerical
simulations; however, it also emphasizes the role of solvent
translations as an important ingredient in the electron solvation
process. Furthermore, solvent translations associated with the
formation of the solvation cavity (e.g. the “electron bubble” in
liquid He13) are expected to constitute a major ingredient in
electron solvation processes in nonpolar fluids.
From the point of view of general methodology, electrons

provide a unique probe in solvation dynamics studies for three
reasons: First, the nonadiabatic nature of the actual solvation
process as discussed above provides an important example of a
solvation process dominated by quantum mechanical effects.
Secondly, the considerable shape and size changes associated
with the electron dynamics constitute another unique ingredient
in this solvation process. Finally, the charge distribution
changes in a way different from that of most probes: upon s to
p excitation this change would correspond to the sudden
formation of a quadrupole if these states were of exact s and p
characters. This is another factor which enhances the impor-
tance of solvent translational modes in this solvation process
because of the relative short range of the interaction.
The rate of a nonadiabatic transition between two electronic

states in condensed phases is closely related to the dynamics
of theadiabaticfluctuations of the energy gap between the two
states. For example, a simple semiclassical perturbative expres-
sion for the nonadiabatic rate in terms of the gap fluctuations
is given by14,15

where VNA is the nonadiabatic coupling between the two
electronic states,pω is the fluctuating energy gap, and〈 〉T

denotes thermal averaging. In eq 3 the noncommutativity
between the electronic potential operators evaluated at different
times was disregarded. A second-order cumulant expansion
(exact ifω(t) is a Gaussian stochastic process) can then be used
to expresskNA in terms of the gap correlation functionC(t),
leading to14,15

Neria and Nitzan6 have pointed out that in addition to the gap
fluctuations, the quantum nature of the solvent may contribute
by affecting the Franck-Condon factor associated with the
transition. Very recently, Schwartz et al.10c have invoked this
idea to explain the apparent lack of H-D isotope effect on the
p f s relaxation of the hydrated electron.5,8 Still, the gap
fluctuations are the dominant factor affecting the overall rate
of the nonadiabatic process, and understanding the way they
are influenced by different solvent motions is therefore of central
importance in understanding the solvent effect on the electron
solvation process.
In this paper we investigate numerically the effect of a

classical solvent on a quantum solute, focusing on the interplay
between the short range repulsive and the long range electrostatic
electron-solvent interactions and on the relative roles played
by solvent translational and rotation/librational modes. Since
we emphasize generic issues we use a generic model solvent:
a Stockmayer solvent (Lennard-Jones spheres with point dipoles
in their centers) whose mass and moment of inertia are chosen
independently. Comparing results obtained for different sets
of these solvent parameters, we can determine the relative
importance of solvent rotational and translational motions in
the relaxation processes that determine electron solvation.

2. Technical Details

Our solvent is a generic Stockmayer solvent, characterized
by intermolecular Lennard-Jones plus dipole-dipole inter-
actions. These interactions are determined by three param-
eters: the Lennard-Jones energy and length parameters,ε and
σ, and the molecular dipoleµ. In addition, the solvent
dynamical properties depend on its molecular massM and
moment of inertiaI, which are varied independently in the
present study, as well as on the densityF and temperatureT. A
typical simulated system consists of 100 such classical particles
at T ) 240 K, in a cubic box of size 39.52 au (corresponding
to 1.09 × 1022 particles/cm3, the density of MeCl at this
temperature) with reaction field boundary conditions.16 For the
electron-solvent interaction we also take a generic form: a sum
of electrostatic interaction and short range repulsive terms. The
former is determined by the electron charge and the solvent
dipole. The latter is taken, following Zhu and Cukier,22 to be
of the form

Detailed forms of all interaction terms including those imposed
by the reaction field boundary conditions, together with the
proper cutoffs imposed by the chosen system size, are provided
in Appendix A.

C(t) )
〈δU(0) δU(t)〉

〈(δU)2〉
(1)

S(t) )
〈U(t)〉ne- 〈U(∞)〉ne
〈U(0)〉ne- 〈U(∞)〉ne

(2)

kNA )
|VNA|2

p2
∫-∞

∞
〈exp[i∫0τω(t) dt]〉T dτ (3a)

kNA )
|VNA|2

p2
exp[iM1(t) - M2(t)]

M1(t) ) ∫0t dt′〈ω(t′)〉 (3b)

M2(t) ) ∫0t dt′ ∫0t′ dt′′[〈ω(t′′) ω(t′)〉 - 〈ω(t′′)〉 〈ω(t′)〉]

V(s) ) A exp[-(rl )
6] (4)
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In what follows, unless otherwise stated, atomic units are used
for energy, length, and charge, and (1/12)carbon-mass is taken
as the mass unit. Correspondingly, the time unit is [ml2/E]1/2

) 1.033× 10-15 s. The classical time evolution is carried out
using the velocity Verlet algorithm, with a time step∆t e 1.14.
Our starting model parameters correspond to the methyl chloride
(MeCl) solvent, with molecular mass and dipole momentM )
50 andµ ) 0.7357, respectively, and LJ parametersε ) 6.175
× 10-4 andσ ) 7.937. The constraint on the magnitude of the
molecular dipole (see ref 3) is kept using the Rattle algorithm.17

Temperature control is achieved by imposing thermal collisions
on the solvent particles (Andersen’s method18). The quantum
propagation is carried out within the adiabatic simulation
scheme:19 the electron is restricted to a particular quantum state
throughout the evolution. The electronic wave function is
defined on a 163 grid, with grid spacing 2.0625. With this
choice we obviously restrict ourselves to states which are well
localized inside the grid. The exterior dielectric constant used
for the reaction field boundary condition is determined self-
consistently by computing the dielectric response of the
simulated sample. For the MeCl solventε′ ) 17. The quantum
states and energies are obtained using an iterative block-Lanczos
method, using FFT in the calculation of the Hamiltonian
operation. The calculation of average energies (and, in principle,
spectra) is achieved by obtaining the electronic energy levels
(and dipole matrix elements) for an ensemble of equilibrium
system configurations. Adiabatic time evolution on theith
electronic state is carried out by propagating the classical solvent
under the potentialVsol-sol + 〈Ψi|Vel-sol|Ψi〉, re-evaluating the
stateΨi at each classical step according to the instantaneous
solvent configuration.
As a starting point for the following numerical investigation

we take the Stockmayer solvent with methyl chloride param-
eters, in which classical solvation dynamics has been extensively
studied. The short range electron solvent interaction parameters
are taken to beA ) 1 au andl ) σ/2. The equilibrium
distributions of the ground and the three lowest excited states
energies of the electron in this solvent are shown in Figure 1.
The ground state distribution peaks at∼-0.35 eV and has a
width of ∼0.25 eV. The excited states associated with the
ground state cavity have positive energies, in the range 0.3-
1.8 eV. In the following sections we examine the effect of
changing the character of the electron-solvent interaction on

the electron binding to the solvent and on the electronic energy
levels and the effect of changing solvent mass and moment of
inertia (i.e. changing the characteristics of the solvent transla-
tional and rotational motions) on the dynamics of electron
solvation.

3. Energetics

Previous numerical investigations of the solvated electron
have focused on particular solvent models such as water,
ammonia, simple hydrocarbons, and rare gases. The ground
state properties of the solvated electron and the associated
solvent structure have been investigated for models of these
fluids using numerical simulations as well as theoretical
treatments based on the RISM-polaron theory20 and on the mean
field approximation.21,22 Our generic model contains the main
characteristics of a polar solvent in which the electron experi-
ences a combination of short range repulsive and of electrostatic
interactions and can be continuously transformed into a nonpolar
solvent by taking the molecular dipoleµ to be zero. Here we
examine the effect of the electron-solvent interaction on the
energetic characteristics and on the localization properties of
the solvated electron. In particular we focus on the average
ground state energyEg and localization radiusRg ) [〈Ψg|r2|Ψg〉
- 〈Ψg|r|Ψg〉2]1/2 and on the energy gap between the ground
and first excited state. Table 1 shows the effect on these
quantities of changing the dipole momentµ, the densityF, and
the diameterσ of the solvent molecules. Note thatσ also
determines the short range electron solvent interaction (4) byl
) σ/2. It is seen that a moderate change in the polar fluid
density makes a relatively small change on the total electronic
energies. This, however, results from the compensating effect
of changing the magnitudes of both the (positive) kinetic energy
and the (negative) potential energy components. The ground
state energy as well as the ground state gyration radius are very
sensitive to the solvent molecular dipole. This dependence is
strong for smallµ and seems to saturate at some transition value
µt (see Figure 2). Forµ > µt the electron’s wave function (and
Rg) becomes relatively independent ofµ, and the main effect
of changingµ is associated with the classical response of a given
charge distribution to a changing electrostatic field.23 For this
reason the magnitude of the electronic energy gap hardly
changes, while the ground state energy changes by a factor of
∼2 whenµ changes from the MeCl value (0.736) to the water
value (1.03). It should be added that increasing the molecular
dipole of the pure solvent fromµ ) 0 to the MeCl value causes
a reduction in pressure in the simulated constant volume system.
For our MeCl model this would amount to increasing the density
by∼5-10% if the pressure was to be kept constant. Therefore
the effect on the electron’s energy levels of increasing the
solvent molecular dipole from zeroat constant pressureis
expected to be considerably larger than for the corresponding
constant volume system.

Figure 1. Distributions of the ground and the three lowest excited
states energies of the solvated electron in a Stockmayer solvent with
MeCl parameters. Data are obtained from a 100 ps ground state
trajectory.

TABLE 1: Dependence of the Ground State Energy,Eg,
Ground State Gyration Radius,Rg, and the First Electronic
Energy Gap on Some Solvent Parametersa

µ F σ Eg (eV) Rg (eV) ∆E (eV)

0 1.0 1.0 1.19 3.28 0.81
1.0 1.0 1.0 -0.33 2.87 1.09
1.4 1.0 1.0 -0.64 2.87 1.10
1.0 0.9 1.0 -0.33 3.12 0.91
1.0 1.1 1.0 -0.31 2.68 1.27
1.0 1.0 0.97 -0.38 3.01 0.98
1.0 1.0 1.03 -0.28 2.73 1.21

a The solvent molecular dipole momentµ, its densityF, and its LJ
diameterσ are given relative to the corresponding values of MeCl (see
text).
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These results are consistent with the observations of Zhu and
Cukier,22 who have noted that even for strong polar solvents
like water the electron remains localized (with a localization
size of the same order) when the electrostatic interactions are
switched off. In fact, the mean field calculation by these authors
shows almost no effect of the electrostatic forces on the ground
state size; however, numerical results based on the SPC water
model shows a stronger effect (13% increase inRg upon
switching off the electrostatic interactions), comparable to the
results of the present Stockmayer model. In any case these
calculations show the crucial role played by the short range
repulsive forces in determining the structure of the solvated
electron.
Finally, the electronic energies seem to be quite sensitive to

the molecular diameterσ. This is probably a consequence of
the fact that when the nearest electron-solvent distance
decreases, the electrostatic attraction which shifts the electronic
energies downward becomes more prominent.

4. Dynamics of Levels and Gap Fluctuations

While adiabatic simulations restrict the electron to a single
quantum level, the information obtained from such simulations
can be used to calculate nonadiabatic transition rates in the small
electron-solvent coupling. Here we study the effect of different
solvent motions on these dynamical fluctuations. At issue is
the relative importance of solvent translational and rotational
degrees of freedom.24 Starting from the MeCl parametersM
) 50 andI ) 119.8 we have studied the effect of changingM
and I on the dynamics of the solvent-induced fluctuations in
the electronic energy levels, on the energy gap between the
ground and the first excited state, and on the size (estimated by
the gyration radius) of the solvated electron. Table 2 sum-
marizes the different sets of parameters used in these calcula-
tions.
The ratiop provides an estimate of the relative importance

of rotational and translational motions in the solvent dynamics.
The effects of these different choices of parameter sets on the
pure solvent dynamics are shown in Figures 3 and 4. Figure 3
shows the normalized time correlation functions of the solvent
velocity, Cv(t) ) 〈v(0)‚v(t)〉/〈V2〉, and the angular velocity,
Cw(t) ) 〈w(0)‚w(t)〉/〈w2〉 (w ) µ̆), and also of the dipole

orientationCµ(t) ) 〈µ(0)‚µ(t)〉/µ2. Figure 4 shows the Fourier
transforms,C(ω) ) ∫-∞

∞ dt cos(ωt) C(t), of the velocity and
angular velocity correlation functions. Obviously, increasing
M suppresses the translational contributions, while increasingI
suppresses the rotational contributions to the solvent dynamics.
Figures 5 show the normalized time correlation functions for

ground state energy fluctuations. Also given are the averages
〈E〉 and the standard deviations〈δE2〉1/2 of the different
components of the electronic energy. Note that these numbers
should not depend onM and I. Shown are the correlation
functions for the total electronic energy, together with its
potential and kinetic energy components. The following
observations can be made: (a) The fluctuations in the total

Figure 2. Localization radius, radiusRg ) [〈Ψg|r2|Ψg〉 - 〈Ψg|r|Ψg〉2]1/2,
of the solvated electron as a function of solvent polarity expressed in
terms of its molecular dipole moment. The error bars reflects the
accuracy of the calculation based on averages calculated from five
independent trajectories.

TABLE 2: Parameter Sets Used in the Simulations of
Dynamical Responsea

case M I p ) I/(2Mσ2)

M1 261.7 119.8 0.0036
“MeCl” 50 119.8 0.019
M2 3.80 119.8 0.25
I1 50 22.7 0.0036
I2 50 1574.9 0.25

a “MeCl” denotes the parameter set associated with the Stockmayer
model of methyl chloride. M1 and M2 are similar sets with different
solvent mass. I1 and I2 are similar sets with different solvent moment
of inertia.

Figure 3. Time correlation functions of the pure solvents: (a) and (d)
center of mass velocity correlation functionCv(t); (b) and (e) angular
velocity correlation function,Cw(t); (c) and (f) orientation correlation
function,Cµ(t). In a-cM ) 50 and the molecular moment of inertia
is changed; dashed line, full line, and dotted line correspond toI )
1574.9, 119.8, and 22.7, respectively. In d-f I ) 119.8 and the solvent
molecular mass is varied, and dashed, full and dotted lines correspond
to M ) 3.80, 50, and 261.7, respectively. Note that the full lines
correspond to the “standard” MeCl parameters. Therefore the full lines
in the corresponding left and right figures are identical.
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ground state energy are much more sensitive to the solvent
moment of inertia than to its mass (compare parts a and f of
Figure 5), indicating that solvent rotations are dominant in this
dynamics. (b) The kinetic energy fluctuations show the
expected sensitivity to the solvent mass (Figure 5j), i.e. to the
solvent translations. (c) Theshort rangepart of the potential
energy behaves very similarly to the kinetic energy (Figure 5i,j);
however, the long range electrostatic part of the potential energy
dominates the total energy fluctuations, which are therefore
nearly insensitive to the solvent mass. Comparing parts d, e
and i, j of Figure 5 shows the strong correlation between the
kinetic energy and the short range potential energy fluctuations.
The strong correlation between these quantities can be realized
also by computing cross correlations such as〈δEkinδVshort〉/
[〈δEkin2〉〈δVshort2〉]1/2 (this yields 0.95, 0.92, 0.90, and 0.88 for
the four lowest states of the solvated electron). A similar picture
is obtained if instead of fluctuations in the electron kinetic
energy we take the electron gyration radius as a measure of its
size. Similarly, parts b, c and g, h of Figure 5 show that the
potential energy fluctuations are dominated by the long range
electrostatic component. The qualitative picture that emerges
from these observations is as follows: The short range part of
the electron-solvent interaction acts via solvent translational
modes as a source for fluctuations in the cavity size. Such
fluctuations correspond to high correlation between the kinetic
and the short range contribution to the potential energy. The
total energy fluctuations are dominated by the substantially
larger long range electrostatic part of the electron-solvent
potential, which is sensitive mainly to solvent rotations and
affects the potential energy without strongly influencing the
kinetic energy. As will be seen below, this component of the
solvent-induced electronic potential energy affects all energy
levels of the lower lying states in an approximately similar way,
and its contribution to the gap energy difference is therefore
small.
It is interesting to compare this picture with the processes

that occur in the classical counterpart of the present system.
This classical counterpart may be obtained by replacing the
electronic charge distribution by a frozen distribution (which
corresponds to one instantaneous solvent configuration) and then
treating the electron as a classical particle that interacts with

the solvent via the same short range interaction and the
electrostatic force associated with this frozen charge distribution.
Obviously no kinetic energy fluctuations associated with cavity
size exist in this model which is similar to those used to study
classical solvation. Figure 6 shows the corresponding time
correlation functions. We note thatthe total energy fluctuations
in this classical system areVery similar to those in the quantum
case, eVen though the different components of the potential
energy appear different(compare Figures 5 and 6).
This behavior can be understood from first-order perturbation

theory: Let the electronic Hamiltonian beH ) H0 + δVwhere
δV denotes the fluctuations in the potential associated with the
solvent motion. LetΨ0 be an eigenfunction ofH0 corresponding
to the energyE0, H0Ψ0 ) E0Ψ0, andΨ ) Ψ0 + δΨ be an
eigenfunction ofH with the eigenvalueE, HΨ ) EΨ, whereE
) E0 + δE. Now compare the energy of this system to the
energy of a system where the electron behaves as a classical
particle whose interaction with the solvent is determined by the
frozen distribution|Ψ0|2, assuming that in either case the solVent
motion is the same(i.e. δV is the same; deviations from this
assumption appear only in higher than first order in perturbation
theory). To first order the fluctuationδE in the total energy is

Figure 4. Fourier transforms of the velocity and angular velocity
correlation functions shown in Figure 3. Line notation is the same as
in Figure 3.

Figure 5. Time correlation functions of the ground state energy
fluctuations, for the total energyEtot, the potential energyEpot and its
long (Elong) and short (Eshort) range components, and the kinetic energy
Ekin. Line notations are as in Figures 3 and 4. The averages and the
standard deviations of the displayed quantities are (in eV):Etot )
(-0.33, 0.17),Epot ) (-1.59, 0.20),Elong ) (-1.82, 0.21),Eshort )
(0.22, 0.031) andEkin ) (1.27, 0.095), where the first number is〈E〉
and the second number is〈δE2〉1/2.
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given to beδE ) 〈Ψ0|δV|Ψ0〉, the same in both cases. The
kinetic energy component in this fluctuation is, however, zero
in the classical (frozen electron distribution) case and different
from zero in the quantum case. For example, suppose that the
electron-solvent interaction can be modeled as a sumV ) V1
+ V2 of a position independent termV1 and a cavity termV2 of
the formV2 ) 1/2meω2r2. The thermal motion of the solvent
results in a fluctuatingV, δV ) δV1 + δV2. Suppose that the
fluctuationδV2 results only from a change in the cavity curvature
ω, so that the cavity remains harmonic. For this modelδE )
〈Ψ0|δV1 + δV2|Ψ0〉 (to first order); however, in the quantum
caseδEpot) 〈Ψ0|δV1 + 1/2δV2|Ψ0〉 andδEkin ) 〈Ψ0|1/2δV2|Ψ0〉,
while in the classical (frozen) caseδEpot ) 〈Ψ0|δV1 + δV2|Ψ0〉
andδEkin ) 0.
The fact thatδE is the same in the classical case and (within

first-order perturbation theory) in the quantum case, together
with the apparent success of linear response theory for this
system, is consistent with the observation that theadiabatic
solvation dynamics of an electron is very similar to that
computed for a classical anion of comparable size.25

The observations concerning the relative importance of
solvent translational and rotational modes largely repeat them-
selves when the adiabatic motion on the excited states is
considered. However, the fluctuations in the electronic energy
gap behave in aqualitatiVely different way. In Figure 7 the
normalized time correlation functions for the fluctuations of the
0-1 energy gap (between the ground and the first excited levels
of the solvated electron) are displayed. Clearly the gap
fluctuations are much more sensitive to the solvent mass than
to the solvent moment of inertia, indicating that the solvent
translational modes are dominant in the variations of this
quantity. At the same time these fluctuations are largely

dominated by theshort range part of the electron-solvent
interaction. A similar pattern is seen in the fluctuations of the
0-2 and 0-3 gaps. It should be noted that an important
contribution to this observation is the fact that the solute charge
as well as its average dipole moment is the same for all states
considered. This makes the relatively short range quadrupole
moment of the distribution|Ψs|2 - |Ψp|2 the main source of
electrostatic energy contribution to the gap fluctuations. It
should be also noted that the dominance of the short range part
of the electron-solvent interaction in the gap fluctuations
implies that dielectric continuum theories (which take into
account only the electrostatic interactions) cannot be applicable
to the dynamical response.
To summarize, we have observed that the fluctuations of

electron’s energy levels are largely dominated by its long range
electrostatic interaction with the solvent; therefore, the dynamics
of these fluctuations is largely controlled by the solvent
rotational and librational motions. On the other hand the 0-1
electronic energy gap (as well as the 0-2 and 0-3 gaps) is
more sensitive to the short range part of the electron-solvent
system, and consequently its dynamics is dominated by the
solvent translational motion. For a classical particle with a
frozen charge distribution taken from an instantaneous electron

Figure 6. Same as in Figure 5 for the case where the electron’s charge
distribution is held fixed and invariable under the solvent time evolution.
Line notation are as in Figures 3-5.

Figure 7. Time correlation functions for the 0-1 energy gap and its
different components. Line notations are as in Figures 3-6. The
averages and the standard deviations of the displayed quantities are
(in eV): ∆Etot ) (1.09, 0.12),∆Epot ) (0.28, 0.063),∆Elong ) (0.16,
0.073),∆Eshort ) (0.12, 0.037), and∆Ekin ) (0.81, 0.11), where the
first number is〈∆E〉 and the second number is〈δ(∆E)2〉1/2.
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wave function, the total energy fluctuations are very similar to
that associated with a quantum electron even though the
individual kinetic and potential energy differences are quite
different in the two cases.

5. Implications for Electron Solvation Dynamics

The fluctuations in the individual electronic energy levels and
fluctuations in the gaps between them are relevant to different
physical observables. For example, fluctuations in the ground
state energy are associated (within linear response theory) with
the dynamics ofadiabaticsolvation on the ground state potential
surface, while, as implied by eq 3, fluctuations in the energy
gap between two states affect the nonadiabatic transition
between these states. If these were the only relevant quantities,
we could deduce from the above observations that adiabatic
solvation in simple solvents is strongly sensitive to the solvent
moment of inertiaI (e.g. to the hydrogen mass when water is
the solvent) while nonadiabatic solvation is more sensitive to
the overall molecular mass.
In fact, there are two additional factors affecting the

dependence of the nonadiabatic transition on the molecular
moment of inerta, i.e. to the individual masses of the atomic
constituents of the molecular solvent: First, the nonadiabatic
coupling VNA depends on the angular and linear nuclear
velocities of these atomic constituents, and therefore on their
masses, and secondly, the solvent contribution to the Franck-
Condon factor also depends on the nuclear masses (which affect
the tails of the vibrational and librational wave functions).
Schwartz et al.10c have argued that a near cancellation of these
two effects for the p-s transition of the hydrated electron is
the source for the near insensitivity of this process to hydrogen
isotopic substitution. It is important to note that there are in
fact two cancellation effects: one between the correlated
fluctuations of the ground and excited states of the solvated
electron which makes the gap fluctuations weakly dependent
on the solvent moment of inertia and another between the
solvent nuclear mass dependence of the nonadiabatic coupling
and between the solvent contribution to the Franck-Condon
factor as discussed in ref 10c. It should also be noted that the
almost complete cancellation of these dependencies in the case
of the pf s transition of the hydrated electron is accidental,
and similar processes in other solvents may show a bigger
hydrogen isotope effect.

6. Conclusions

We have investigated electron solvation and the dynamics
of the electron’s energy level fluctuations in a simple model
solvent, as functions of several solvent parameters. For the
solvation process, a transition from a quantum localization
process to a largely classical electrostatic stabilization is
observed as the solvent polarity is increased from zero. The
dynamics of energy level fluctuations reveals an interesting
interplay between solvent rotational and translational modes.
Individual level fluctuations are dominated by solvent rotational
and librational motions and are therefore sensitive to the solvent
molecular moment of inertia. These effects nearly cancel in
the fluctuations of energydifferences(electronic energy gaps),
making these gap fluctuations more sensitive to solvent transla-
tions, i.e. to solvent molecular mass. We have argued that this
is one of the factors that makes the nonadiabatic pf s relaxation
of the hydrated electron nearly insensitive to hydrogen isotope
substitution.

Acknowledgment. This research was supported in part by
the Israel Science foundation and by the U.S.A.-Israel binational

science foundation. P.G. is thankful to the Minerva-Stiftung
for a postdoctoral fellowship. A.N. thanks the Alexander von
Humboldt-Stiftung for an Humboldt research award that has
made possible his stay in Germany and the MPI fu¨r Astrophysik
for hospitality during the period when this work was done.

Appendix A. Interaction Potentials

(a) Intermolecular Interaction. The intermolecular Stock-
mayer potential (VSTM), together with the boundary conditions
used in our simulations, is given by the sum of a Lennard-Jones
potential with spherical cut off (VLJ) and a dipole-dipole
potential with tapered reaction field boundary condition (VDD)

with

and

whereRi are the positions of classical particles,µi are their
dipole moment vectors, andε and σ are the Lennard-Jones
potential parameters.Rc is the inner system radius andε′ is
the exterior dielectric constant used for the reaction field
boundary condition.Reff andRs are parameters used for tapering
the cut off in the long range dipole-dipole interaction. Finally,
Rij ) Ri - Rj andRij ) |Rij|.
For all cases the maximum value for the spherical cut off

radius was chosen, i.e.Rc ) L/2 with L denoting the cubic box
length. For the chosen linear tapering function (see ref 16),
the effective spherical cut off radius of the reaction field
boundary condition is given by

The onset radius for tapering the electrostatic interactions was
chosen, following ref 16, according toRs ) 0.95Rc.
(b) Electron Solvent Interaction. The effective potential

(Ve,S) for the interaction of an electron with a classical solvent
particle was taken, following ref 22, as a sum of a short range
repulsive potential with spherical cut off (V(s)) and a switched
long range charge-dipole potential with tapered reaction field
boundary condition (V(l))

with

VSTM(Rij,µi,µj) ) VLJ(Rij) + VDD(Rij,µi,µj) (A1)

VLJ(Rij) ) 4ε[( σ
Rij)

12
- ( σ

Rij)
6]θ(Rc - Rij) (A2)

VDD(Rij,µi,µj) ) [( 1Rij3 -
2(ε′ - 1)

(2ε′ + 1)Reff
3 )(µiµj) -

3(Rijµi)(Rijµj)

Rij
5 ]τ(Rc - Rij

Rc - Rs) (A3)

θ(ø) ) {1 0e ø
0 ø < 0

(A4)

τ(ø) ) {1 1e ø
ø 0< ø < 1
0 ø e 0

(A5)

Reff
3 ) Rs

3 + 3
Rc - Rs

(Rc412+
Rs
4

4
-
RcRs

3

3 ) (A6)

Ve,S(rej,µj) ) V(s)(rej) + V(l)(rej,µj) (A7)

V(s)(rej) ) A exp[-(rejl )6]θ(Rc - rej) (A8)
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and

where re is the position of the electron.A and l are the
amplitude and the range of the repulsive part of the electron
solvent interaction.qe is the charge of the electron. As before,
rej ) re - Rj and rej ) |rej|.
For all cases the range of the repulsive potential was chosen

according tol ) σ/2, whereσ is the corresponding Lennard-
Jones parameter.
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