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Monte Carlo simulations are used to calculate the energy, free energy, and entropy of solvation in
a lattice model of polymer host. The solute particle interacts with specific beads in the host chain at
nearest neighbor sites. The results are used to check the accuracy of the quasichemical
approximationQCA) recently usedOlender and Nitzan, J. Chem. Ph$€1, 2338(1994] to study

ion solvation and ion pair dissociation in polymer hosts. For noninteracting chains we find that the
QCA is very accurate when the solvent consists of homogeneous chdibeads interact equally

with the impurity), and give errors of up to 20% when nonhomogeneous chaiitls some of the

beads interacting with the impurjtyare used. For interacting chains this trend is reversed and the
QCA works better for nonhomogeneous chains. Deviations of the QCA prediction from the “exact”
numerical results are traced to three-body and higher order correlations. The success of the QCA for
interacting solvents of nonhomogeneous chains is associated with cancellation of opposing effects
of such correlations. €995 American Institute of Physics.

I. INTRODUCTION The simulations are done at constant volume, and the
QCA calculation is performed accordingly. Details of the

Following the increasing interest in th ilibrium L .
oflowing the increasing Interes e equilibriu QCA procedurdsimilar to the constant pressure calculation
properties of polymeric ionic conductors, such as the solva-

tion and association of ions in polymeric hostaie have of Ref. Ab)] are summarized in Appendix A.
studied these properties using a lattice theory of solvation.
In particular, we have us@d Guggenheim’s quasichemical
approximation(QCA) (Refs. 3 and #to derive expressions In this section we briefly review the QCA formalism for
for the thermodynamic quantities of solvatiginee energy, a general lattice gas mixture, focusing on the expressions
entropy, enthalpy, and volumat infinite dilution of the ions, that will be used for comparing between theory and simula-
and for the equilibrium constant for ion-pairing as a functiontions. The system considered consists of a mixtureNpf
of temperature, pressure, and solvent properties. We haveolecules of type (i=0,...,n), wherei denotes a particular
shown that a combination of dielectric continuum theory forcomponent of the r{+ 1)-component mixture and=0 re-
long range interactions together with the application of QCAfers to the empty sites. Each molecule in the mixture is made
for the short range interactions can be used to rationalize af r; “beads” connected in a chainlike manner, each occu-
range of experimental results for ions solvated in low andpying one site on a lattice of coordination numbkerBy
high molecular weight polyethers. definitionry=1. The volume of the system is expressed by
In the present work we examine the validity of the QCAV=Muv*, whereM =3[_r;N; is the total number of sites
when applied to this problem by comparing the QCA solva-andv* is the average volume of a lattice site in the mixture.
tion energy to that obtained from Monte CafC) simu- v* is a constant parameter in this study. The density of com-
lations for the same model and for various system paramponenti is defined ap;=r;N;/M, and is the average prob-
eters. We focus on the temperature dependence of thability that a site is occupied by a segment of a molecule of
solvation energy, from which free energy and entropy of soltypei.
vation can be obtained. From the QCA, the free energy of the system is given in
In the model considered, the ion—polymer mixture isterms of the compositiofiN;} and of the number of nearest
contained in a cubic lattice characterized by a coordinatiomeighbor pairs of beads of typésand j, {N;;}. The Helm-
numberz. A molecule of type occupiesr; connected lattice holtz  free energy is obtained asA({N;},{N;;})
sites and interacts with all the other molecules in the mixture= E({N;},{N;;}) — TS({N;},{N;;}). Here the energyE is
by site exclusion and nearest neighbor interactions. Thesgiven by the sum of terms-N;; €;; over all types of nearest-
molecules may have several kinds of “beads,” each interactneighbor pairs, where the interaction energfese;;} are
ing differently with the other components of the mixture. The constant parametexg;; >0 for attractive interactions The
lattice contains empty sitqggomponent of typeé=0 whose interactions with empty sitels;,} are zero. The entrop$ is
chain length is Lwhich interact with the other components obtained from Guggenheim’s formdl&for the total number
by site exclusion only. of configurations of the chains in the lattifeq. (1) of Ref.

II. QUASICHEMICAL APPROXIMATION
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6276 Olender et al.: Solvation in macromolecular fluids

2(b)]. From the minimization of the free energy of the sys-TABLE I. Systems of noninteracting chains studied by Monte Carlo simu-
tem with respect tO[Nij}a the well-known quasichemical lations. C denotes a bead which does not interact, aha@ bead which
equation is obtained interacts attractively, with the impurit\N is the number of chains in the
10Xx10x10 lattice, p is the corresponding densitffraction of occupied
AN N ; = eleij KT\ (1) siteg, px is the density ofX sites which interact attractivel{at nearest
ey 1 neighbor distangewith the impurity. zgy and zq. are the numbefper

— . chain of nearest neighbors t§ sites and tcC sites, respectively.
WhereAfijZ(Eii+6”_26ij). The quant|t|e§(Ni} and{Nij} l’) 9 p Y

are related bi/ Label Chain N p Px Z0y Z0c
B Al X4 100  0.400  0.400 18
2Nn+_(§i) Njj=aizN;, @ A X, 130 0520 0520 18
! A3 X4 162  0.648  0.648 18
where the parametey; is defined by A4 X13 40 0520  0.520 54
A5 X13 54 0702  0.702 54 .
gi=[ri(z—2)+2]/z. (3 B1 CXccC 100 0400  0.100 4 14
o B2 CcXxcc 130 0520  0.130 4 14
For an unbranched chaing is the number of nonbonded B3 CXCC 162  0.648  0.162 4 14
nearest neighbors to a molecule of tyip&For empty sites  C1 C(XCQ), 74 0518  0.148 8 22
Jo=1. The total number of nonbonded pairs ®I)N,, c2 C(XCQ)y 40 0520 0160 16 38
whereN_=S"_ N C3 C(XCQ), 54 0702  0.216 16 38
q— “i=0Hi" % rr, . C4 C(XCOQ)g 21 0525 0.168 32 70
. Followmg Barker; Eq_s.(l) anq 2 can be genera_llzed, D1 c(Xcco), 58 0522 0116 8 30
within the QCA, to consider chains with beads of different p2 C(XCCOQ), 40 0520  0.120 12 42
kinds. For simplicity consider the case where all molecules D3 C(XCCQO);, 54 0702  0.158 12 42
are identical chains of size, however each chain contains D4 C(XCCQs 21 0525 0126 24 78

several types of beads. The generalization is done by simply
redefining molecular types as referring to these distinct types

of beads, and the parameisg then corresponds to the num-

ber of nonbonded nearest neighbor to all beads of tyipea ~ kT=0, then increasing stepwise, using the solutio{n(ij}
given chain.g; is not given now by Eq(3), which is valid  obtained for the previous temperature as a first trial in the
only for a whole molecule of typeé, and depends on the calculations at the new temperature.

locations of beads of typein the chain. However, The parametergy;;} obtained in this way are used to
calculate thermodynamic quantities for the solvation
> qi=[r(z—2)+2]/z, (4)  proces$® Here we compare them with the MC simulations
i

of the same system. We focus on the average solvation en-

where the sum is over all the different types of beads in th&€"9Y which is easily obtained from the simulations. The tem-
molecule. perature dependence of this quantity is directly related to the

The set of Egs(1) and(2) is sufficient for determining ©ther thermodynamic functions of solvation.
the values of{N;} in terms of{e;}, T, {zq} and {N;}, _ In a system containing e.lsmgle.solute molecule_of_type
(i=0,...n). These equations can be simplified by scaling(f"or_‘" ).the solute—solvent interaction energy of this impu-
the amount of pair8\;;, as well as the total number of non- "ty is given by
bonded nearest neighbors to moleculesbeads of typei,

zgN;, by the total number of pairs(2)N, . In terms of the L= eiNp=zNY eixii, ()
scaled variable$y;;} and{¢;}, defined by ' '
N 1N N where = denotes summation over d@l1, and y,; is ob-
Xi =3 i Xi== ZA = & (5) tained from the QCA Eqg6) and(7). For a solvent made of
7 Ng 25N, Nqg noninteracting chain§,#, is equal to the solvation energy
Egs. (1) and (2) become AE, . In this case?, obtained from the QCA at infinite dilu-
e e 2 tion takes the form{see the Appendjx
Ly = @Aej KT 2
Xii Xij =€~ xij, (6) - Ei,fli)(gieqi/kT s/ Eliquer”/kT .
o)1=~ 20 < ekt = 20 Y7 0 kT
> v esli > oresl
QDi:Xiifg;)Xij- (7) i Xoi i @i
j(#i

where the superscript 0 indicates quantities calculated for the
The system of nonlinear Eq&) and (7) can be solved ex- pure solvent, i.e., witkp, =0, and where the second equality
actly for a two component mixturen& 1) [cf. Eq. (22) in follows from the fact thap(ﬂ =goiogojo in the case of noninter-
Ref. 2b)]. An exact solution can be also obtained for a mul-acting chains. In the actual QCA calculations based on Egs.
ticomponent system in the random mixing limit, (8) and(9) the system considered was the same one used in
A€;/kT=0, for anyi andj, which leads toy;; = ¢;¢; (all i the simulation, containing a single “ion” in a lattice of 1000
andj). In the general case these equations have to be solvesites. The infinite dilution resulf9) constitutes an excellent
numerically, and this was done using the multidimensionabpproximation for this casg¢For the system parameters of
Newton—Raphson methddThis iterative method can be Table | we have found that results based on @ydiffer by
used efficiently by starting with the known solution@t1/  no more than 0.1% from those obtained from ER).]
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An approximate expression fof, can be obtained by The initial configuration of the system is constructed by
making the mean-field approximation for the solventsuccessively adding chains to the lattice up to the desired
(MFAS) as was done in Refs(ld and 8. This involves tak- density. Each chain is constructed by randomly choosing the
ing €;—0 andz— fori,j#I (this is exact in the present position of its first bead, then growing it to the final size by
system of noninteracting solvent molecyleshile keeping  successively adding beads at randomly chosen sites nearest

Ze;; constant, together with the substitutiong— ¢;¢;, neighbor to the last bead added, until the final size is
gi—r;, and ¢;—p; . Under this approximation Eq9) be- reached. If this process fails it is restarted from a different
comes initial position. This simple algorithm cannot efficiently gen-
S €; plet KT erate very dense configurations, particularly for long chains.
M= —7q, "'+em (10)  For the densities and chain lengths studied in this wWede
Zjpie Table |), it worked well.

Exact results are obtained in the limits of zero and infinite ~ Following this preparation process the system was ther-
temperature. Whefi— Egs.(9) and(10) become, respec- malized unFll the end-to-end distance and the_gyrat|on radius
tively, %, = —zq 3/ Eli(PiO and&fl"’”: = —zq3/ Enpio- Atzero Of the chains, as well as th(_e total energy in the syst_em,
temperature all the sites nearest neighbor to the ion are o£€a@sed fo vary in a systematic way. This typically required
cupied with the bead of type=X whose attractive interac- 1000—2000 MC steps per particle, depending on the chain
tion with the ion is largest, and the solvation energy become!€ndth. The results represented below were obtained from
L= —z0 €. averages over 40-100 different MC trajectorlgs, each with
Free energies can be obtained from the energies using?00 MC steps per bea@000 steps per particle for the
standard methods. The Helmholtz free enehgyf the whole  longest chains
system can be obtained from the temperature dependence of
the average energy using IV. RESULTS AND DISCUSSION
B We consider first noninteracting solventse., non-
BA(B)—B'A(B')= f E(B)dg. (11 bonded interactions between solvent beads are assumed zero,
B but double occupancy of sites is forbiddemhe characteris-
Similarly, the free energy of solvatior, , is calculated by tics of the systems studied are summarized in Table I. The
scaling the impurity-solvent interaction by an auxiliary pa- systems of group A are homogeneous chaipf variable

rameterA and integrating the resulting,(\), lengthn at different densities. In the systems of group B the
14500 solvent molecule i€ XCC. The molecules of group C are of
A,(Azl)—Al(A=0):f — dA\. (120  the form C(XCC),, with variable length and densities as
o A indicated in Table I. Molecules of group BG(XCCOQ),,

Equations(ll) and (12) are equiva|ent in the case of have.a. lower reIaFive .Content of a.ttra.CtiOln SiDé.pr is the
noninteracting chain€E=/, in this casg Note that the free ~density of these sites in the system arg} is the number of
energy of solvation defined by E¢L2) does not include the Nonbonded nearest neighkipeer chain to these siteszqc is

energy associated with cavity formati¢see the Appendjx  the number of nearest neighbors, per chain, toGksites.
Results of simulations with homogeneous chain solvents

(group A are shown in Fig. 1. Here the solvation energy
&\l €x , which in this case is equal 1§,y , is plotted against
The simulated system consists of a single impurityex/(kT) for systems A2 and A4Table ). Shown are the
(“ion” ) and several chains of equal size in a simple cubicsimulation results, as well as results of the QCA, &), and
lattice (z=6). Two types of beads are considered; beads obf the mean-field approximation for the solvéMFAS), Eq.
type “C” which do not interact with the “ion” and beads of (10). The error bars shown here and in Fig. 2 represent the
type X which interacts attractively with it. We use “homo- standard deviation of the energy from its average along the
geneous chains” where all beads are of tyfgeand nonho- trajectory. The QCA is seen to be in excellent agreement
mogeneous chains consisting of beads of both typesd  with the numerical results while the MFAS shows slight de-
C. Our typical lattice is of size 2810x10. Most of the viations. In the present model the only source of error in the
present work is concerned with solvents of noninteractingMFAS is in usingr instead ofg for the effective molecular
chains, although some results for interacting chains are ddength. For the cubic lattice this leads to a maximum devia-
scribed later. tion of less than 20% between the QCA and the MFAS re-
The configurations of the system are propagated using sults.
metropolis algorithm with kink—jump and crankshaft The same excellent agreement between the QCA and the
moves’ In addition, for the trial move of the end-beads we numerical simulation results was found at the other densities
choose, with equal probabilities, any of the four directionsand chain lengthgsystems A in Table)l The QCA repre-
perpendicular to the end bond of the chain. Finally, the trialsents solvation in this model very well, despite its inherent
moves of the ion are made into any available nearest neiglseemingly gross simplifications. In the QCA correlations be-
bor location. For a lattice gas model of pure macromoleculatween beads belonging to the same chain are disregarded and
melts this algorithm was shown to provide an adequate santhe information about the chain connectivity enters only via
pling of the configuration space. It was argued that it alsadhe parameteeq, the number of nonbonded nearest neigh-
provides a useful shortcut to dynamical propertfes. bors.

IIl. MONTE CARLO SIMULATIONS
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FIG. 1. Results from the MC simulatiorisircles, QCA (solid lines, and
MFAS (dashed linesfor cases AQa) and A4(b). Both systems are at a total 5
density ofp=0.520.
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The agreement between the QCA equation, [By.and

the numerical results is not as good for heterogeneous
chains. Figures 2 display results for the solvation energy vs
temperature for the systems B2, C2, and D2. These systems 3 085 5
are characterized by the same total dengityp.52 and dif- A o
ferent densities of th¥ (binding) sites. The deviations of the '
QCA from the “exact” numerical results are shown explic-
itly in Fig. 2(d), where the ratioz?™ #2“* between the nu-
merical and the QCA solvation energy is shown as a function
of temperature. Similar results for the systems B3, C2, an@IG. 2. Results from MC simulations for systems defined in Table I[®2
D3 are shown in Fig. 3. These systems are characterized 13 (@ and(d)], C2[A in (b) and (d)], a”?cgoz[m in S()C> and(d)], t(OGether

. L . . with the corresponding results using QCgolid lines and MFAS (dashed
apprc.».qmately similar densities of beads and different total lines). These systems are characterized by the same valpe©520 and
densities. different values ofpy . (d) shows the ratio between the energies obtained

Figures 4 and 5 compare the exact and the QCA resultsom the simulations and from the QC for B2, A for C2, and for
for solvents of the same kind. In Fig ;glsim/gQCA is shown D2). The dotted lines connecting the pointg(@) and in Figs. 3—6 serve just
) . . ! to guide the eyes.

as a function ofe,x/(kT) for the solvents B1, B2, and B3—
CXCC molecules at different densities. In Fi§ a similar
plot is displayed for solvents B2, C1, C2, and €x/(kT)—0, limit. This is consistent with the success

W]
e
bo O

3 4 5 6
ex/kT

C4—C(XCQ), at densityp~0.52. Figure 6 is similar to Fig. of the QCA for homogeneous solvent chains. In the zero
5, using solvents of typ€(XCCCQC), (systems D1, D2, and temperature limit the QCA also produces for the present
D4). model the exact solvation energy, which corresponds to

Finally, from the dependence of the scaled solvation en-  the configurations were all sites nearest to the solute are
ergy on the strength of the interactian, , and using Eq. occupied by X beads.

(12), the free energy of solvatior, , and the corresponding (3) The QCA seems to work better at higher system densi-
entropy, S;, can be calculated. Results are shown, for ties and lower chain lengths. The effect of chain length
€x/(kKT)=6 in Table II. seems to saturate beyone-2-3 (see Figs. 5 and)6

The following observations can be made on these re-

sults: Figures 2—4 also provide a qualitative understanding of

the inadequacies of the QCA. In the present model the sol-

(1) The QCA provides a reasonable approximation to thevation energy is determined by the number of pairs consist-
thermodynamics of solvation in the present model, withing of the ion and a binding site. The QCA provides a good
the largest errors not exceedirg20%. approximation for this number in the case of homogeneous

(2) The QCA is virtually exact in the infinite temperature, chains. For heterogeneous chains this approximation does
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FIG. 3. Ratio between the energies obtained from the MC simulations anff!G. 5. Ratio between the energies obtained from the MC simulations and
from the QCA for systems B3, C2, and D3 in Tablg@, system B3:A, from the QCA for the solvent€(XCC), ; n=1,2,4,8; atdensity p~0.52
system C2; andJ, system D3 All the systems have the approximately (O.system B2A, system C1{], system C2; and>, system C4

same density oK sitespy~0.16.

the fact that inC(XCC), chains two consecutiv¥ beads

not account well for the correlation betweenlanX pair and  cannot both attach to the impurity because of the geometrical
a third X bead. Such correlations arise from both intramo-restrictions. The solvation energy @(XCC),, solvents is
lecular and intermolecular origins. Intermolecular correla-therefore expected to be even lower than expected on the
tions can be best understood by considering the case d&fasis of interchain correlations only. The opposite situation
chains with only onéX bead per chain. The attachment of anholds for C(XCCC),, chains. Here the attachment of one
X-bead to the impurity implies a larger concentration®f X-bead to the ion correlates positivelgn our cubic lattice
beads(originating from the same chagimear the impurity, ~with the attachment of the nearest neighbebead on the
therefore a smaller probabilitgsmaller than if the chains same chain with the same idisee Fig. 7. Therefore the
were dismembergdfor anotherX-bead to attach. Another solvation energy in this case will be higher than expected
statement of the same argument is that if two chains attachased on the interchain correlation alone. This difference be-
simultaneously to the ion the number of available configuratween C(XCC),, and C(XCCQ),, can be seen comparing
tions for each chain is reduced relative to the number ofigs. 5 and 6.
configurations available to a singly attached chain, thus cre- Next consider the energy, free energy, and entropy of
ating an entropic effect which decreases the avemdge solvation. Table 1l shows the energy, , free energyA, , and
The exact solvation energy will therefore be smallerab-  the entropy,S;, of solvation for the systems displayed in
solute valug than predicted by the QCA, as indeed seen inTable |, for the temperaturkT/e,x=1/6. Thefree energy
Figs. 2—4. The behavior of systems(Big. 4) is character- was computed from Ed12) andS,=(£,—A,)/T. Note that
istic of such interchain correlation. at this temperature the sites neighboring to the ion are almost

Intramolecular correlations arise from the specific geom4ully occupied by solvenK beads saZ, is close to its maxi-
etry of the solvent molecules involved and the specific sterignum value of 6. The entropy of solvation shows a strong
nature of the impurity-solvent bonghere determined by the dependence on the solvent density and a relatively week de-
lattice geometry. In the present model, linear chain mol- pendence on the solvent molecular sifa# a given density.
ecules on a cubic lattice where the impurity as well as eacfThe biggest effect seen in Table Il is the very different en-
bead occupies one lattice site, such correlations arise froiiopies of solvation between solvents with a different fraction

1.05 1.05
8. TS IR
Lop i Lop gl
-3 R B
<« 095 8, LBk <« 095 . 6. .08
g s 8@ N a---.. 8.
L 0 ) . 0.9 e
PRl Beaegtl o8 g 4
0.85 Can A 0.85
0.8 0.8
0.75 0.75
0 1 2 3 4 5 6 0 1 2 3 4 5 6
en/kT erx/kT

FIG. 4. Ratio between the energies obtained from the MC simulations anéfIG. 6. Ratio between the energies obtained from the MC simulations and
from the QCA for the systems B in Table(CXCC at different densities from the QCA for the solvent€(XCCC),; n=2,3,6; atdensity p~0.52
(A, system B1,0, system B2; and], system B3. (A, system D1f], system D2; and®, system D4

Downloaded-21-Mar-2004-to~132.66.16.34:-FemR Ry n Vohnla3.-Noald - B-Qeteber 1893 right, ~see-http:/jcp.aip.org/jcp/copyright.jsp



6280

TABLE Il. Thermodynamic quantities for solvation f&T/e,x=1/6. The

Olender et al.: Solvation in macromolecular fluids

1.
superscript1) means that the thermodynamic values were obtained from the 1 ,8(, >
integration of the QCA results, Eq&) or (9), using Eq.(12). 1.6 \\
Label P Px “ilen Ale S/k 15 AR
AN
AL® 0400 0400 -597  —491 ~6.39 14 SN
A2® 0.520 0.520 —5.98 —-5.20 —4.69 © 13 S
A3® 0.648 0.648  —5.99 —5.46 -3.19 1 N RN
A4 0520 0520 -598  -5.16 ~4.95 R N AN
A5 0.702 0.702 —5.99 -5.52 —-2.80 B N S\
B1 0400 0100 -553  —303  —15.0 1.0 T
B2 0.520 0.130 —5.65 -3.34 -13.9 0.9
B3 0.648 0.162 _5.76 367 125 1.0 1.5 2.0 2.5 %0 3.5 4.0 4.5 5.0
C1 0.518 0.148 —-5.63 -3.34 -13.7
c2 0.520 0.160 -5.62 —3.43 -13.2 FIG. 8. Vacancy pair correlation function in the pure solvipy for differ-
c2v 0.520 0.160 —5.90 —3.95 -11.7 ent values of the bead—bead interactigy,. Solid line e,,/kT=0.1,dotted
C3 0.702 0.216 —5.79 -3.89 -114 line €,,/kT=0.5, anddashed linee,,/kT=1.5. The bead density is
C4 0.525 0.168  —5.61 —-3.45 —-13.0 p=0.52.
D1 0.522 0.116 —5.61 —3.36 —13.7
D2 0.520 0.120 —=5.71 —3.49 -13.3
D3 0.702 0.158 —5.70 —-3.80 -11.4
D4 0.525 0.126 —5.72 —3.58 —12.9 €,/ kT=0.1, 0.5, and 1.5. The drastic reduction in chain

mobility for €,,/kT=1.5 suggests that permanent immobile
aggregates are formed in this system. Therefore the solvation
studies described below were limited to systems with

of binding sites. Thus, for exampl&/k=—4.69 for the ¢, /kT=0.1 ande,,/kT=0.5.
solventX, at densityp=0.52 andS;/k=—13.9 for thesol- Note that for an interacting solvent the solute—solvent
ventCXCC at the same overall density. Much of this effect interaction energy?,, Eq. (8), does not represent the full
is associated with the effective density of binding sites, asolvation energyAE, , of species | since the solvent reorga-
can be seen by considering a solvent of unconnected beadsization energy is not included. However, for the purpose of
For a solvent made of independefitndC beads ap=0.52  comparing to the QCA prediction we continue to consider
we calculatdusing expressions provided in Refad under  this quantity.
the same conditio;/k= —3.83 if all beads are& type and For €,,/kT=0.1, £, is found to be virtually unchanged
S/k=—-11.6 if px=0.130(as in solvent B (within numerical errors from the results obtained for

In addition to the noninteracting solvents considered s, ,=0; while for e,,/kT=0.5 &, differs by up to 15% from
far, we have performed a limited set of simulations with thethe noninteracting case. An interesting trend is seen in the
solvents characterized by attractive interactions betweeperformance of the QCA. Figures 10 and 11 show the ratio
nonbonded nearest-neighbor beads. We note in passing theftthe “exact” and the QCA results fo¥, for two systems;
imposing strong attractive interactions between the chainx,, andC(XCC), at p=0.52. For comparison the same re-
may have a profound effect on the system structure as wedults for systems A4 and C2 are shown. It is seen that while
as on its dynamical behavior. This is seen in Figs. 8 and @CA is very accurate for noninteracting ; solvent, its per-
which for the solveniX, 3 display the vacancy pair correla- formance is somewhat reduced in the corresponding interact-
tion function G(r) and the “time” (in terms of number of ing (e, /kT=0.5) solvent. In contrast, the relatively poor

MC steps per particledependence of the mean square dis-performance of the QCA in the noninteracting system is im-
placement of the chain’s center of mass for three different

values of the solvent bead-bead interactios)y,;

a b

C

Xe C C

. C .- X C .
X I 0
. C ] .o

FIG. 9. Mean square displacement of the chaiXss) center of mass in
terms of the number of MC steps per bead, for different values,of Solid
line e,,/kT=0.1, dotted linee,,/kT=0.5, anddashed linee,,/kT=1.5.
Bead density ip=0.52.

500 1000
t [MC steps per particle]

1500 2000

FIG. 7. Possible configurations of thC CC X segment about a central ion
I showing the positive correlation in attaching two neighboritbeads to
the ion as discussed in the text.
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tive success of the QCA in this case thus results from can-

1.1 Bral cellation of opposing effects of many-body correlations.
1.05 AL
3 Q- [ T s SO o SR MO
& 10 S S A V. CONCLUSIONS
g :
i 0% The application of the(two-body quasichemical ap-
0.9 proximation in the calculation of solvation energies in lattice
models of solvation provides a reasonable approximdgon
0851 & ror smaller than 20%for all systems studied. Deviations
0 1 2 4 5 6 from the QCA may be qualitatively explained in terms of

3
e/kT many-body correlations.

FIG. 10. Ratio between the energies obtained from the MC simulations and
from the QCA for the solvenK,3, at densityp=0.52, for interacting and

nOninteraCting Systen(S), Ebb/kT:0.0;A, Ebb/kT:0.5). The dotted lines APPENDIX: DERIVATION OF THE SO LVATION
connecting the points in Figs. 10 and 11 serve just to guide the eyes. NOtﬁNERGY '

that here(and in Fig. 1} the parametekg,/kT is varied at constant tem-

perature, and the intrachain interactions remain constant. . . . .
In this section we summarize the calculations for the

standard(infinite dilution) free energy of solvation in the
_ ) constant volume ensemble. The calculation is very similar to
proved when interactions are present. The same trends Wefe one developed in Ref(1 for the constant pressure en-

observed with shorter chain solvents. » semble, so we keep the description brief referring to Ref.
These observations can be rationalized by noticing agaiB ) for the details.

that the QCA disregards three-body and higher correlations. The chemical potential of molecules of kifg=0) in
Consider first the homogeneoks; solvent(Fig. 10. When this ensemble is obtained from the derivative of the Helm-

€1x<0.5kT=ep;, the solvent prefers the neighborhood of o free energyh with respect to the amount of component
other solvent molecules, effectively “rejecting” the solute ;

i o -~ 1. This can be formally written in the form
thus leading to a three-body contribution to the solvation
energy which makes it smalléin absolute valugthan the
QCA value which does not account for such correlations. For, _ ﬁ
stronger ion—solvent interaction the ion attracts the solvent’L,L "N
and solvent—solvent attractions will further increase the sol- TVANj o)

vent occupation of sites nearest-neighbor to the ion, beyond IA IA
the QCA prediction. The QCA then somewhat underesti- =| | —— + —

i in Ei N ™ =i | oN
mates the actual solvation energy as seen in Fig. 10.

TVAN AN ) 25
For heterogeneou€(XCC), solvent we have argued

above that the effect of many-body correlations is to make IN;;
the actual interaction energy lowén absolute valugthan '
the QCA prediction. The correlations imposed by the bead—
bead attraction however work in the opposite direction since (

JIA
Ny

TVAN i ANimb i) TVANj 20N}

the attachment of one bead to the ion enhances the solvent
density about the ion, hence the solvation energy. The rela-

(A1)

TVAN; o AN}

From the QCA the second term on the right-hand side of Eq.

1.05 (A1) is zero at equilibrium. Using Guggenheim’s expresdion
o for the entropyS({N;},{N;;}) [e.g., Eq.(1) of Ref. Ab)] and
L s the energyE({N;}.{N;;})=—2=_1=[_iN;;¢;, and keeping
. 095 A g in mind M=3{_yr;N;=V/v*, we get
%\T ‘l}/}'“---a A o .
%\ 09 . ’ O ) Z 5i z 2Nii
‘50.85 a (‘O" ,ui=—§qie”+kT In Ni—ln ;i+§qi In W”
[ .t
0.8 ot z NOO
o5 —rikT(In No+ > In 2Ng)2| | (A2)
0 1 2 4 5 6

3
kT
e/ where the paramete ando; are related to the number of

FIG. 11. Ratio between the energies obtained from the MC simulations an onfigurations Of. a Cham of kindl in the |att|C§. Equatlop
from the QCA for the solven€(XCC),, at densityp=0.52, for interacting A2) can be rewritten in term of the scaled variables defined

and noninteracting systent®, e,,/kT=0.0; A, €,,/kT=0.5). by Eq.(5) as
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Z N, 5 Ny z pearing on the second term of E@\7) we find, using Eq.
Hi=" 5 Gi€i TKT)In =r—In P Inr+ 5 (@ (A6), that [9(BAA)/IN;;]=0 if i,j#0, while
M z T4
—ri)In—+=q;In )%——ri |n)Q29 . (A3) IBAA, z 1
Ng 2 ¢ 2 %o =—5 (=) g
INo; 2 Noo

This result can be shown to have the same form as the one TV {Neh {Nim} 20
obtained in Ref. @) for w; using the isothermal—isobaric g€y kT
ensemblé! As in Ref. 2b), we identify the infinite dilution TZ0 570 gam kT
limit of s, (i.e., lim, _ou) as the standard free energy of mXom
solvation of specie$, AA,, in the solvent mixture. Disre-

garding the second and third terms in E43),2® we are left ~ Also, using Eq.(1) we get
with

(A8)

M? NG (aNoj 2 1 1)—1

z 4
AA|:__qiE||+kT +_(q|_r|)|n__r| In_o ) =_€(_+_+_
2 2 M B VAN ANim}t 2 0; ! Noj - Njj -~ Noo

0
Nq

A9
Xun Z Xgo (A9)

z
+=q lim In = in
2@ of 2" (¢p)? . . . .

For noninteracting chaing;; =0 for all j, therefore the sec-
where the superscript 0 indicates quantities calculated for thgnd term of Eq.(A7) vanishes, leading to Ed9). Finally
pure solvent, i.e., withp; =0 (while subscript O indicates note that the cavity formation term\A/ in Eq. (A6) is not
properties evaluated for the “vacancy speciesdsing Eq.  calculated in the MC computation and therefore should be

: (A4)

¢—0

(18) of Ref. 2b), omitted when comparing the QCA and the simulation results.
|imO In X—'Iz' =—2 |n( 2 e 2Aai ’”Jx—?i) , (A5)
P

whereX; denotes summation over @k 1 (includingi=0),
and repeating manipulations of the kind used in Réj),2ve ACKNOWLEDGMENTS
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Xoi LFor solvation and association of ions in polymer hosts, see,(@dz, M.
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P )Vv{Nm}v{Nij} "As is customary in lattice gas theories we use the term “noninteracting
chains” for the situation where only site exclusion interactions exist be-

i 2/ , [IBAA, tween the chains.

i “ IN:: 8Note that the present case of constant volume is different from the con-

! BT VAN N 4 stant pressure situation considered in Ref. 2, although the final expression,

Eqg. (10) can be shown to be the same in a system of noninteracting

solvent molecules.

B : (A7) 9A. Baumgatner, in Monte Carlo Method in Condensed Matter Physics

VAN NI} 2 10edited by K. BinderSpringer, Berlin, 1998 Chap. 9.
. . . J. Skolnick and A. Kolinski, Adv. Chem. Phyg8, 223(1990.
The first term of the right-hand side of EGA7) leads after 15 Ret. 2, substituting the expression for the)|/ores$Eqa (13)]in Eq.(16)

some algebra to Eq9). For the free energy derivative ap- for y;, the form of Eq.(A3) above is obtained.
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