Numerical simulations of electron tunneling in water
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Electron tunneling through molecular layers has long been under study in conjunction with electron
tunneling microscopy. More recently solvent effects on the tunneling matrix elements associated
with electron transfer problems and with “underwater” electron tunneling microscopy have come
under discussion. This paper describes the results of computer simulations of electron tunneling
through frozen water layers. A water layer10 A) is confined between two electrodes, and is
equilibrated and evolved in time in order to generate an ensemble of barrier configurations. The
electron<classical water interaction is represented by a suitable pseudopotential. It is assumed that
the water dynamics is negligible on the time scale of the tunneling process, so tunneling is studied
for the resulting group of frozen configurations. Several numerical methods for evaluating the
transmission through such disordered barriers are described and compared. It is shown that
tunneling probabilities as low as 18 can be calculated with sufficient accuracy. We find that
tunneling in this system cannot be described by averaging over one-dimensional paths. Furthermore,
in contrast to common practice which assumes that the barrier to tunneling may be estimated by
lowering the barévacuun) barrier by a magnitude associated with the electronic dielectric response
of water taken as a dielectric continuum, the simulations show that transmission is strongly reduced
due to the fact that much of the physical barrier space is blocked by the practically impenetrable
oxygen cores. The tunneling probability significantly depends on the water configuration in the
barrier, in particular on the orientational distribution of the water molecules. These observations
suggest that external variables such as temperature and electric field will affect the tunneling
through their effect on the water density and orientation, in addition to the effect of these variables
on the bardvacuun tunneling. © 1996 American Institute of Physid$§0021-960805)50943-1

I. INTRODUCTION vent enters into the diagonal elements of the spin Hamil-

Electron t ling i q d oh , ( tonian and is often disregarded in the nondiagonal elenfents.
ectron tunneling in a condensed phase environment IS - o hqiger however, electron transfer from a solute to a

\?vi t;?r:ysilrﬁn% ci:]l;dli?n;#s?i)encazl Vrr:ro“ggs 'iivléf\ﬁ”ngﬁn dségiireedqnetal electrode in cases where the donor level is far above
P 9 the electrode Fermi energle. In this case the solvent-

potentlal barner; and impurifgesonancestates in such bar- . induced fluctuations in the position of the donor level rela-
riers. A substantial amount of study has also focused on dlsfive to E. are relatively unimportanfsince degeneracy be-
ordered barriefs and in the last decade, on the effect of F y P 9 Y

barrier dynamics on tunneling process. An important class O}\r/]veenldonor andbac_cepf:[ror e_llwa)r/]s e>|9|smd the malnfrole .Of
processes dominated by tunneling is electron transfer. ThedD® SO Een'F maY € in affecting the (l':' ectronflfc wave unctlg;ns.
retical treatments of these processes often focus on the endft SUCh situations we expect solvent effects to manifest

getics and dynamics of the donor and acceptor levels, repréhemselve-s more stron.gly in the nonadiabatic coupling itself.
senting the tunneling process itself by a parameter Following Marcu$ it has become standard to treat the

(“electronic coupling”) in the resulting rate expressions. In Solvent effect on electron transfer using a continuum dielec-

the nonadiabtic limit such expressions take the form tric picture of the solvent. This approach seems reasonable
X when the main solvent effect on electron transfer indeed
kee=[J|*F, () arises from fluctuations in the donor and acceptor energy

whereJ is the “electronic coupling” andF contains infor- levels. These fluctuations are then described using the mac-

mation associated with nuclear motion. In the Mafcus "0Scopic solvent polarization through the frequency-
theory F is essentially the probability of the donor and ac- dependent dielectric response. A related more rigorous ap-
ceptor levels becoming degenerate in the course of thgroach is based on the Spiﬂ—bOSOﬂ Hamiltonian, where the
nuclear(solven} motion. The success of this approach indi- Parameters of the boson Hamiltonian and of the spin—boson
cates that in many cases the rate is determined primarily bgoupling are derived from the continuum dielectric model.
this probability, while solvent-induced variations in the mag-No such simplification seems physically straightforward for
nitude of the electronic coupling are apparently less importhe solvent effect on the nondiagonal electronic coupling, at
tant or at least their effect is absorbed in the paramktén  least in cases where this coupling is associated with a tun-
the language of the spin—boson model, coupling to the solreling path which goes through the liquid. Obviously, the
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potential barrier and therefore the tunneling probability are 30
strongly dependent on the instantaneous solvent structure in (a) P =0.42E-10
the space between the donor and acceptor. 20
The motivation for the present study comes from recent
advances in electrochemical scanning tunneling microscopy 10
which involves situations of the type described above. Figure
1 presents seven one-dimensional potential barriers for the 0 |—
tunneling of an electron through water, together with the cor- (b) P = 0.59E-03
responding tunneling probabilities. These potentials were
calculated along the shortegtorma) path connecting two 6
parallel electrodes separated by 10 A in water, for different
water configurations sampled from an equilibrium trajectory. 3
The corresponding vacuum potential is assumed to be a sym- /\/\
metric square well of heighVy=5 eV and the displayed 0 (c) P = 0.35F-02
tunneling probabilities are calculated for the incident elec-
tron energy 3.5 eV. The water—water, water—metal, and 6
electron—water potential used in this calculation are de-
scribed in Sec Il 3
The large dispersion in the instantaneous potentials and
in the corresponding tunneling probabilities raises a question 0
concerning the applicability of effective continuum dielectric (d) P = 0.26E+00
models in such situations. Since the tunneling probability is 3
exponentially sensitive to the barrier structure, it is not even o
clear whether the observed tunneling current is associated > o T\
with the average over many probable configurations or is ~
dominated by rare fluctuations in the barrier strucfute. > -3
this respect we recall that realistic electrochemical systems (e) P=0.11E-05
involve not only water but other solvated ions that may wan-
der into the space between the tip and the electrode, creating 6
even larger fluctuations in the barrier potential. It should of
course be kept in mind that in reality one should consider a 3
three-dimensional3D) tunneling process which, as we show 0 /_\/\/\/\_,_\
below, cannot be described by the one-dimensi¢h@) po- —
tential cuts displayed in Fig. 1. () P =0.77E-04
The static potential surfaces shown in Fig(ahd their 6
3D analoggare relevant to the tunneling problem only if the
time scale for the tunneling process is much shorter than that 3
associated with the solvent motion. In typical scanning tun-
neling microscopySTM) configurations the tunneling time 0
[estimated from[dx[1/v(x)] wherev(x) is the imaginary (g) P = 0.47E-05
velocity and where the integral is over the tunneling pah
of order 10 s, so that intermolecular solvent motion may 6
indeed be ignored, and also the effect of intramolecular sol-
vent dynamics is expected to be small. The numerical studies 8
described below are based on static solvent configurations. 0
From the numerical point of view, simulations of tunnel- -5 0 5
ing processes are highly demanding since the quantity evalu-
ated is often very small and therefore highly sensitive to 7 (A)

numerical errors. Part of our effort in the present work is _ . _ _
focused on testing and Comparing several algorithms for tunElG. 1. Qne-d|men5|onal pote_nt|als calculated along several stra|g_ht paths

. . . e _]128 perpendicular to and connecting the two parallel electrodes of Ra. 2
neling. We find t_hat tunnell_ng probabilities as low _Can where the gap between the electrode contained water models is as described
be evaluated reliably, provided that resonance trapping of th@a the text. The electron water pseudopotential is superposed on a bare
tunneling particle does not take place. In the latter situatiorsymmetric square potential of height,=5 eV that is assumed to exist
long time transients may make the computation prohibitivel)})etween the electrode§. The displayed tunneling probabiltiese calcu-

. o . . . lated for an electron with an energy of 3.5 eV.

costly and/or stretch it to the limit of its numerical stability.

From the physical point of view, the role of the solvent
in such processes has long been appreciated but is still natsue>® Of practical importance are questions regarding the
well understood, as exemplified by the recent debate on thisrigin of the unusually low barrier observed in “underwater”
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STM experiments and the effect of solvent on the STM reso- (a) (b)
lution.

A full treatment of the electron tunneling should take
into account dynamic image effects associated with the
electron—metal interactidrand the fast response associated
with the solvent electronic polarizability. Weand other$
have recently considered models for tunneling through a me-
dium defined by its dielectric response, using a continuum
dielectric model characterized by given boundary conditions.
As expected, the effect of the fast electronic polarization is
found to dominate the solvent effect on the tunneling process
in this model, while the contribution of the solvent nuclear
motion is relatively small. In the present work we focus on
issues associated with the role played by the distribution of
the instantaneous configurations of the barrier. We therefore
disregard the dynamical effects of the electronic polarization
of the electrode, and assume that its effect is already in- 10 A 10 A
cluded in the given vacuum potential barrier. For the same
reason we disregard the actual geometry of the STM experi-
ment, and consider tunneling between two planar parallel Z
electrodes. We also assume that the solvent nuclei are frozen
on the time scale of the tunneling process. The effect of th&'G. 2. A schematic two-dimensional display of the configurations used in

. . e . the model calculation reported in this pap@). Two parallel electrodegb)
solvent electronic pOIanzab"'ty 1S partlally taken care of by Two parallel electrodes with an additional rectangular tip. Note that the

representing it as an effective two-body potential. A simula-gisplayed rectangular shape as well as the dimensions are defined only
tion based on a similar approach with a cruder numericabithin the grid resolution.

algorithm was recently reported by Schmicki®r.
The numerical codes constructed in the present work are

used to examine the sensitivity of the tunneling process tg .
. . ; . X ecules. In some of our computer experiments we have used a
the instantaneous solvent configuration, i.e., the instanta:

neous shapes of the barrier potential. Raikh and Rumne System more akin to a STM setup, where a *tip” protrudes

SUaaested that such brocesses mav be dominated by ralato the potential barrier as seen in Fig'2The tip is taken
99 . p . y Y TS be rectangular, with itgy cross section and its protruding
favorable barrier configurations. In order to address this is:

. : length taken to be 83 A? and 3.3 A, respectivel} This
sue, one needs a way to generate such configurations and {0 . . e
. . configuration was generated from the former by artificially
compute their probability, a task that we leave for future

. cutting off the barrier(both the bare barrier and the water
work. Here we show that temperature and external field ef- . . . .
X o - pard in the designated tip volume. This procedure does not

fects on the tunneling probability have a non-negligible con- : X
account for the real water structure near the tip, but may still

tribution, resulting from the effect of these variables on the . : o 2
be used for our main purpose—investigating the qualitative

equilibrium distribution of barrier structures. We also study e "
; . . . - effect of the solvent on the transmission probability and on
the effect of dimensionality on the tunneling probability and, . . : : X
the spatial resolution associated with the tunneling current.

in particular, address the validity of approximating tunneling The water configurations are generated by propacatin
in three dimensions by the corresponding 1D process alon 9 9 y propagating

the shortest possible path, as is done in most theoretical mo§1e water molecules under their mutual interaction together

. ) . with the confining water—wall potential. The former was
els. Obviously this should not work for any given solvent . .
. . . L : taken to be a flexible RWKM-2 water—water potential as
configuration, but we show that this procedure is invalid also : ) . i
. . X . used in our earlier electron—water studies while the latter
for the averagdover configurationstunneling probability. 112 3 9-3 potential
Our physical model is described in Sec. Il and a brief ? P '
description of the numerical procedures is given in Sec. lll.
Section IV describes and discusses our numerical results and Vi(2)
w

Sec. V is the conclusion.

23.5 A

was adopted from Hautmaet a

B
—3 2

N©|>

for each H and O atom, whereis the distance from the
surface, with the parametefsandB chosen to fit a spherical
The physical system simulated in this work is a rectan-water—gold surface interaction. As described below, this po-
gular slab of water molecule@ensity 1 g/c) confined tential was sometimes modified in order to examine the in-
along thez axis by two electrodes separated by 10 A, andfluence on the tunneling probability of changing the distribu-
subjected to periodic boundary conditions in the othend  tion of the water configurations.
y directions. The system size in theandy directions is The potential experienced by the electron arises from the
taken to be 23.5 A. This system contains 192 water molwalls and from the electron—water interaction as follows:

Il. THE SIMULATION MODEL
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1552 Mosyak, Nitzan, and Kosloff: Electron tunneling in water

V=Vg+Vew, (3 present problem. Moreover, due to the high repulsive cores
i ) ) . of the oxygen atoms, the structure of the corresponding elec-
where Vg is the bare, “vacuum” potential associated with {onic wave functions may be a complicated function of po-
the walls andV,, is the electron—water |nt§ract|on. In thg sition, implying a complex and winding path for an electron
present work/g was modeled as a symmetric square barriefss this energy. Therefore, replacing the vacuum barrier by a
of height 5 eV, i.e., similar barrier of lower height is not necessarily a good ap-
0 |z>d/2 proximation.
, 4 An adequate electron—water pseudopotential should ac-
5 eV [z<d2 count for both the energy of the conduction band and the
whered (typically 10 A) is the distance between electrodes. structure of the corresponding wave functions. However the
It should be clear that the numerical procedure allows anyseudopotential employed here is not good enough in this
given choice for this bare barrier potential, including the pos-Sense: Since solvent polarizability effects were not incorpo-
sibility of an external electric fieldi.e., potential gradient rated as a many-body interaction, it is expected to underes-
and a more realistic form for the electron—electrode imagdimate the depth of the conduction band below the vacuum
potential. level. Indeed, a similar model used by Rossky and co-
For the electron—water interactior,,, we have used Workers in their simulations of the solvated electron, yielding
the pseudopotential developed by Barregtal ** which was ~ results for energetics and dynamics very similar to ours, puts
used in our earlier electron—water simulations. This potentiathe position of this band slightigbovethe vacuum level?
contains, in addition to Coulomb exchange and exclusion For this reason, our simulations cannot reproduce the
contributions, terms associated with the atomic polarizabilityabsolute magnitude of the tunneling probability. However if
of the oxygen and hydrogen constituents, which are inverselyve assume, in accordance with the results of Schmickler and
proportional to the quartic power of the distance from theHendersor® that the magnitude of the solvent-induced bar-
corresponding atom. In our numerical studies we have somdier lowering is a constant which does not depend on the
times turned off this part of the electron—water interaction inother parameters of the simulation, then this constant may be
order to investigate the role played by the electronic wateincorporated into the bare barrier height, simply shifting the
polarizability on this level of description. energy scale of the results shown below. Obviously this pro-
While the electron—water pseudopotential employedcedure is not entirely satisfactory, and we leave for future
here has been successful in reproducing some energetic aw@rk the incorporation of many-body polarizability effects
dynamical properties of the hydrated electron, its applicabilinto the model®
ity for the present problem is questionable. Once the energies
of thg |.n|t|al and final electronic levels have peen fixed, the”l_ THE NUMERICAL PROCEDURE
remaining solvent effects on electron tunneling can poten-
tially arise from the following factors(1) The position, on For each static water configuration generated as de-
the energy scale, of the “conduction band” of the pure sol-scribed above, we have to compute the tunneling probability
vent. By conduction band we mean extended electronidor an electron in the complicated 3D potential surfé®e In
states of arexcesslectron in the neutral solvent configura- the calculations described below the electron wave function
tion. (2) The hard cores of the atomic constituents, in thewas represented on a rectangulaxi®x 1024 lattice where
present case the water oxygens, which make a substantitde barrier occupies 261649 lattice sites about the origin
part of the physical space inaccessible to the electf®n. of thez axis. The lattice spacings are 2.77 1147 A) in the
The possibility that rare fluctuations in the solvent structurex andy directions and 0.4 a.uU0.21 A) in the z direction.
contribute substantially to the overall tunneling probability. The tip dimensions in these lattice units arg2<16. We
Factors(2) and (3) are usually disregarded in theories of have examined three numerical procedures for evaluating
electron transfer, while a common practice is to account fotunneling probabilities.
the first factor by setting the potentla! barrier height qt EN Propagation of an electron wave packet through
value, below the vacuum level, determined by the contrlbu—the barrier
tion of the solvent electronic polarizability. This value can be
estimated as the Born energy of a point charge in a cavity of  In this procedure an initial wave packet located entirely
intermolecular dimensions, say a radius of-& a.u., in a to the left(say of the barrier and moving toward the barrier,
continuum with the proper dielectric constant, here the optiiS propagated in time until the “collision” with the barrier
cal dielectric constant of watere,=1.88. This yields has ended, i.e., until the probability that the electron is in the
e’(2a) e, 1—1]~—1.3 eV, the same order as the result of barrier region has fallen below a predetermined margin. The
a more rigorous calculation by Schmickler and time evolution
Henderso® and in agreement with the experimental re- R 1.
sults on photoemission into watéThis value is taken as an P(t)= U(t)\If(O)zex;{ - %Ht) ¥(0) 5)
estimate for the position, relative to the vacuum energy, of
the bottom of the conductivity band of water. It should beis executed using the Chebychev polynomial expansion of
noted that this number was obtained for an infinite bulk ofthe time evolution operatdf:*® To this end the Hamiltonian
water, and should be regarded as an upper limit for thés first renormalized and shifted,

VB(X!yIZ):
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B. Direct evaluation of S-matrix elements using

. H-IE
Hy=—om, (6) the Md ller operator propagation technique
E/2 (Ref. 19)
whereE = (Enin + Emad/2, AE = Epax = Emin, andEpy, This approach yields selected elements of $heatrix,

andE ., are, respectively, the lower and upper limits on thefrom which transmission probabilities can be obtained
spectrum of the grid Hamiltonian. Such bounds are easily, |, =| s __, |2 The corresponding-matrix element is

. . . . . . 0" 0Kt
determined since the grid restricts the hlgmhassf possible reRs;icylated using the following three-step procedure outlined
resentable momentum in any directibo Pi™ = 7/Ari 55 follows: (1) Choose an initial wave packes(r) of the

whereAr; is the corresponding grid spacing. Thus form ¢,(r) = A e ielkiy¥g.(2) centered in the barrier re-
a2 gion. (2) Use the Mdler operator() ..
Emin= Vimin, Emax:Vmax'{'; (Pj X) 12m. (7) Q.= lim giHt/fig=iHgt/fi (13)

t—Fx

The scaling(6) has the effect that the spectrum of the nor-
malized Hamiltonian lies in the rande-1,1). The time evo-  to obtain a wave packet of incoming waveg (r),
lution operator then takes the form

- . B (1N=0Q ¢i(r). (14)
W (r,t)=e 'EVie ARV NNy (1 0) Operation(14) is conducted by carrying out the free evo-
N AEt lution analytically up to time at which the wave packet is
:e—iEt/ﬁE a, —)d)n(r), (8)  well to the left of the barrier, then using the Chebyshev al-
n=0 2h gorithm (8)—(10) to bring back the packet to the interaction
wherea,(x) are essentially the Bessel functiohgx), region under the full Hamiltoniahl . (3) _Use a similar pro- _
cedure to construct a packet of outgoing waves by starting
an(X) = (2~ 6no)In(X) (9 from the wave packep;(r) = Arek*e’kn¥g,(z) and operat-

and whered, denotes the functions obtained by operatingind With Q_. The elementS, ., of the S matrix, with
with the complex Chebychev polynomials of the ordeof  ki=(Kix,Kiy,K) and ky=(Kksy ks, k'), where %%k?/2m
Hy on the initial function¥(0)=V(r,t=0). These can be =%’ki/2m=E, can now be calculated from

computed recursively: _ , ,
P oo Se k= (2h) " FLE(K) — E(K) ek (K')ei(k)
Qo=W(0), P;=-iH\¥(0),
and (10) ><Lwdteiam(%f’ﬂe_muﬂ¢i+>7 (15
(bn+1:_2”:|Nq)N+q)nfl- Where
The repeated operations of the Hamiltonian in Ekf) L.m 1-1
are executed using the fast Fourier transform algorithim. c(k):[B(k)—zz— (16)
practical application the sum in EB) can be truncated at a 2mhk
finite value of termsN, which satisfiedN>AEt/27. and whereB(k) are the coefficients of expansion of the wave
The initial wave packet is chosen to be of the form packetg(z) in plane wave®
\I}(r ,O) = AeiKOXXeikoyyg(Z), (11) 1 L,/ N
. B(k)= f dze '? . 1
wherek, andk, are the components of the initial wave vec- (k) \/L—Z —L,/2 g 9(2) A

tor in the directions parallel to the barrigg(z) is a wave
packet inz, centered to the left of the barrier, and whérés
a normalization constant. It is important for the following

The efficiency of the present scheme results from the
fact that the integral in Eq15) can be expressed as a rapidly

analysis thag(z) will contain only wave vectors in the posi- converging sum over matrix elements of Chebychev polyno-

tive z direction, so that there is a one to one correspondenc'éOlals pf the Hamlltqnlan. To this enc_l the time evolution
betweenk, and the energ¥ (for the givenk, andk,). The operation in Eq(1_5) is expressed as given by Ed8) .and
final timeztf is determined such thé!’fbarrierl);l’(r,t)rzdr is (9), and the Fourier transforms of the Bessel functions are

smaller than a predetermined small number, say?1The expressed by
transition probability from an initial free particle stekgto a = 2(—i)"
final statek; is then obtained from fﬁxe n(t)dt= an(fv), (18

—ikg-r 2
k= Udreﬂki v(r.0) 5. (120  WwhereT,; are the(rea) Chebychev polynomials of the order
t[fdre” T (rty) | |. Furthermore, using the following properties of the real and

Since the process is elastic, this will vanish unlggs=|k,. ~ complex Chebychev polynomials

The total transmission probability is obtained by summing T(—a)=(-1)'T\(a),

Eq. (12) over allk; which satisfy this condition together with (19
K¢z>0. xi(—ie)=(—1)'T(a),

Pko
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finally leads to

. A N(E)=2 2 [Si(B)*=4t[(1-h)eGheG*]. (26)
JloodteiEt/h<¢ff|eth/h|¢i+>

Thus N(E) can be evaluated by performing a simple
4 trace on the grid. Moreover, exact outgoing and incoming
- AE—\/l——§2’ (o ) wave functions¥;" and¥; which correspond to the initial
and final stategeigenfunctions oH, with energyE) ¢; and

N R ¢+, respectively, can be computed from
22 (=D To(O(be [Ta(HWI 67} (20
n= ) 1 .
where V=R €
¢=2(E—E)/AE. 1) 27)

_ 1 .
This scheme is relatively fast and accurate, and is useful for Vi = E-—H —ie(_'6)¢f’
problems in which only selected final directions of the out-

going state are of interest. and provide a route, alternative to method B above, for
C. Direct evaluation of transition probabilities using evaluating  state  selected transition probabilities,

absorbing boundary conditions (ABC) Green’s S¢=(V|¥"). Finally, the transition probability from an
functions (Ref. 21) initial incoming state¢; to all possible final states can be

. _ computed® from the flux
In this procedure the Green'’s function

&(E: 0= _ 22 Pi(E)=2 [Sri(B)P= (W [F[¥7). (29
E—H+ie(r)
is evaluated on an appropriate grid, whete) is chosen to Obviously, the applicability of the above expressions de-

be different from zero near the grid boundaries, far enouglpend on our ability to evaluate the grid Green’s function in
from the interaction regioithere the tunneling barrigrand  an efficient and accurate way. One way to do this is by using
gradually diminishing to zero as the interaction region istime propagation and Fourier transformation from time to
approached from the outside. This way of imposing outgoingenergy space as described by KosfSfThe ABC Green’s
wave boundary conditions has proven very useful in severdunction is written as

recent application$? In the present application periodic 1= . -
boundary conditions are maintained in thandy directions, ~G(E)= i_fo dteEHie
and e(z) is taken to be of the form

[’

v 1 . N At . LN A
:__2 [e|EAtef|(H7|e)At]nfo dte|Ete7|(H7|e)t (29)

2| = (Zmax— A2)
_— = ) Zmax>|z|22max_Aza I n=0

Az

0, Zma— AZ>]|7Z, and the time evolution operators are represented by a suitable

(23 polynomial expansion after renormalizing the Hamiltonian
as in Eq.(6). Because the presence of the absorbing potential
makes these operators non-Hermitian the Chebychev expan-
sion is unstable. Instead, an expansion in terms of Newton
polynomials is used:

€0

e(z)=

where ¢y, Az, andv are suitably chosen parameters and
where z,,,, is half the system size in the direction (i.e.,
108.5 A). In the present application the valueg=13.6 eV,
Az=7,,,—5 A, andv=8 were found to give satisfactory

results?® OnceG(E;e) has been evaluated, the cumulative ) K
microcanonical  transition  probability = defined by e i(H-T9t— 2 ak(t)Rk(I:I—i%), (308
N(E)=3,3(S¢(E)|> can be calculated from the k=0
expressioff
A ~ - . where

N(E)=3(27h)? t{ FS(E—H)FS(E—H)]. (24)

F is the flux operator, given in our case by 1, k=0
i Rd(2)=1 11 o) ko0 (30b)
= z—7),
Fzg[th(Z_Zo)], (25 j=o !

whereh(z) is the step functionh(z<0)=0; h(z=0)=1, and wherez; are a set of suitably chosen points in the com-
and where z, can be taken anywhere in the region plex plane. The coefficients,(t) depend explicitly on the
|z| <|zmad —Az. By expressing the operators in Eq(24) in  set {z}: Denoting f,(t)=exp[—i(z,—ie)t], they are ob-
terms of the Green’s functions it is found that tained from the recursion relations
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FIG. 4. Tunneling probabilities vs electron energy for the seven 1D poten-
tials shown in Fig. 1. Different line types are used to aid the égeand(d)
(==), (B) (==), (©) (=+=), (& — =), () (), and(g) (—).

As in the Chebychev expansion, the upper boldndf the k
summation has to be larger thAnAE. Also, the summation
over N is truncated when the modulus of the vectors being
summed becomes smaller than some predetermined small
number.

Some of the results shown below were obtained using
this algorithm and Eq927) and (28). We have found how-
ever that this approach as well as all other methods described
above suffer from a drawback common to all time evolution
methods: If long time trapping of the wave packet in the
barrier takes placédue to resonancgsonvergence can be-

FIG. 3. (a) Tunneling probabilityP vs electron energy calculated for a
one-dimensional rectangular barrier of width 10 A and height 1q®\The
same for an Eckart barrie¥,=V, seci(z/a) with V,=10 eV anda=5.26

come very slow. This problem can possibly be circumvented
using a modificatioff of a method proposed by Neuhau&er.

A. —: analytical results;-: direct propagatior(method A; ——: Mdller | the present application we have found that resonance trap-
operator methodmethod B; —--—: Green's functiorimethod G via New-  5iny constitutes a problem only for the one-dimensional cal-
ton’s expansion; — — —: Green'’s function by direct inversion. All calcula-

tions were done using a grid of 1024 points with spacing of 0.4 (@.21 QUIationS(See below In these cases th_e grid Greer_‘,s func_'

A). Details of the absorbing potential used in the Green’s function calculation can be evaluated by direct inversion of the grid matrix

tions are described in the text. [E—H+ie(r)]. Some of the results shown below are based on
this procedure together with EqR7) and (28).

k—1 j-1

ak(t):(fk(t)_ao_ 2 aj(t)H (Zk_zi)> / IV. RESULTS AND DISCUSSION
)= =0 Comparison between the different numerical methods
outlined above is made in Fig. 3. FiguréBshows the tun-
neling probability for an electron going through a one-
dimensional symmetrical rectangular barrier of a height of
with ag(t)="fo(t) anda,(t)=[f,(t)—fo(t)]/(z,—20). Con- 10 eV and a width of 10 A as a function of the electron
vergence of this procedure is sensitive to the order in whickenergy. Shown are the exact result and the results based on
contributions from different points in the sez} are the three algorithms described above. Figufe) hows
summed. More details concerning the choice of these pointsimilar results for an Eckart barrie¥/(z) =V, seci(z/a),
and summation order are given in Ref. 26. Denotingwith heightV,=10 eV and widtha=5.29 A. A grid of 1024
b (E,At) = [3'e’ta,(t)dt and ¢, (E,At)=e'FAa,(At), the  points with a spacing of 0.4 a.40.21 A) was used in all
Green'’s operator is now given by cases. For the Green’s function calculations the absorbing
w K n potential described belofEg. (23)] was used.
G(E)= EE E ck(E,At)Rk(I:| —ie) It is seen that in most cases all the methods are reliable
In=0 [ k=0 down to transition probabilities smaller than 16, except
for Newton’s expansion method which does not perform as
well for the square barrier. It should be emphasized that the
performance of the ABC Green'’s function method depends

k-1
(H (Zk_zj)> (31

j=0

o

xZO b (AE,H)R(H—i¢). (32

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996

Downloaded-21-Mar-2004-t0-132.66.16.34.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



1556 Mosyak, Nitzan, and Kosloff: Electron tunneling in water

1
15 2.0 3.0 3.5 4.0 0 2.0 25

2.5
Energy (e.V.) 35 40

3.0
Energy (e.V.)

FIG. 5. Tunneling probabilities vs electron energy obtained for six waterzys gyl jine: Tunneling probability vs electron energy calculated for a

configuration samples as described in the text. particular three-dimensional water configuration in the bariEmis is one
of the lines shown in Fig. 5.Dashed line: Average over 256er configu-
ration) tunneling probabilities calculated for one-dimensional sections

. Eorough the same configuratideee the text Dotted line: tunneling prob-
on the need to compromise between smoothness of the afkiity through the bare rectangular barrier of height 5 eV.

sorbing potential and the efficiency of the absorption. The
magnitude and shape of this potential have to be chosen
carefully, otherwise it may bias the results when the prob-The incident electron is perpendicular to the barrier and the
abilities calculated are very low. The time-dependent methtransmission is shown as a function of the incident energy.
ods A and B perform very well in the present examples,The transition probability is seen to decrease exponentially
except for the unphysical rise in the computed probabilitieswith electron energythe rise at low energies is probably
at very low electron energies. As discussed above thesenphysical, similar to the unphysical rise observed for low
methods may perform poorly when resonance trapping takesnergies in Fig. B The variations between the results ob-
place in the barrier. tained for the different configurations span about half an or-

Turning now to tunneling through simulated water lay- der of magnitude and no resonance structures are seen. It
ers, we show a series of results demonstrating the depeshould be emphasized that the one-dimensional potentials
dence of the tunneling process on the structure of the wateshown in Fig. 1 and used to obtain the results of Fig. 4 are all
layer between the electrodes. In the numerical experimentsbtained from different cuts in the normal directions through
the distance between the electrodes is 10 A, and the bathese configurations. The qualitative difference observed be-
(vacuum barrier height is 5 eV. Figure 4 shows again thetween the three-dimensional results and the one-dimensional
tunneling probabilities associated with the seven onetunneling through the same water configurations shows that
dimensional potentials displayed in Fig. 1, computed by dithe tunneling process cannot be approximated by taking the
rect inversion of the matrikE—H+ie(r)] and using the re- average of one-dimensional tunneling probabilities calcu-
sulting Green’s matrix in Eqs(27) and (28). Here the lated along perpendicular tunneling paths. Indeed, an attempt
tunneling probabilities are shown as functions of the incidento do so leads to a substant@lerestimateof the tunneling
electron energy. An important source of variation betweerprobability in this system. This is seen in Fig. 6 where the
the different results is the occurrence of resonance structuressult for one of the configurations shown in Fig. 5 is dis-
supported by some of the 1D potentials. When this happenglayed together with the corresponding bare barrier result
the tunneling probability peaks considerably. However, theand with the average over 25the size of ouxy grid) linear
highest tunneling probability at all displayed energies is astunneling paths perpendicular to the electrodes calculated
sociated with the potentidl) in Fig. 1. The corresponding from the same three-dimensional water configuration. The
one-dimensional path appears to have missed close encouatter calculation is seen to overestimate the tunneling prob-
ters with oxygen cores, while going near hydrogen nucleiability by several orders of magnitude. The reason for this
therefore becoming even negative at some points. The resuknormous overestimate is that among the 1D linear paths
ing barrier is very low, and the corresponding tunnelingthere are a few that effectively go through “holes” in the
probability (Fig. 3) is extremely high relative to most other potential barrier, as discussed above. Along these paths the
one-dimensional paths. potential is relatively lowfas in Fig. 1d)], and the resulting

No such resonance structures were found among the limhigh tunneling probabilities dominate the average of one-
ited set of configurations sampled in the three-dimensionadlimensional results. These holes in the potential barrier are
case. This is seen in Fig. 5 which shows the integrébedr  quite narrow, of the order of interatomic distances, and they
all final directiong transmission probabilities calculated for do not contribute considerably to the three-dimensional tun-
six configurations, obtained, at 0.4 ps apart, along a classicaleling: In order that the electron passes through such a hole
trajectory of the neat water at 300 K between the electrodest has to become rather localized in thg plane and the
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FIG. 7. Full and dotted lines are the same as in Fig. 6. Dashed line: Tun-
neling probability through a potential obtained by removing the attractive ;55
“polarizability” (r~*) terms from the electron—water pseudopotential. )
Dash-dotted line: The tunneling probability obtained by superposing the -
electron—water interaction without the polarizability terms on rectangular 5
barrier of height 3.8 eV. Dashed-double-dotted line: tunneling probability

through a rectangular barrier of height 3.8 eV. 10

necessary localization energy will make such a path energeti-°
cally unfavorable.

The electron transmission probability averaged over the
configurations used in Fig. 5 is shown again in Fig. 7. Again, YA
the incident direction is perpendicular to the barrier and the
tunneling probability was integrated over all final directions.FIG. 8. The distribution of tunneling current obtained from the tip configu-
Shown are the results obtained using the full e|ectr0n_waterﬁtioq[Fig. 2(b)_] in the plane of the counterelectroda) without water and

dopotential, as well as results of a model which does n ?) with water in the space between the electrode.

pseudop ,
include the polarizabilityr ~#, terms in the pseudopotential.
In addition Fig. 7 shows the transmission probability through
the bare barriefvacuum situationas well as the result ob- gular barrier plus the full electron—water pseudopotential
tained by assuming a uniform lowering of the bare barrier(the full line in Fig. 9 and that obtained from the superpo-
potential by 1.2 eV, the order of the barrier lowering calcu-sition of a 3.8 eV rectangular barrier with an electron—water
lated by Schmickler and Henderson. First note that the tunpseudopotential that does not contain the polarizability term
neling probability calculated with our electron—water (the dash-dotted line in Fig.)@&re very close to each other.
pseudopotential is lower by half an order of magnitude These observations suggest that the continuum dielectric
than that calculated for the bare barrier. This observation isnodel, which disregards the randomly positioned and
related to the disordered nature of the barrier in the presencstrongly repulsive oxygen centers, strongly overestimate the
of water molecules and to the fact that much of the physicatunneling probability for this system.
barrier space is now taken by essentially impenetrable oxy- The effect of the water on the spatial resolution of the
gen cores. As discussed in Sec. |, our pseudopotential is natnneling current in the tip configuration of Figil? is dis-
expected to yield a reliable estimate of the effective barrieplayed in Fig. 8. Here we show the distribution of the current
lowering associated with the water electronic polarizability.density in the plane of the counterelectrode. Figufa) 8
We may attempt to account for this shortcoming by using theshows the current density in this plane in the absence of
same pseudopotential without the * terms, with the water while Fig. 80) shows the distribution obtained in the
“dressed” barrier shifted downward by the estimated 1.2 eV.presence of watefusing a single water configuratiprit is
This is equivalent to shifting the horizontahciden) energy  seen that the scattering of the tunneling electron by the water
scale of the dashed line in Fig. 7 by the same value. In turmolecules causes a considerable loss of spatial resolution. In
the resulting probabilitfdash-dotted line in Fig.)7should fact the peak of the distribution can shift its positi@s seen
be compared with the estimate based on the continuum din Fig. 9b)] as the electron chooses a favorable tunneling
electric model, i.e, a square barrier with height uniformly path.
reduced by 1.2 eVthe upper line in Fig. )7 Obviously the Coming back to the tunneling probabilities calculated for
simulation results remain lower than the results of the condifferent 3D water configuration&ig. 5), the variations seen
tinuum model by~2-3 orders of magnitude. Interestingly, between different configurations may look surprisingly
the result obtained from the superpositionao5 eV rectan-  small, however we should bear in mind that the water distri-
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FIG. 10. Tunneling probability vs electron energy obtained for four water
configurations selected from equilibrium trajectories in which the water con-
figuration was biased by an external electrostatic field in the direction per-
pendicular to the electrodes. Note that the field is just a device used to affect
the water configuration and it does not directly influence the electron. Full
line: zero field. Dotted line: 1X1C° V/cm; dashed line: 2.8310° V/icm;
dashed dotted line: 3:3108 V/icm.

resulting frozen water configuration in the absence of the
field. Also note that the field tends to order the water mol-
ecules so that their dipoles become parallel to it, opposing
the structure induced by the water—wall interaction, in par-
ticular the oxygen—wall attraction, which tries to order the
W T 1 9 3 4 5 molecules with mirror symmetry relative to tlze=0 plane
(b) Z(A) [see Fig. ®)]. Another numerical way to counter the order-
ing induced by the latter interaction is to eliminate it alto-
FIG. 9. (a) Water density as a function of position between the electrode.gether, using water configurations obtained from trajectories
Thick line: average over 200 configurations. Four other lines: results for ith | Isi int ti bet th t d th
specific configurations randomly chosen from the same ensefbbl8ame with purely repu SIVFj' Interaction be Ween e wa ?I’ ajn e
as for(a), for the distribution of angl® between the water dipole and the wall. The effect of this structural change is shown in Fig. 11.
axis (tunneling direction

'

o

%
%

bution in the narrow slab between the electrodes is held quite
tightly by the combination of water—electrode and water— 43
water interactions. This is seen in Fig. 9 which displays the
density of water molecule@he molecular position is taken .
as the center of the O atoinas function of position along 0
the z axis. Shown in Fig. @) is the average over 200 con-

figurations sampled from a 10 ps traject@8p0 K) together 107
with the results of four configurations randomly selected
from this set. Figure @) shows similar results for the distri- 10%

bution of water—dipole directions, represented by €os
wheredis the angle between the dipole and the normal to the
electrode surface.

The sensitivity of the electron tunneling probability to 20
the structure of the water layer is demonstrated in Figs. 10

and 11. In Fig. 10 we compare the tunneling probability a

f . N .g id pf h 9p fi (W FIG. 11. Tunneling probability vs electron energy for two water configura-
un_Ct'On_ of incident energyfor three water con 'Qurat'c_’”s tions selected from different equilibrium ensembles associated with different
which differ from each other by the amount of orientational magnitude of orientational ordering. Full line: A configuration obtained at

ordering induced by an external electric field perpendiculaB00 K in the presence of the full water—wall potential described in the text.

to the electrodes. Note that this field is just a numerical de_Dotted line: A_conflguratlon ca_llculate(_j using a water—wall potential that
does not contain the attractive interaction between the water oxygen and the

vice used to affect the molecular orientational distribution iNyaji and is therefore not restricted to a specific orientational ordering near
the barrier, and the tunneling probability is calculated for thethe wall.

10°

25 3.5 4.0

3.0
Energy (e.V.)
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In this work we have carried out simulations of electron Diercksen(MPI f. Astrophysik, Garchingfor their hospital-
tunneling through thin water layers confined between twdty-
walls in order to study the effect of the barrier structure on
electron tunneling. We have examined several numerical
methods for evaluating tunneling probabilities and compared
their performance. The model used for the electron—water
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account the many-body nature of the water electronic polar-,0f Disordered Systemhiley, New York, 1988, Chap. 7.
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