
Numerical simulations of electron tunneling in water
Alex Mosyak and Abraham Nitzan
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

Ronnie Kosloff
The Institute of Chemistry and the Fritz Haber Institute, The Hebrew University of Jerusalem, Israel

~Received 8 May 1995; accepted 16 August 1995!

Electron tunneling through molecular layers has long been under study in conjunction with electron
tunneling microscopy. More recently solvent effects on the tunneling matrix elements associated
with electron transfer problems and with ‘‘underwater’’ electron tunneling microscopy have come
under discussion. This paper describes the results of computer simulations of electron tunneling
through frozen water layers. A water layer~;10 Å! is confined between two electrodes, and is
equilibrated and evolved in time in order to generate an ensemble of barrier configurations. The
electron–~classical! water interaction is represented by a suitable pseudopotential. It is assumed that
the water dynamics is negligible on the time scale of the tunneling process, so tunneling is studied
for the resulting group of frozen configurations. Several numerical methods for evaluating the
transmission through such disordered barriers are described and compared. It is shown that
tunneling probabilities as low as 10210 can be calculated with sufficient accuracy. We find that
tunneling in this system cannot be described by averaging over one-dimensional paths. Furthermore,
in contrast to common practice which assumes that the barrier to tunneling may be estimated by
lowering the bare~vacuum! barrier by a magnitude associated with the electronic dielectric response
of water taken as a dielectric continuum, the simulations show that transmission is strongly reduced
due to the fact that much of the physical barrier space is blocked by the practically impenetrable
oxygen cores. The tunneling probability significantly depends on the water configuration in the
barrier, in particular on the orientational distribution of the water molecules. These observations
suggest that external variables such as temperature and electric field will affect the tunneling
through their effect on the water density and orientation, in addition to the effect of these variables
on the bare~vacuum! tunneling. © 1996 American Institute of Physics.@S0021-9606~95!50943-1#

I. INTRODUCTION

Electron tunneling in a condensed phase environment is
a very long studied subject which is usually considered
within simple one-dimensional modes involving well-defined
potential barriers and impurity~resonance! states in such bar-
riers. A substantial amount of study has also focused on dis-
ordered barriers1, and in the last decade, on the effect of
barrier dynamics on tunneling process. An important class of
processes dominated by tunneling is electron transfer. Theo-
retical treatments of these processes often focus on the ener-
getics and dynamics of the donor and acceptor levels, repre-
senting the tunneling process itself by a parameter
~‘‘electronic coupling’’! in the resulting rate expressions. In
the nonadiabtic limit such expressions take the form

ket5uJu2F, ~1!

whereJ is the ‘‘electronic coupling’’ andF contains infor-
mation associated with nuclear motion. In the Marcus2

theoryF is essentially the probability of the donor and ac-
ceptor levels becoming degenerate in the course of the
nuclear~solvent! motion. The success of this approach indi-
cates that in many cases the rate is determined primarily by
this probability, while solvent-induced variations in the mag-
nitude of the electronic coupling are apparently less impor-
tant or at least their effect is absorbed in the parameterJ. In
the language of the spin–boson model, coupling to the sol-

vent enters into the diagonal elements of the spin Hamil-
tonian and is often disregarded in the nondiagonal elements.3

Consider, however, electron transfer from a solute to a
metal electrode in cases where the donor level is far above
the electrode Fermi energyEF . In this case the solvent-
induced fluctuations in the position of the donor level rela-
tive to EF are relatively unimportant~since degeneracy be-
tween donor and acceptor always exists! and the main role of
the solvent may be in affecting the electronic wave functions.
In such situations we expect solvent effects to manifest
themselves more strongly in the nonadiabatic coupling itself.

Following Marcus2 it has become standard to treat the
solvent effect on electron transfer using a continuum dielec-
tric picture of the solvent. This approach seems reasonable
when the main solvent effect on electron transfer indeed
arises from fluctuations in the donor and acceptor energy
levels. These fluctuations are then described using the mac-
roscopic solvent polarization through the frequency-
dependent dielectric response. A related more rigorous ap-
proach is based on the spin–boson Hamiltonian, where the
parameters of the boson Hamiltonian and of the spin–boson
coupling are derived from the continuum dielectric model.
No such simplification seems physically straightforward for
the solvent effect on the nondiagonal electronic coupling, at
least in cases where this coupling is associated with a tun-
neling path which goes through the liquid. Obviously, the
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potential barrier and therefore the tunneling probability are
strongly dependent on the instantaneous solvent structure in
the space between the donor and acceptor.

The motivation for the present study comes from recent
advances in electrochemical scanning tunneling microscopy
which involves situations of the type described above. Figure
1 presents seven one-dimensional potential barriers for the
tunneling of an electron through water, together with the cor-
responding tunneling probabilities. These potentials were
calculated along the shortest~normal! path connecting two
parallel electrodes separated by 10 Å in water, for different
water configurations sampled from an equilibrium trajectory.
The corresponding vacuum potential is assumed to be a sym-
metric square well of heightV055 eV and the displayed
tunneling probabilities are calculated for the incident elec-
tron energy 3.5 eV. The water–water, water–metal, and
electron–water potential used in this calculation are de-
scribed in Sec II.

The large dispersion in the instantaneous potentials and
in the corresponding tunneling probabilities raises a question
concerning the applicability of effective continuum dielectric
models in such situations. Since the tunneling probability is
exponentially sensitive to the barrier structure, it is not even
clear whether the observed tunneling current is associated
with the average over many probable configurations or is
dominated by rare fluctuations in the barrier structure.4 In
this respect we recall that realistic electrochemical systems
involve not only water but other solvated ions that may wan-
der into the space between the tip and the electrode, creating
even larger fluctuations in the barrier potential. It should of
course be kept in mind that in reality one should consider a
three-dimensional~3D! tunneling process which, as we show
below, cannot be described by the one-dimensional~1D! po-
tential cuts displayed in Fig. 1.

The static potential surfaces shown in Fig. 1~and their
3D analogs! are relevant to the tunneling problem only if the
time scale for the tunneling process is much shorter than that
associated with the solvent motion. In typical scanning tun-
neling microscopy~STM! configurations the tunneling time
@estimated from*dx[1/v(x)] where v(x) is the imaginary
velocity and where the integral is over the tunneling path# is
of order 10216 s, so that intermolecular solvent motion may
indeed be ignored, and also the effect of intramolecular sol-
vent dynamics is expected to be small. The numerical studies
described below are based on static solvent configurations.

From the numerical point of view, simulations of tunnel-
ing processes are highly demanding since the quantity evalu-
ated is often very small and therefore highly sensitive to
numerical errors. Part of our effort in the present work is
focused on testing and comparing several algorithms for tun-
neling. We find that tunneling probabilities as low 10210 can
be evaluated reliably, provided that resonance trapping of the
tunneling particle does not take place. In the latter situation
long time transients may make the computation prohibitively
costly and/or stretch it to the limit of its numerical stability.

From the physical point of view, the role of the solvent
in such processes has long been appreciated but is still not
well understood, as exemplified by the recent debate on this

issue.5,6 Of practical importance are questions regarding the
origin of the unusually low barrier observed in ‘‘underwater’’

FIG. 1. One-dimensional potentials calculated along several straight paths
perpendicular to and connecting the two parallel electrodes of Fig. 2~a!
where the gap between the electrode contained water models is as described
in the text. The electron water pseudopotential is superposed on a bare
symmetric square potential of heightV055 eV that is assumed to exist
between the electrodes. The displayed tunneling probabilitiesP are calcu-
lated for an electron with an energy of 3.5 eV.
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STM experiments and the effect of solvent on the STM reso-
lution.

A full treatment of the electron tunneling should take
into account dynamic image effects associated with the
electron–metal interaction7 and the fast response associated
with the solvent electronic polarizability. We8 and others9

have recently considered models for tunneling through a me-
dium defined by its dielectric response, using a continuum
dielectric model characterized by given boundary conditions.
As expected, the effect of the fast electronic polarization is
found to dominate the solvent effect on the tunneling process
in this model, while the contribution of the solvent nuclear
motion is relatively small. In the present work we focus on
issues associated with the role played by the distribution of
the instantaneous configurations of the barrier. We therefore
disregard the dynamical effects of the electronic polarization
of the electrode, and assume that its effect is already in-
cluded in the given vacuum potential barrier. For the same
reason we disregard the actual geometry of the STM experi-
ment, and consider tunneling between two planar parallel
electrodes. We also assume that the solvent nuclei are frozen
on the time scale of the tunneling process. The effect of the
solvent electronic polarizability is partially taken care of by
representing it as an effective two-body potential. A simula-
tion based on a similar approach with a cruder numerical
algorithm was recently reported by Schmickler.10

The numerical codes constructed in the present work are
used to examine the sensitivity of the tunneling process to
the instantaneous solvent configuration, i.e., the instanta-
neous shapes of the barrier potential. Raikh and Ruzin4 have
suggested that such processes may be dominated by rare,
favorable barrier configurations. In order to address this is-
sue, one needs a way to generate such configurations and to
compute their probability, a task that we leave for future
work. Here we show that temperature and external field ef-
fects on the tunneling probability have a non-negligible con-
tribution, resulting from the effect of these variables on the
equilibrium distribution of barrier structures. We also study
the effect of dimensionality on the tunneling probability and,
in particular, address the validity of approximating tunneling
in three dimensions by the corresponding 1D process along
the shortest possible path, as is done in most theoretical mod-
els. Obviously this should not work for any given solvent
configuration, but we show that this procedure is invalid also
for the average~over configurations! tunneling probability.

Our physical model is described in Sec. II and a brief
description of the numerical procedures is given in Sec. III.
Section IV describes and discusses our numerical results and
Sec. V is the conclusion.

II. THE SIMULATION MODEL

The physical system simulated in this work is a rectan-
gular slab of water molecules~density 1 g/cm3! confined
along thez axis by two electrodes separated by 10 Å, and
subjected to periodic boundary conditions in the otherx and
y directions. The system size in thex and y directions is
taken to be 23.5 Å. This system contains 192 water mol-

ecules. In some of our computer experiments we have used a
system more akin to a STM setup, where a ‘‘tip’’ protrudes
into the potential barrier as seen in Fig. 2.11 The tip is taken
to be rectangular, with itsxy cross section and its protruding
length taken to be 333 Å2 and 3.3 Å, respectively.11 This
configuration was generated from the former by artificially
cutting off the barrier~both the bare barrier and the water
part! in the designated tip volume. This procedure does not
account for the real water structure near the tip, but may still
be used for our main purpose—investigating the qualitative
effect of the solvent on the transmission probability and on
the spatial resolution associated with the tunneling current.

The water configurations are generated by propagating
the water molecules under their mutual interaction together
with the confining water–wall potential. The former was
taken to be a flexible RWKM-2 water–water potential as
used in our earlier electron–water studies while the latter
was adopted from Hautmanet al.,12 a 9-3 potential:

VW~z!5
A

z9
2
B

z3
~2!

for each H and O atom, wherez is the distance from the
surface, with the parametersA andB chosen to fit a spherical
water–gold surface interaction. As described below, this po-
tential was sometimes modified in order to examine the in-
fluence on the tunneling probability of changing the distribu-
tion of the water configurations.

The potential experienced by the electron arises from the
walls and from the electron–water interaction as follows:

FIG. 2. A schematic two-dimensional display of the configurations used in
the model calculation reported in this paper.~a! Two parallel electrodes.~b!
Two parallel electrodes with an additional rectangular tip. Note that the
displayed rectangular shape as well as the dimensions are defined only
within the grid resolution.
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V5VB1VeW, ~3!

whereVB is the bare, ‘‘vacuum’’ potential associated with
the walls andVeW is the electron–water interaction. In the
present workVB was modeled as a symmetric square barrier
of height 5 eV, i.e.,

VB~x,y,z!5H 0 uzu.d/2

5 eV uzu,d/2
, ~4!

whered ~typically 10 Å! is the distance between electrodes.
It should be clear that the numerical procedure allows any
given choice for this bare barrier potential, including the pos-
sibility of an external electric field~i.e., potential gradient!
and a more realistic form for the electron–electrode image
potential.

For the electron–water interactionVeW, we have used
the pseudopotential developed by Barnettet al.13 which was
used in our earlier electron–water simulations. This potential
contains, in addition to Coulomb exchange and exclusion
contributions, terms associated with the atomic polarizability
of the oxygen and hydrogen constituents, which are inversely
proportional to the quartic power of the distance from the
corresponding atom. In our numerical studies we have some-
times turned off this part of the electron–water interaction in
order to investigate the role played by the electronic water
polarizability on this level of description.

While the electron–water pseudopotential employed
here has been successful in reproducing some energetic and
dynamical properties of the hydrated electron, its applicabil-
ity for the present problem is questionable. Once the energies
of the initial and final electronic levels have been fixed, the
remaining solvent effects on electron tunneling can poten-
tially arise from the following factors:~1! The position, on
the energy scale, of the ‘‘conduction band’’ of the pure sol-
vent. By conduction band we mean extended electronic
states of anexcesselectron in the neutral solvent configura-
tion. ~2! The hard cores of the atomic constituents, in the
present case the water oxygens, which make a substantial
part of the physical space inaccessible to the electron.~3!
The possibility that rare fluctuations in the solvent structure
contribute substantially to the overall tunneling probability.
Factors~2! and ~3! are usually disregarded in theories of
electron transfer, while a common practice is to account for
the first factor by setting the potential barrier height at a
value, below the vacuum level, determined by the contribu-
tion of the solvent electronic polarizability. This value can be
estimated as the Born energy of a point charge in a cavity of
intermolecular dimensions, say a radius of a;5 a.u., in a
continuum with the proper dielectric constant, here the opti-
cal dielectric constant of water,e`51.88. This yields
e2(2a)21[ e`

2121];21.3 eV, the same order as the result of
a more rigorous calculation by Schmickler and
Henderson,5~a! and in agreement with the experimental re-
sults on photoemission into water.14 This value is taken as an
estimate for the position, relative to the vacuum energy, of
the bottom of the conductivity band of water. It should be
noted that this number was obtained for an infinite bulk of
water, and should be regarded as an upper limit for the

present problem. Moreover, due to the high repulsive cores
of the oxygen atoms, the structure of the corresponding elec-
tronic wave functions may be a complicated function of po-
sition, implying a complex and winding path for an electron
of this energy. Therefore, replacing the vacuum barrier by a
similar barrier of lower height is not necessarily a good ap-
proximation.

An adequate electron–water pseudopotential should ac-
count for both the energy of the conduction band and the
structure of the corresponding wave functions. However the
pseudopotential employed here is not good enough in this
sense: Since solvent polarizability effects were not incorpo-
rated as a many-body interaction, it is expected to underes-
timate the depth of the conduction band below the vacuum
level. Indeed, a similar model used by Rossky and co-
workers in their simulations of the solvated electron, yielding
results for energetics and dynamics very similar to ours, puts
the position of this band slightlyabovethe vacuum level.15

For this reason, our simulations cannot reproduce the
absolute magnitude of the tunneling probability. However if
we assume, in accordance with the results of Schmickler and
Henderson,5~a! that the magnitude of the solvent-induced bar-
rier lowering is a constant which does not depend on the
other parameters of the simulation, then this constant may be
incorporated into the bare barrier height, simply shifting the
energy scale of the results shown below. Obviously this pro-
cedure is not entirely satisfactory, and we leave for future
work the incorporation of many-body polarizability effects
into the model.16

III. THE NUMERICAL PROCEDURE

For each static water configuration generated as de-
scribed above, we have to compute the tunneling probability
for an electron in the complicated 3D potential surface~3!. In
the calculations described below the electron wave function
was represented on a rectangular 1631631024 lattice where
the barrier occupies 16316349 lattice sites about the origin
of thez axis. The lattice spacings are 2.77 a.u.~1.47 A! in the
x and y directions and 0.4 a.u.~0.21 Å! in the z direction.
The tip dimensions in these lattice units are 232316. We
have examined three numerical procedures for evaluating
tunneling probabilities.

A. Propagation of an electron wave packet through
the barrier

In this procedure an initial wave packet located entirely
to the left~say! of the barrier and moving toward the barrier,
is propagated in time until the ‘‘collision’’ with the barrier
has ended, i.e., until the probability that the electron is in the
barrier region has fallen below a predetermined margin. The
time evolution

C~ t !5Û~ t !C~0!5expS 2
1

\
Ĥt DC~0! ~5!

is executed using the Chebychev polynomial expansion of
the time evolution operator.17,18To this end the Hamiltonian
is first renormalized and shifted,
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ĤN5
Ĥ2 Î E

DE/2
, ~6!

whereE 5 (Emin 1 Emax)/2, DE 5 Emax 2 Emin , andEmin
andEmax are, respectively, the lower and upper limits on the
spectrum of the grid Hamiltonian. Such bounds are easily
determined since the grid restricts the highest possible rep-
resentable momentum in any directioni to Pi

max 5 p\/Dr i
whereDr i is the corresponding grid spacing. Thus

Emin5Vmin , Emax5Vmax1(
i

~Pi
max!2/2m. ~7!

The scaling~6! has the effect that the spectrum of the nor-
malized Hamiltonian lies in the range~21,1!. The time evo-
lution operator then takes the form

C~r ,t !5e2 iĒt/\e2 i @DEt/2\#ĤNC~r ,0!

5e2 iĒt /\ (
n50

N

anS DEt

2\ DFn~r !, ~8!

wherean(x) are essentially the Bessel functionsJn(x),

an~x!5~22dn0!Jn~x! ~9!

and whereFn denotes the functions obtained by operating
with the complex Chebychev polynomials of the ordern of
ĤN on the initial functionC~0!5C~r ,t50!. These can be
computed recursively:

F05C~0!, F152 iĤ NC~0!,

and ~10!

Fn11522iĤ NFN1Fn21 .

The repeated operations of the Hamiltonian in Eq.~10!
are executed using the fast Fourier transform algorithm.18 In
practical application the sum in Eq.~8! can be truncated at a
finite value of termsN, which satisfiesN.DEt/2\.

The initial wave packet is chosen to be of the form

C~r ,0!5Aeik0xxeik0yyg~z!, ~11!

wherekx andky are the components of the initial wave vec-
tor in the directions parallel to the barrier,g(z) is a wave
packet inz, centered to the left of the barrier, and whereA is
a normalization constant. It is important for the following
analysis thatg(z) will contain only wave vectors in the posi-
tive z direction, so that there is a one to one correspondence
betweenkz and the energyE ~for the givenkx andky!. The
final time t f is determined such that*barrieruC(r ,t)u2dr is
smaller than a predetermined small number, say 1028. The
transition probability from an initial free particle statek0 to a
final statek f is then obtained from

Pk0→kf
5

u*dre2 ik0•rC~r ,0!u2

u*dre2 ik f•rC~r ,t f !u2
. ~12!

Since the process is elastic, this will vanish unlessuk0u5uk f u.
The total transmission probability is obtained by summing
Eq. ~12! over allk f which satisfy this condition together with
kfz.0.

B. Direct evaluation of S-matrix elements using
the Mo” ller operator propagation technique
(Ref. 19)

This approach yields selected elements of theS matrix,
from which transmission probabilities can be obtained
Pk0→k f

5u Sk0→k f
u2. The correspondingS-matrix element is

calculated using the following three-step procedure outlined
as follows: ~1! Choose an initial wave packetf i~r ! of the
form f i(r ) 5 Aie

ikixxeikiyygi(z) centered in the barrier re-
gion. ~2! Use the Mo” ller operatorV1

V65 lim
t→7`

eiHt /\e2 iH0t/\ ~13!

to obtain a wave packet of incoming wavesf i
1~r !,

f i
1~r !5V1f i~r !. ~14!

Operation~14! is conducted by carrying out the free evo-
lution analytically up to time at which the wave packet is
well to the left of the barrier, then using the Chebyshev al-
gorithm ~8!–~10! to bring back the packet to the interaction
region under the full HamiltonianH. ~3! Use a similar pro-
cedure to construct a packet of outgoing waves by starting
from the wave packetf f(r ) 5 Afe

ik f xxeik f yygf(z) and operat-
ing with V2 . The elementSki→k f

of the S matrix, with
k i5(kix ,kiy ,k! and k f5(kfx ,kfy ,k8), where \2ki

2/2m
5\2kf

2/2m5E, can now be calculated from

Ski→k f
5~2p\!21d@E~k!2E~k8!#cf* ~k8!ci~k!

3E
2`

`

dteiEt/\^f f
2ue2 iĤ t/\uf i

1&, ~15!

where

c~k!5FB~k!
Lzm

2p\2kG
21

~16!

and whereB(k) are the coefficients of expansion of the wave
packetg(z) in plane waves20

B~k!5
1

ALz
E

2Lz /2

Lz /2

dze2 ikzg~z!. ~17!

The efficiency of the present scheme results from the
fact that the integral in Eq.~15! can be expressed as a rapidly
converging sum over matrix elements of Chebychev polyno-
mials of the Hamiltonian. To this end the time evolution
operation in Eq.~15! is expressed as given by Eqs.~8! and
~9!, and the Fourier transforms of the Bessel functions are
expressed by

E
2`

`

e2 ivtJn~ t !dt5
2~2 i !n

A12v2Tn~v!, ~18!

whereTl are the~real! Chebychev polynomials of the order
l . Furthermore, using the following properties of the real and
complex Chebychev polynomials

Tl~2a!5~21! lTl~a!,
~19!

x l~2 ia!5~2 i ! lTl~a!,
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finally leads to

E
2`

`

dteiEt/\^f f
2ueiĤ t/\uf i

1&

5
4

DEA12j2 H ^f f
2uf i

1&

12(
n51

N

~21!nTn~j!^f f
2uTn~ĤN!uf i

1&J , ~20!

where

j52~E2E!/DE. ~21!

This scheme is relatively fast and accurate, and is useful for
problems in which only selected final directions of the out-
going state are of interest.

C. Direct evaluation of transition probabilities using
absorbing boundary conditions (ABC) Green’s
functions (Ref. 21)

In this procedure the Green’s function

Ĝ~E;e!5
1

E2Ĥ1 i ê~r !
~22!

is evaluated on an appropriate grid, wheree~r ! is chosen to
be different from zero near the grid boundaries, far enough
from the interaction region~here the tunneling barrier!, and
gradually diminishing to zero as the interaction region is
approached from the outside. This way of imposing outgoing
wave boundary conditions has proven very useful in several
recent applications.21,22 In the present application periodic
boundary conditions are maintained in thex andy directions,
ande(z) is taken to be of the form

e~z!5H e0F uzu2~zmax2Dz!

Dz Gv, zmax>uzu>zmax2Dz,

0, zmax2Dz.uzu,
~23!

where e0, Dz, and v are suitably chosen parameters and
where zmax is half the system size in thez direction ~i.e.,
108.5 Å!. In the present application the valuese0513.6 eV,
Dz5zmax25 Å, and v58 were found to give satisfactory
results.23 OnceG(E;e) has been evaluated, the cumulative
microcanonical transition probability defined by
N(E)[( i( f uSi f (E)u

2 can be calculated from the
expression24

N~E!5 1
2~2p\!2 tr@ F̂d~E2Ĥ !F̂d~E2Ĥ !#. ~24!

F̂ is the flux operator, given in our case by

F̂5
i

\
@H,h~z2z0!#, ~25!

whereh(z) is the step function,h(z,0)50; h(z>0)51,
and where z0 can be taken anywhere in the region
uzu,uzmaxu2Dz. By expressing thed operators in Eq.~24! in
terms of the Green’s functions it is found that21

N~E![(
i

(
f

uSi f ~E!u254 tr@~12h!eGheG* #. ~26!

Thus N(E) can be evaluated by performing a simple
trace on the grid. Moreover, exact outgoing and incoming
wave functionsC i

1 andC f
2 which correspond to the initial

and final states~eigenfunctions ofH0 with energyE! f i and
f f , respectively, can be computed from

C i
15

1

E2H1 i e
i ef i ,

~27!

C f
25

1

E2H2 i e
~2 i e!f f ,

and provide a route, alternative to method B above, for
evaluating state selected transition probabilities,
Si f5^C f

2uC i
1&. Finally, the transition probability from an

initial incoming statef i to all possible final states can be
computed25 from the flux

Pi~E![(
f

uSf ,i~E!u25^C i
1uF̂uC i

1&. ~28!

Obviously, the applicability of the above expressions de-
pend on our ability to evaluate the grid Green’s function in
an efficient and accurate way. One way to do this is by using
time propagation and Fourier transformation from time to
energy space as described by Kosloff.26 The ABC Green’s
function is written as

G~E!5
1

i E0
`

dtei~E1iê2Ĥ !t

5
1

i (n50

`

@eiEDte2 i ~Ĥ2 i ê!Dt#nE
0

Dt

dteiEte2 i ~Ĥ2 i ê!t ~29!

and the time evolution operators are represented by a suitable
polynomial expansion after renormalizing the Hamiltonian
as in Eq.~6!. Because the presence of the absorbing potential
makes these operators non-Hermitian the Chebychev expan-
sion is unstable. Instead, an expansion in terms of Newton
polynomials is used:

e2 i ~Ĥ2 i ê!t5 (
k50

K

ak~ t !Rk~Ĥ2 i ê !, ~30a!

where

Rk~z!5H 1, k50

)
j50

k21

~z2zj !, k.0
~30b!

and wherezj are a set of suitably chosen points in the com-
plex plane. The coefficientsak(t) depend explicitly on the
set $z%: Denoting f k(t)5exp[2 i (zk2 i e)t], they are ob-
tained from the recursion relations
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ak~ t !5S f k~ t !2a02 (
j51

k21

aj~ t !)
i50

j21

~zk2zi !D Y
S )
j50

k21

~zk2zj !D ~31!

with a0(t)5 f 0(t) anda1(t)5[ f 1(t)2 f 0(t)]/(z12z0). Con-
vergence of this procedure is sensitive to the order in which
contributions from different points in the set$z% are
summed. More details concerning the choice of these points
and summation order are given in Ref. 26. Denoting
bk(E,Dt)5*0

DteiEtak(t)dt and ck(E,Dt)5eiEDtak(Dt), the
Green’s operator is now given by

G~E!5
1

i (n50

` F (
k50

K

ck~E,Dt !Rk~Ĥ2 i ê !Gn
3 (

n50

`

bk~DE,t !Rk~Ĥ2 i ê !. ~32!

As in the Chebychev expansion, the upper boundK of thek
summation has to be larger thanDtDE. Also, the summation
overN is truncated when the modulus of the vectors being
summed becomes smaller than some predetermined small
number.

Some of the results shown below were obtained using
this algorithm and Eqs.~27! and ~28!. We have found how-
ever that this approach as well as all other methods described
above suffer from a drawback common to all time evolution
methods: If long time trapping of the wave packet in the
barrier takes place~due to resonances! convergence can be-
come very slow. This problem can possibly be circumvented
using a modification27 of a method proposed by Neuhauser.28

In the present application we have found that resonance trap-
ping constitutes a problem only for the one-dimensional cal-
culations~see below!. In these cases the grid Green’s func-
tion can be evaluated by direct inversion of the grid matrix
@E2H1ie~r !#. Some of the results shown below are based on
this procedure together with Eqs.~27! and ~28!.

IV. RESULTS AND DISCUSSION

Comparison between the different numerical methods
outlined above is made in Fig. 3. Figure 3~a! shows the tun-
neling probability for an electron going through a one-
dimensional symmetrical rectangular barrier of a height of
10 eV and a width of 10 Å as a function of the electron
energy. Shown are the exact result and the results based on
the three algorithms described above. Figure 3~b! shows
similar results for an Eckart barrier,V(z)5V0 sech

2(z/a),
with heightV0510 eV and widtha55.29 Å. A grid of 1024
points with a spacing of 0.4 a.u.~0.21 Å! was used in all
cases. For the Green’s function calculations the absorbing
potential described below@Eq. ~23!# was used.

It is seen that in most cases all the methods are reliable
down to transition probabilities smaller than 10210, except
for Newton’s expansion method which does not perform as
well for the square barrier. It should be emphasized that the
performance of the ABC Green’s function method depends

FIG. 3. ~a! Tunneling probabilityP vs electron energy calculated for a
one-dimensional rectangular barrier of width 10 Å and height 10 eV.~b! The
same for an Eckart barrier,V5V0 sech

2(z/a) with V0510 eV anda55.26
Å. —: analytical results;•••: direct propagation~method A!; –•–: Mo” ller
operator method~method B!; –••–: Green’s function~method C! via New-
ton’s expansion; – – –: Green’s function by direct inversion. All calcula-
tions were done using a grid of 1024 points with spacing of 0.4 a.u.~0.21
Å!. Details of the absorbing potential used in the Green’s function calcula-
tions are described in the text.

FIG. 4. Tunneling probabilities vs electron energy for the seven 1D poten-
tials shown in Fig. 1. Different line types are used to aid the eye:~a! and~d!
~–••–!, ~b! ~–•–!, ~c! ~–•••–!, ~e! – – –!, ~f! ~•••!, and~g! ~—!.
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on the need to compromise between smoothness of the ab-
sorbing potential and the efficiency of the absorption. The
magnitude and shape of this potential have to be chosen
carefully, otherwise it may bias the results when the prob-
abilities calculated are very low. The time-dependent meth-
ods A and B perform very well in the present examples,
except for the unphysical rise in the computed probabilities
at very low electron energies. As discussed above these
methods may perform poorly when resonance trapping takes
place in the barrier.

Turning now to tunneling through simulated water lay-
ers, we show a series of results demonstrating the depen-
dence of the tunneling process on the structure of the water
layer between the electrodes. In the numerical experiments
the distance between the electrodes is 10 Å, and the bare
~vacuum! barrier height is 5 eV. Figure 4 shows again the
tunneling probabilities associated with the seven one-
dimensional potentials displayed in Fig. 1, computed by di-
rect inversion of the matrix@E2H1ie~r !# and using the re-
sulting Green’s matrix in Eqs.~27! and ~28!. Here the
tunneling probabilities are shown as functions of the incident
electron energy. An important source of variation between
the different results is the occurrence of resonance structures
supported by some of the 1D potentials. When this happens
the tunneling probability peaks considerably. However, the
highest tunneling probability at all displayed energies is as-
sociated with the potential~d! in Fig. 1. The corresponding
one-dimensional path appears to have missed close encoun-
ters with oxygen cores, while going near hydrogen nuclei,
therefore becoming even negative at some points. The result-
ing barrier is very low, and the corresponding tunneling
probability ~Fig. 3! is extremely high relative to most other
one-dimensional paths.

No such resonance structures were found among the lim-
ited set of configurations sampled in the three-dimensional
case. This is seen in Fig. 5 which shows the integrated~over
all final directions! transmission probabilities calculated for
six configurations, obtained, at 0.4 ps apart, along a classical
trajectory of the neat water at 300 K between the electrodes.

The incident electron is perpendicular to the barrier and the
transmission is shown as a function of the incident energy.
The transition probability is seen to decrease exponentially
with electron energy~the rise at low energies is probably
unphysical, similar to the unphysical rise observed for low
energies in Fig. 3!. The variations between the results ob-
tained for the different configurations span about half an or-
der of magnitude and no resonance structures are seen. It
should be emphasized that the one-dimensional potentials
shown in Fig. 1 and used to obtain the results of Fig. 4 are all
obtained from different cuts in the normal directions through
these configurations. The qualitative difference observed be-
tween the three-dimensional results and the one-dimensional
tunneling through the same water configurations shows that
the tunneling process cannot be approximated by taking the
average of one-dimensional tunneling probabilities calcu-
lated along perpendicular tunneling paths. Indeed, an attempt
to do so leads to a substantialoverestimateof the tunneling
probability in this system. This is seen in Fig. 6 where the
result for one of the configurations shown in Fig. 5 is dis-
played together with the corresponding bare barrier result
and with the average over 256~the size of ourxy grid! linear
tunneling paths perpendicular to the electrodes calculated
from the same three-dimensional water configuration. The
latter calculation is seen to overestimate the tunneling prob-
ability by several orders of magnitude. The reason for this
enormous overestimate is that among the 1D linear paths
there are a few that effectively go through ‘‘holes’’ in the
potential barrier, as discussed above. Along these paths the
potential is relatively low@as in Fig. 1~d!#, and the resulting
high tunneling probabilities dominate the average of one-
dimensional results. These holes in the potential barrier are
quite narrow, of the order of interatomic distances, and they
do not contribute considerably to the three-dimensional tun-
neling: In order that the electron passes through such a hole
it has to become rather localized in thexy plane and the

FIG. 5. Tunneling probabilities vs electron energy obtained for six water
configuration samples as described in the text.

FIG. 6. Full line: Tunneling probability vs electron energy calculated for a
particular three-dimensional water configuration in the barrier.~This is one
of the lines shown in Fig. 5.! Dashed line: Average over 256~per configu-
ration! tunneling probabilities calculated for one-dimensional sections
through the same configuration~see the text!. Dotted line: tunneling prob-
ability through the bare rectangular barrier of height 5 eV.
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necessary localization energy will make such a path energeti-
cally unfavorable.

The electron transmission probability averaged over the
configurations used in Fig. 5 is shown again in Fig. 7. Again,
the incident direction is perpendicular to the barrier and the
tunneling probability was integrated over all final directions.
Shown are the results obtained using the full electron–water
pseudopotential, as well as results of a model which does not
include the polarizability,r24, terms in the pseudopotential.
In addition Fig. 7 shows the transmission probability through
the bare barrier~vacuum situation! as well as the result ob-
tained by assuming a uniform lowering of the bare barrier
potential by 1.2 eV, the order of the barrier lowering calcu-
lated by Schmickler and Henderson. First note that the tun-
neling probability calculated with our electron–water
pseudopotential is lower by; half an order of magnitude
than that calculated for the bare barrier. This observation is
related to the disordered nature of the barrier in the presence
of water molecules and to the fact that much of the physical
barrier space is now taken by essentially impenetrable oxy-
gen cores. As discussed in Sec. I, our pseudopotential is not
expected to yield a reliable estimate of the effective barrier
lowering associated with the water electronic polarizability.
We may attempt to account for this shortcoming by using the
same pseudopotential without ther24 terms, with the
‘‘dressed’’ barrier shifted downward by the estimated 1.2 eV.
This is equivalent to shifting the horizontal~incident! energy
scale of the dashed line in Fig. 7 by the same value. In turn
the resulting probability~dash-dotted line in Fig. 7! should
be compared with the estimate based on the continuum di-
electric model, i.e, a square barrier with height uniformly
reduced by 1.2 eV~the upper line in Fig. 7!. Obviously the
simulation results remain lower than the results of the con-
tinuum model by;2–3 orders of magnitude. Interestingly,
the result obtained from the superposition of a 5 eV rectan-

gular barrier plus the full electron–water pseudopotential
~the full line in Fig. 7! and that obtained from the superpo-
sition of a 3.8 eV rectangular barrier with an electron–water
pseudopotential that does not contain the polarizability term
~the dash-dotted line in Fig. 7! are very close to each other.
These observations suggest that the continuum dielectric
model, which disregards the randomly positioned and
strongly repulsive oxygen centers, strongly overestimate the
tunneling probability for this system.

The effect of the water on the spatial resolution of the
tunneling current in the tip configuration of Fig. 2~b! is dis-
played in Fig. 8. Here we show the distribution of the current
density in the plane of the counterelectrode. Figure 8~a!
shows the current density in this plane in the absence of
water while Fig. 8~b! shows the distribution obtained in the
presence of water~using a single water configuration!. It is
seen that the scattering of the tunneling electron by the water
molecules causes a considerable loss of spatial resolution. In
fact the peak of the distribution can shift its position@as seen
in Fig. 9~b!# as the electron chooses a favorable tunneling
path.

Coming back to the tunneling probabilities calculated for
different 3D water configurations~Fig. 5!, the variations seen
between different configurations may look surprisingly
small, however we should bear in mind that the water distri-

FIG. 7. Full and dotted lines are the same as in Fig. 6. Dashed line: Tun-
neling probability through a potential obtained by removing the attractive
‘‘polarizability’’ ( r24) terms from the electron–water pseudopotential.
Dash-dotted line: The tunneling probability obtained by superposing the
electron–water interaction without the polarizability terms on rectangular
barrier of height 3.8 eV. Dashed-double-dotted line: tunneling probability
through a rectangular barrier of height 3.8 eV.

FIG. 8. The distribution of tunneling current obtained from the tip configu-
ration @Fig. 2~b!# in the plane of the counterelectrode;~a! without water and
~b! with water in the space between the electrode.
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bution in the narrow slab between the electrodes is held quite
tightly by the combination of water–electrode and water–
water interactions. This is seen in Fig. 9 which displays the
density of water molecules~the molecular position is taken
as the center of the O atoms! as function of position along
the z axis. Shown in Fig. 9~a! is the average over 200 con-
figurations sampled from a 10 ps trajectory~300 K! together
with the results of four configurations randomly selected
from this set. Figure 9~b! shows similar results for the distri-
bution of water–dipole directions, represented by cosu
whereu is the angle between the dipole and the normal to the
electrode surface.

The sensitivity of the electron tunneling probability to
the structure of the water layer is demonstrated in Figs. 10
and 11. In Fig. 10 we compare the tunneling probability~as a
function of incident energy! for three water configurations
which differ from each other by the amount of orientational
ordering induced by an external electric field perpendicular
to the electrodes. Note that this field is just a numerical de-
vice used to affect the molecular orientational distribution in
the barrier, and the tunneling probability is calculated for the

resulting frozen water configuration in the absence of the
field. Also note that the field tends to order the water mol-
ecules so that their dipoles become parallel to it, opposing
the structure induced by the water–wall interaction, in par-
ticular the oxygen–wall attraction, which tries to order the
molecules with mirror symmetry relative to thez50 plane
@see Fig. 9~b!#. Another numerical way to counter the order-
ing induced by the latter interaction is to eliminate it alto-
gether, using water configurations obtained from trajectories
with purely repulsive interaction between the water and the
wall. The effect of this structural change is shown in Fig. 11.

FIG. 9. ~a! Water density as a function of position between the electrode.
Thick line: average over 200 configurations. Four other lines: results for
specific configurations randomly chosen from the same ensemble.~b! Same
as for~a!, for the distribution of angleu between the water dipole and thez
axis ~tunneling direction!.

FIG. 10. Tunneling probability vs electron energy obtained for four water
configurations selected from equilibrium trajectories in which the water con-
figuration was biased by an external electrostatic field in the direction per-
pendicular to the electrodes. Note that the field is just a device used to affect
the water configuration and it does not directly influence the electron. Full
line: zero field. Dotted line: 1.73108 V/cm; dashed line: 2.33108 V/cm;
dashed dotted line: 3.33108 V/cm.

FIG. 11. Tunneling probability vs electron energy for two water configura-
tions selected from different equilibrium ensembles associated with different
magnitude of orientational ordering. Full line: A configuration obtained at
300 K in the presence of the full water–wall potential described in the text.
Dotted line: A configuration calculated using a water–wall potential that
does not contain the attractive interaction between the water oxygen and the
wall and is therefore not restricted to a specific orientational ordering near
the wall.
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Both Figs. 10 and 11 show that disrupting the ordering in-
duced by the water–wall interaction reduces the transmission
probability in the system studied.

V. CONCLUSIONS

In this work we have carried out simulations of electron
tunneling through thin water layers confined between two
walls in order to study the effect of the barrier structure on
electron tunneling. We have examined several numerical
methods for evaluating tunneling probabilities and compared
their performance. The model used for the electron–water
pseudopotential is incomplete, in that it does not take into
account the many-body nature of the water electronic polar-
izability. For this reason the effective barrier lowering caused
by this polarizability had to be put in phenomenologically.
We were able, however, to examine the effect of other Cou-
lombic and short-range interactions on the transmission
probability through such barriers. Our main conclusions are
as follows.

~1! The barrier lowering caused by the electronic polariz-
ability of the water is largely offset by the reduction in
tunneling caused by the multiple scattering of the elec-
tron by the hard oxygen cores in the barrier. The result of
these two opposing effects is that the overall tunneling
probability through water is not significantly higher than
through vacuum.~This should not be confused with say-
ing that the workfunction for emission into water is not
lowered by the effective reduction in barrier height.! It
should be kept in mind though that these results were
obtained in a model which disregards the many-body
nature of the induced dipolar interactions.

~2! The effect of multiple scattering by the oxygen cores is
to distort and diffuse the tunneling current, resulting in
loss of resolution of an underwater STM signal if the
tip–surface distance is large enough to accommodate
water molecules.

~3! The process studied is inherently three dimensional, and
attempting to describe it as a simple average over one-
dimensional tunneling events leads to errors of several
orders of magnitude.

~4! One-dimensional tunneling through the disordered media
considered in this work were shown to be dominated by
relatively rare structures with very high tunneling prob-
abilities. We do not have any indication that this phe-
nomenon also occurs in three dimensions, although, be-
cause of the limited sampling that could be done with
our computational resources, we cannot rule out this pos-
sibility.

Our future work will focus on introducing water elec-
tronic polarizability as an integral part of the model, in order
to avoid the need to account for the effect of this interaction
phenomenologically.
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