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The phenomenology of electron solvation in polar solvents is studied by investigating the characteristics of
electron solvation in a model polar solvent, a Stockmayer liquid characterized by a combination of Lennard-
Jones and dipolar intermolecular interactions which interacts with the electron with a combination of short
range repulsive and of electrostatic (dipetsharge) interactions. Energetics and dynamical properties of the
solvated electron are studied as functions of the solvent density and of solvent molecular parameters which
determine the electron solvent interaction and the solvent dynamical response. We find that electron localization
in this solvent is caused primarily by the repulsive part of the eleetsmivent interaction. Upon increasing

the solvent molecular dipole from zero, the electron becomes more localized; however, this effect seems to
saturate at moderate solvent polarities, and further increase of the polarity changes the ground (and excited)
state energies without affecting strongly the electron size. In this regime the electron behaves approximately
like a classical charge distribution as far as the dependence of its solvation energy on the solvent polarity is
concerned. The dynamical response of the solvent to the solvated electron is investigated by studying the
solvent-induced fluctuations of the electron’s energy levels. As expected we find that fluctuations in the
ground and excited state energies are dominated by the electrostatic part of the eksarent interaction,

and their dynamics therefore reflects the solvent rotational motion. Surprisingly, however, the electrostatic
contributions mostly cancel in the fluctuations of the gap between the ground and first excited state.
Consequently the gap fluctuations are dominated by the solvent translational motions. The implications of
these observations on the dynamics of electron solvation are discussed.

1. Introduction of the solvated electron in its already formed solvent cavity.

The process is thus essentially quantum mechanical. The same
nonadiabatic transition can be probed directly by monitoring
the relaxation following photoexcitation of the solvated elec-

Recent studies of solvation dynamics in polar liquids may
be divided into two categories. On one hand, intensive work
has been carried out in order to elucidate the nature of the 8
solvent dynamical response to a sudden change (usually induced©"" ) ) ] )
by an optical transition) in the solute charge distribuion. ~ While the nature of the solvent motions which dominate
Theoretical studies of such processes have assumed that thgolvation dynamics in polar solvents has been addressed in
process is classical in nature: the dynamics of charge rear-Several studiek; this issue has not been explicitly raised with
rangement in the solute (itself a quantum process) is assumed€SPect to electron solvation. Itis first important to distinguish
to be instantaneous on the observable time scale, and thebetween adiabatic solvation (processes which occur on a single
consequent solvent motion is treated using classical mechanicslectronic state) and nonadiabatic relaxation as described above.
and electrostatics. The underlying assumption (confirmed by Adiabatic solvation can be generated in computer simulations
numerical simulations) is that solvent intramolecular vibrations Yy confining the electron to a single electronic state throughout
(for which classical mechanics is questionable at room temper- the relaxation, but the corresponding dynamics is an important
ature) do not play an important role in the solvation process. ingredient also of the nonadiabatic relaxation, since it determines
Theoretical studies and numerical simulations of such processeghe fluctuations of the energy gaps between the electronic states.
have yielded important information about the nature of solvation Barnett et af have pointed out that the short time component
dynamics in simple polar solvents. In particular, the existence of the adiabatichydration dynamics of an electron is sensitive
of an important inertial ultrafast component in the solvation to H—D substitution, indicating that librational motions of the
processes was discoveretland the predominance of solvent Water hydrogens as well as H-bond dynamics dominate this part
rotational and librational motions has been establigked. of the solvation. In fact, this process is very similar to the

On the other hand, electron solvation has also been the focusclassical dynamics which takes place following the sudden
of a considerable amount of recent work. In a typical experi- generation of an anion of size similar to the final size of the
ment the formation of the solvated electron following electron hydrated electron~2 A). More detailed studies have been
injection into, e.g., water is monitoréd.Such experiments  carried out by Rossky and co-workéPsIn particular Schwartz
together with numerical simulations have established that anand Rossk}f2have recently performed numerical simulations
important route to the formation of the fully solvated electron Of electron hydration dynamics in the ground state as well as

involves as a rate-determining step tienadiabatictransition ~ in the excited (p-like) state manifold of the hydrated electron,
from the lowest excited (“p-like”) to the ground (“s-like”) state  using a flexible SPC water model together with an electron water

pseudopotential developed by Schnitker and Rossk¥hey
€ Abstract published irAdvance ACS Abstract$yovember 1, 1996. have concluded that low-frequency translational motions of the
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solvent play an important role in both the inertial and the denotes thermal averaging. In eq 3 the noncommutativity

diffusive portions of the relaxation. This observation is related between the electronic potential operators evaluated at different
to the fact that unlike in the solvation process which follows times was disregarded. A second-order cumulant expansion
the instantaneous change in the charge distribution of classical(exact ifw(t) is a Gaussian stochastic process) can then be used
solutes, much of the local change in the solvation structure aboutto expresskya in terms of the gap correlation functiof(t),

a solvating electron is associated with a significant change in leading td*1°

size and shape of the electron upon change in its quantum state.
2

Another important observation is that for this system the solvent Vna
linear response function Kna = 72 expliM,(t) — My(t)]
__[BU()sum)D .
C(t) = 100D @ My(t) = [} dt' [ (t)0 (3b)
i i t ! t' H I ! n !
whereU(t) is the value of the quantum energy gap at time M,(t) = ﬁ) dt f; dt' (") w(t') - (") Ib ()]

andoU(t) = U(t) — MWOrepresents the fluctuation of the gap
from its equilibrium average value, provides a good approxima-

tion to the nonequilibrium response function Neria and Nitzahhave pointed out that in addition to the gap

fluctuations, the quantum nature of the solvent may contribute

W(t)L], — [W(eo)[] by affecting the FranckCondon factor associated with the
Sty = = ‘ ®) transition. Very recently, Schwartz et’8f.have invoked this
W(O)e — MW() e idea to explain the apparent lack ofHD isotope effect on the

o p — s relaxation of the hydrated electrdf. Still, the gap

where thell4e denotes a nonequilibrium ensemble average.  fjyctuations are the dominant factor affecting the overall rate

The importance of solvent translational modes in electron of the nonadiabatic process, and understanding the way they
hydration dynamics has been highlighted by a recent suggestione influenced by different solvent motions is therefore of central
by Rips? that the rate-determining step in the formation of the jmportance in understanding the solvent effect on the electron
ground state solvated electron is not the nonadiabatie g solvation process.
transition but the compression of the cavity toward its final size. | this paper we investigate numerically the effect of a
Rips has shown that, assuming that water is essentially cjassical solvent on a quantum solute, focusing on the interplay
incompressible, the time scale associated with this process ispetween the short range repulsive and the long range electrostatic
comparable to that observed experimentally. Furthermore, theg|ectron-solvent interactions and on the relative roles played
dominance of wateranslationalmotion explains in this model  py solvent translational and rotation/librational modes. Since
the observed smallness oHD isotope effect on the relaxation e emphasize generic issues we use a generic model solvent:
rate?>#"® Rips’ simplistic picture is not confirmed by numerical 5 sockmayer solvent (Lennard-Jones spheres with point dipoles
simulations; however, it also emphasizes the role of solvent j, thejr centers) whose mass and moment of inertia are chosen
translations as an important ingredient in the electron solvation independently. Comparing results obtained for different sets
process. Furthermore, solvent translations associated with thegs these solvent parameters, we can determine the relative
formation of the solvation cavity (e.g. the “electron bubble” in  jjportance of solvent rotational and translational motions in

liquid He') are expected to constitute a major ingredient in the rejaxation processes that determine electron solvation.
electron solvation processes in nonpolar fluids.

From the point of view of general methodology, electrons 2. Technical Details
provide a unique probe in solvation dynamics studies for three . . .
reasons: First, the nonadiabatic nature of the actual solvation OUr solvent is a generic Stockmayer solvent, characterized
process as discussed above provides an important example of & intermolecular Lennard-Jones plus dipetépole inter-
solvation process dominated by quantum mechanical effects.@ctions. These interactions are determined by three param-
Secondly, the considerable shape and size changes associatéders: the Lennard-Jones energy and length parametars]
with the electron dynamics constitute another unique ingredient @ @nd the molecular dipolg.. In addition, the solvent
in this solvation process. Finally, the charge distribution dynamical properties depend on its molecular missand
changes in a way different from that of most probes: upon s to moment of inertial, which are varlec_i independently in the
p excitation this change would correspond to the sudden Presentstudy, as well as on the dengignd temperaturé. A
formation of a quadrupole if these states were of exact s and ptyplcal S|mulat¢d system con5|sts_of 100 such classical part_lcles
characters. This is another factor which enhances the impor-2t T = 240 K, na cubic box of size 39.52 au (corresponding
tance of solvent translational modes in this solvation process© 1:09 x 10?2 particles/c, the density of MeCl at this
because of the relative short range of the interaction. temperature) Wlth reaction field boundary condltléﬁs.:or the

The rate of a nonadiabatic transition between two electronic €l€ctron-solvent interaction we also take a generic form: a sum
states in condensed phases is closely related to the dynamich electrostatlc interaction and short range repulsive terms. The
of theadiabaticfluctuations of the energy gap between the two OMer is determined by the electron charge and the solvent
states. For example, a simple semiclassical perturbative expresdiPole. The latter is taken, following Zhu and Cukiétto be
sion for the nonadiabatic rate in terms of the gap fluctuations ©f the form
is given by+15

VO = A ex;{—(lf)el (@)

Detailed forms of all interaction terms including those imposed
by the reaction field boundary conditions, together with the
where Vya is the nonadiabatic coupling between the two proper cutoffs imposed by the chosen system size, are provided
electronic stateshw is the fluctuating energy gap, arid3 in Appendix A.

Vial® e .
= 8L pl o diG e (3a)
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TABLE 1: Dependence of the Ground State EnergyEg,
Ground State Gyration Radius, Ry, and the First Electronic
Energy Gap on Some Solvent Parametefs
u p o E;(eV)  Ry(eV)  AE(eV)
* ) 0 1.0 1.0 1.19 3.28 0.81
? 1A 1.0 1.0 1.0 —0.33 2.87 1.09
A "{l bt 14 10 10 —0.64 2.87 1.10
'R 10 09 10  -033 3.12 0.91
LRk 10 11 10 -0.31 2.68 1.27
| J [ % 1.0 1.0 0.97 —0.38 3.01 0.98
fra % 1.0 10 103  —0.28 2.73 121
A
| { \.;" ! H aThe solvent molecular dipole momenmnt its densityp, and its LJ
/ ! WI \ : diametero are given relative to the corresponding values of MeCl (see
V’ ',' A L‘ 3 text).
' ,,f A |I"~ the electron binding to the solvent and on the electronic energy
I} fi lv{ Lo levels and the effect of changing solvent mass and moment of
30 05 00 05 : 1o :;‘ 2'5 inertia (i.e. changing the characteristics of the solvent transla-
’ ’ e'nerg'y (eV) ’ ’ tional and rotational motions) on the dynamics of electron

) o ) solvation.
Figure 1. Distributions of the ground and the three lowest excited

states energies of the solvated electron in a Stockmayer solvent with
MeCl parameters. Data are obtained from a 100 ps ground state
trajectory. Previous numerical investigations of the solvated electron
have focused on particular solvent models such as water,

In what follows, unless otherwise stated, atomic units are usedammonia, simple hydrocarbons, and rare gases. The ground
for energy, length, and charge, and (1/12)carbon-mass is takerstate properties of the solvated electron and the associated
as the mass unit. Correspondingly, the time unitnid?/[E] /2 solvent structure have been investigated for models of these
=1.033x 10 '°s. The classical time evolution is carried out fluids using numerical simulations as well as theoretical
using the velocity Verlet algorithm, with a time st&yp < 1.14. treatments based on the RISM-polaron thébayd on the mean
Our starting model parameters correspond to the methyl chloridefield approximatior?:22 Our generic model contains the main
(MeCl) solvent, with molecular mass and dipole momigint= characteristics of a polar solvent in which the electron experi-
50 andu = 0.7357, respectively, and LJ parameters 6.175 ences a combination of short range repulsive and of electrostatic
x 10~ ando = 7.937. The constraint on the magnitude of the interactions and can be continuously transformed into a nonpolar
molecular dipole (see ref 3) is kept using the Rattle algorithm.  solvent by taking the molecular dipoleto be zero. Here we
Temperature control is achieved by imposing thermal collisions examine the effect of the electresolvent interaction on the
on the solvent particles (Andersen’s mettd The quantum energetic characteristics and on the localization properties of
propagation is carried out within the adiabatic simulation the solvated electron. In particular we focus on the average
schemée? the electron is restricted to a particular quantum state ground state enerdyy and localization radiuBy = [[Wg|r? W40
throughout the evolution. The electronic wave function is — [W|r|Wy@3]2 and on the energy gap between the ground
defined on a 18 grid, with grid spacing 2.0625. With this  and first excited state. Table 1 shows the effect on these
choice we obviously restrict ourselves to states which are well quantities of changing the dipole momentthe densityp, and
localized inside the grid. The exterior dielectric constant used the diameters of the solvent molecules. Note that also
for the reaction field boundary condition is determined self- determines the short range electron solvent interaction (4) by
consistently by computing the dielectric response of the = ¢/2. It is seen that a moderate change in the polar fluid
simulated sample. For the MeCl solveht='17. The quantum  density makes a relatively small change on the total electronic
states and energies are obtained using an iterative block-Lanczognergies. This, however, results from the compensating effect
method, using FFT in the calculation of the Hamiltonian of changing the magnitudes of both the (positive) kinetic energy
operation. The calculation of average energies (and, in principle, and the (negative) potential energy components. The ground
spectra) is achieved by obtaining the electronic energy levels state energy as well as the ground state gyration radius are very
(and dipole matrix elements) for an ensemble of equilibrium sensitive to the solvent molecular dipole. This dependence is
system configurations. Adiabatic time evolution on file strong for smalk and seems to saturate at some transition value
electronic state is carried out by propagating the classical solventy, (see Figure 2). Far > u; the electron’s wave function (and
under the potentidVso-sol + [(WilVel-sol Wil re-evaluating the  R;) becomes relatively independent of and the main effect
stateW; at each classical step according to the instantaneousof changingu is associated with the classical response of a given
solvent configuration. charge distribution to a changing electrostatic fi€&dFor this

As a starting point for the following numerical investigation reason the magnitude of the electronic energy gap hardly
we take the Stockmayer solvent with methyl chloride param- changes, while the ground state energy changes by a factor of
eters, in which classical solvation dynamics has been extensively~2 whenu changes from the MeCl value (0.736) to the water
studied. The short range electron solvent interaction parametersralue (1.03). It should be added that increasing the molecular
are taken to beA = 1 au andl = /2. The equilibrium dipole of the pure solvent fropa = 0 to the MeCl value causes
distributions of the ground and the three lowest excited statesa reduction in pressure in the simulated constant volume system.
energies of the electron in this solvent are shown in Figure 1. For our MeCl model this would amount to increasing the density
The ground state distribution peaks-at-0.35 eV and has a by ~5—10% if the pressure was to be kept constant. Therefore
width of ~0.25 eV. The excited states associated with the the effect on the electron’s energy levels of increasing the
ground state cavity have positive energies, in the range 0.3 solvent molecular dipole from zerat constant pressurés
1.8 eV. In the following sections we examine the effect of expected to be considerably larger than for the corresponding
changing the character of the electresolvent interaction on constant volume system.

3. Energetics
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3.4 TABLE 2: Parameter Sets Used in the Simulations of
Dynamical Responsg
33 | case M I p = l/(2Ma?)
’ I M1 261.7 119.8 0.0036
“MeClI” 50 119.8 0.019
32| M2 3.80 119.8 0.25
11 50 22.7 0.0036
= K 12 50 1574.9 0.25
— 31 1 a“MeCl” denotes the parameter set associated with the Stockmayer
' model of methyl chloride. M1 and M2 are similar sets with different
- solvent mass. 11 and 12 are similar sets with different solvent moment
3.0f of inertia.
20l }: ] variation of | variation of M
(@ Gy d  Cu1)
2.8 B
0.0 0.5 1.0 15 20 2.5

dipole moment (Debye) ' 0s os

|

|
Figure 2. Localization radius, radiuBy = [[Wq|r3|Wo— [Wyr| WAV, 'l
of the solvated electron as a function of solvent polarity expressed in ll
terms of its molecular dipole moment. The error bars reflects the |
accuracy of the calculation based on averages calculated from five ,, 00 ‘l
independent trajectories. N v

These results are consistent with the observations of Zhuand [\ (b)  Cw(® (e)  Cul®)
Cukier?? who have noted that even for strong polar solvents ||
like water the electron remains localized (with a localization os|! \ 0s
size of the same order) when the electrostatic interactions are | \
switched off. In fact, the mean field calculation by these authors \
shows almost no effect of the electrostatic forces on the ground _,| N —

0.0

state size; however, numerical results based on the SPC water | i |~ <
model shows a stronger effect (13% increaseRj upon AN
switching off the electrostatic interactions), comparable to the 1o[x==
results of the present Stockmayer model. In any case these o (o) Cu®)
calculations show the crucial role played by the short range N
repulsive forces in determining the structure of the solvated AN
electron. o5} N
Finally, the electronic energies seem to be quite sensitive to AN
the molecular diameter. This is probably a consequence of N
the fact that when the nearest electr@olvent distance | * N\
decreases, the electrostatic attraction which shifts the electronic ‘ ~=
energies downward becomes more prominent.

[ 500 1000 1500 2000 [} 500 1000 1500 2000
time (fs) time (fs)

4. Dynamics of Levels and Gap Fluctuations Figure 3. Time correlation functions of the pure solvents: (a) and (d)
center of mass velocity correlation functi@q(t); (b) and (e) angular
While adiabatic simulations restrict the electron to a single velocity correlation functionC,(t); (c) and (f) orientation correlation
guantum level, the information obtained from such simulations function, C.(t). In a-c M = 50 and the molecular moment of inertia
can be used to calculate nonadiabatic transition rates in the smaliS ¢hanged; dashed line, full line, and dotted line corresponid=to
electron-solvent coupling. Here we study the effect of different 12749, 119.8, and 22.7, respectively. infd = 119.8 and the solvent
. . - . . molecular mass is varied, and dashed, full and dotted lines correspond
solvent motions on these dynamical fluctuations. AtisSUe is 1\ = 380, 50, and 261.7, respectively. Note that the full lines
the relative importance of solvent translational and rotational correspond to the “standard” MeCl parameters. Therefore the full lines
degrees of freedorf. Starting from the MeCl parametehd in the corresponding left and right figures are identical.
= 50 andl = 119.8 we have studied the effect of changMg
and! on the dynamics of the solvent-induced fluctuations in orientationC,(t) = [&(0)-p(t)lu?. Figure 4 shows the Fourier
the electronic energy levels, on the energy gap between thetransforms,C(w) = /., dt cost) C(t), of the velocity and
ground and the first excited state, and on the size (estimated byangular velocity correlation functions. Obviously, increasing
the gyration radius) of the solvated electron. Table 2 sum- M suppresses the translational contributions, while incredsing
marizes the different sets of parameters used in these calculasuppresses the rotational contributions to the solvent dynamics.
tions. Figures 5 show the normalized time correlation functions for
The ratiop provides an estimate of the relative importance ground state energy fluctuations. Also given are the averages
of rotational and translational motions in the solvent dynamics. [E0 and the standard deviation®E2¥2 of the different
The effects of these different choices of parameter sets on thecomponents of the electronic energy. Note that these numbers
pure solvent dynamics are shown in Figures 3 and 4. Figure 3should not depend oM and|. Shown are the correlation
shows the normalized time correlation functions of the solvent functions for the total electronic energy, together with its
velocity, C,(t) = I¥(0)-v(t)Z°[] and the angular velocity, potential and kinetic energy components. The following
Cu(t) = DO)w(t)IOWO(w = i), and also of the dipole  observations can be made: (a) The fluctuations in the total
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variation of | variation of M variation of | variation of M
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] (b)  Cylw) (@  Cylw) K
1500 |'| 1500 0.0 0.0 /4 ___
l\\ \_//
f | 10§ 1.0
1000 f| \ 1000 (h) Elong
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. N e o 0.0 TN 0.0 74 —-——
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angular frequency ((s") angular frequency (fs") 1.0 1.0 e
Figure 4. Fourier transforms of the velocity and angular velocity (d) Eshon \ 0] Eshont
correlation functions shown in Figure 3. Line notation is the same as |
in Figure 3. 0.5 05 \\
ground state energy are much more sensitive to the solvent \\ A\
moment of inertia than to its mass (compare parts a and f of o0 S —=4 00 — e
Figure 5), indicating that solvent rotations are dominant in this e
dynamics. (b) The kinetic energy fluctuations show the " e \ () E
expected sensitivity to the solvent mass (Figure 5j), i.e. to the \ kin
solvent translations. (c) Thehort rangepart of the potential 05 os)\
energy behaves very similarly to the kinetic energy (Figure 5i,j); \\
however, the long range electrostatic part of the potential energy e e
dominates the total energy fluctuations, which are therefore *° 00 S—T T =T
nearly insensitive to the solvent mass. Comparing parts d, e

and i, j of Figure 5 shows the strong correlation between the ° %% ﬁn;°e°2fs) 1500 20000 500 “n‘,"em(),s) 1500 2000

kinetic energy and the short range potential energy fluctuations. _. . . .
The strong correlation between these quantities can be realize igure 5. Time correlation functions of the ground state energy

. . luctuations, for the total enerdsio, the potential energf,o: and its
also by computing cross correlations such [8EindVsnort! long (Eiong) @nd short Esnor) range components, and the kinetic energy
[[DEyin?dVsnor?dM2 (this yields 0.95, 0.92, 0.90, and 0.88 for  E,. Line notations are as in Figures 3 and 4. The averages and the
the four lowest states of the solvated electron). A similar picture standard deviations of the displayed quantities are (in eff); =
is obtained if instead of fluctuations in the electron kinetic (-0.33, 0.17),Epot = (—1.59, 0.20),Eong = (—1.82, 0.21) Espon =
energy we take the electron gyration radius as a measure of jts(0-22, 0.031) andan = (1'272' 2'095)' where the first number U
size. Similarly, parts b, ¢c and g, h of Figure 5 show that the and the second number BE*T3"
potential energy fluctuations are dominated by the long range the solvent via the same short range interaction and the
electrostatic component. The qualitative picture that emergeselectrostatic force associated with this frozen charge distribution.
from these observations is as follows: The short range part of Obviously no kinetic energy fluctuations associated with cavity
the electror-solvent interaction acts via solvent translational size exist in this model which is similar to those used to study
modes as a source for fluctuations in the cavity size. Such classical solvation. Figure 6 shows the corresponding time
fluctuations correspond to high correlation between the kinetic correlation functions. We note thtiite total energy fluctuations
and the short range contribution to the potential energy. The in this classical system areery similar to those in the quantum
total energy fluctuations are dominated by the substantially case, een though the different components of the potential
larger long range electrostatic part of the electrenlvent energy appear differerfcompare Figures 5 and 6).
potential, which is sensitive mainly to solvent rotations and  This behavior can be understood from first-order perturbation
affects the potential energy without strongly influencing the theory: Let the electronic Hamiltonian bé= Hp + 6V where
kinetic energy. As will be seen below, this component of the dV denotes the fluctuations in the potential associated with the
solvent-induced electronic potential energy affects all energy solvent motion. Let/, be an eigenfunction dflp corresponding
levels of the lower lying states in an approximately similar way, to the energyEy, HoWo = EqWo, andW = W, + 0¥ be an
and its contribution to the gap energy difference is therefore eigenfunction oH with the eigenvalu&, HY = EW, whereE
small. = Ey + OE. Now compare the energy of this system to the

It is interesting to compare this picture with the processes energy of a system where the electron behaves as a classical

that occur in the classical counterpart of the present system.particle whose interaction with the solvent is determined by the
This classical counterpart may be obtained by replacing the frozen distributionWy|2, assuming that in either case the set
electronic charge distribution by a frozen distribution (which motion is the samé.e. 0V is the same; deviations from this
corresponds to one instantaneous solvent configuration) and therassumption appear only in higher than first order in perturbation
treating the electron as a classical particle that interacts with theory). To first order the fluctuatiodE in the total energy is
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Figure 6. Same as in Figure 5 for the case where the electron’s charge °® 0s \\
distribution is held fixed and invariable under the solvent time evolution. \
Line notation are as in Figures-5. \ e
0.0 00 N _— T~ ——]
given to bedE = [Wo|0V|Wol) the same in both cases. The

. . . . . . (1] 500 000 500 2000 0 00 000 00
kinetic energy component in this fluctuation is, however, zero m:.e (fs) k ’ tlnile (fs) 100 =0

in the classical (frozen electron distribution) case and different _. . . . .
from zero in the quantum case. For example, suppose that the':-Igure 7. Time correlation functions for the-6l energy gap and its
: . different components. Line notations are as in Figure$.3 The

electron-solvent interaction can be modeled as a stir Vi averages and the standard deviations of the displayed quantities are
+ V, of a position independent terkh and a cavity ternv, of (in eV): AEw = (1.09, 0.12) AEyq = (0.28, 0.063) AEjong = (0.16,
the form Vs = Yomew?r2. The thermal motion of the solvent  0.073), AEshon = (0.12, 0.037), and\Eyin = (0.81, 0.11), where the
results in a fluctuating/, oV = 6Vi + V.. Suppose that the  first number istAECand the second number i8(AE)* Y2
fluctuationdV; results only from a change in the cavity curvature
, so that the cavity remains harmonic. For this madel= dominated by theshort range part of the electrersolvent
[WoloV1 + OV Wol(to first order); however, in the quantum interaction. A similar pattern is seen in the fluctuations of the
casedEpot = (Wo|0V1 + Y20V, WollANdSExin = [Wo| Y20 V2| Wol) 0—2 and 0G-3 gaps. It should be noted that an important
while in the classical (frozen) cas&yor = Wo|OV1 + OV2|Woll contribution to this observation is the fact that the solute charge
and 0Exn = 0. as well as its average dipole moment is the same for all states

The fact thadE is the same in the classical case and (within considered. This makes the relatively short range quadrupole
first-order perturbation theory) in the quantum case, together moment of the distributionWs|> — [Wy|2 the main source of
with the apparent success of linear response theory for thisélectrostatic energy contribution to the gap fluctuations. It

system, is consistent with the observation that aldéabatic should be also noted that the dominance of the short range part
solvation dynamics of an electron is very similar to that Of the electron-solvent interaction in the gap fluctuations
computed for a classical anion of comparable $fze. implies that dielectric continuum theories (which take into

The observations concerning the relative importance of accountonly the electrostatic interactions) cannot be applicable
solvent translational and rotational modes largely repeat them-to the dynamical response.
selves when the adiabatic motion on the excited states is To summarize, we have observed that the fluctuations of
considered. However, the fluctuations in the electronic energy electron’s energy levels are largely dominated by its long range
gap behave in gualitatively different way. In Figure 7 the  electrostatic interaction with the solvent; therefore, the dynamics
normalized time correlation functions for the fluctuations of the of these fluctuations is largely controlled by the solvent
0—1 energy gap (between the ground and the first excited levelsrotational and librational motions. On the other hand thd. 0
of the solvated electron) are displayed. Clearly the gap electronic energy gap (as well as the®Dand G-3 gaps) is
fluctuations are much more sensitive to the solvent mass thanmore sensitive to the short range part of the electsivent
to the solvent moment of inertia, indicating that the solvent system, and consequently its dynamics is dominated by the
translational modes are dominant in the variations of this solvent translational motion. For a classical particle with a
quantity. At the same time these fluctuations are largely frozen charge distribution taken from an instantaneous electron
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wave function, the total energy fluctuations are very similar to science foundation. P.G. is thankful to the Minerva-Stiftung
that associated with a quantum electron even though thefor a postdoctoral fellowship. A.N. thanks the Alexander von
individual kinetic and potential energy differences are quite Humboldt-Stiftung for an Humboldt research award that has
different in the two cases. made possible his stay in Germany and the MPIAstrophysik

for hospitality during the period when this work was done.
5. Implications for Electron Solvation Dynamics

The fluctuations in the individual electronic energy levels and Appendix A. - Interaction Potentials

fluctuations in the gaps between them are relevant to different  (a) Intermolecular Interaction. The intermolecular Stock-
physical observables. For example, fluctuations in the ground mayer potential (S™), together with the boundary conditions
state energy are associated (within linear response theory) withused in our simulations, is given by the sum of a Lennard-Jones
the dynamics odiabaticsolvation on the ground state potential potential with spherical cut off\()) and a dipole-dipole
surface, while, as implied by eq 3, fluctuations in the energy potential with tapered reaction field boundary conditia®R)
gap between two states affect the nonadiabatic transition
between these states. If these were the only relevant quantities, VEMR, i) = VOR) + VPR ) (AD)
we could deduce from the above observations that adiabatic
solvation in simple solvents is strongly sensitive to the solvent with
moment of inertid (e.g. to the hydrogen mass when water is
) ; . o ” o\2 [o)\6

the solvent) while nonadiabatic solvation is more sensitive to \/‘-J(R_) = 46[(_) — (_) ]Q(RC -R) (A2)
the overall molecular mass. ' R; R; .

In fact, there are two additional factors affecting the

dependence of the nonadiabatic transition on the moIecuIarVDD(R“ ) = 1 2 —1) (up) —

moment of inerta, i.e. to the individual masses of the atomic L R (2¢ + 1R, "

constituents of the molecular solvent: First, the nonadiabatic I

coupling Vna depends on the angular and linear nuclear 3(Rijl“i)(Rii'”J) - R.— R (A3)
velocities of these atomic constituents, and therefore on their R? R.— R
masses, and secondly, the solvent contribution to the Franck

Condon factor also depends on the nuclear masses (which affecgnd

the tails of the vibrational and librational wave functions).

Schwartz et al° have argued that a near cancellation of these 0(y) = { 1 0=y (A4)
two effects for the p-s transition of the hydrated electron is 0 ¥ <0

the source for the near insensitivity of this process to hydrogen 1 1<

isotopic substitution. It is important to note that there are in =X

fact two cancellation effects: one between the correlated ) =\« O<y=<1 (AS)
fluctuations of the ground and excited states of the solvated 0 x=0

electron which makes the gap fluctuations weakly dependentwhere R; are the positions of classical particlgs, are their

on the solvent moment of inertia and another between the dipole moment vectors, and and o are the Lennard-Jones
solvent nuclear mass dependence of the nonadiabatic couplingpotential parametersR; is the inner system radius ard is
and between the solvent contribution to the FranClondon the exterior dielectric constant used for the reaction field
factor as discussed in ref 10c. It should also be noted that theboundary condition.Re andRs are parameters used for tapering
almost complete cancellation of these dependencies in the casehe cut off in the long range dipotedipole interaction. Finally,

of the p— s transition of the hydrated electron is accidental, R;j = Ri — R; andR; = |Rjj|.

and similar processes in other solvents may show a bigger For all cases the maximum value for the spherical cut off

hydrogen isotope effect. radius was chosen, i.8 = L/2 with L denoting the cubic box
length. For the chosen linear tapering function (see ref 16),
6. Conclusions the effective spherical cut off radius of the reaction field

We have investigated electron solvation and the dynamics boundary condition is given by

of the electron’s energy level fluctuations in a simple model Rﬁ Ri R§

solvent, as functions of several solvent parameters. For the Rg — R§+ 3 (_ +-S_ R ) (A6)
. . . . f

solvation process, a transition from a quantum localization R —R\12 4 3

process to a largely classical electrostatic stabilization is

observed as the solvent polarity is increased from zero. The The onset radius for tapering the electrostatic interactions was
dynamics of energy level fluctuations reveals an interesting chosen, following ref 16, according & = 0.9R..

interplay between solvent rotational and translational modes. (b) Electron Solvent Interaction. The effective potential
Individual level fluctuations are dominated by solvent rotational (V*) for the interaction of an electron with a classical solvent
and librational motions and are therefore sensitive to the solventparticle was taken, following ref 22, as a sum of a short range
molecular moment of inertia. These effects nearly cancel in repulsive potential with spherical cut of#¢) and a switched
the fluctuations of energglifferencegelectronic energy gaps), long range chargedipole potential with tapered reaction field
making these gap fluctuations more sensitive to solvent transla-boundary condition\()

tions, i.e. to solvent molecular mass. We have argued that this

is one of the factors that makes the nonadiabatie prelaxation Ve ga) = V(rg) + VO(r g ) (A7)

of the hydrated electron nearly insensitive to hydrogen isotope

substitution. with
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VO(r ) = qe(il M)(rej”j)f(%)r(ﬁ
ff,

¢+ 1R R—R
(A9)
and
f(x) = 1 — exp[~°] (A10)

where re is the position of the electronA and | are the

amplitude and the range of the repulsive part of the electron
solvent interaction.ge is the charge of the electron. As before,

rg =re— Rjandrg = |rgl.
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