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Monte Carlo simulations are used to calculate the energy, free energy, and entropy of solvation in
a lattice model of polymer host. The solute particle interacts with specific beads in the host chain at
nearest neighbor sites. The results are used to check the accuracy of the quasichemical
approximation~QCA! recently used@Olender and Nitzan, J. Chem. Phys.101, 2338~1994!# to study
ion solvation and ion pair dissociation in polymer hosts. For noninteracting chains we find that the
QCA is very accurate when the solvent consists of homogeneous chains~all beads interact equally
with the impurity!, and give errors of up to 20% when nonhomogeneous chains~with some of the
beads interacting with the impurity! are used. For interacting chains this trend is reversed and the
QCAworks better for nonhomogeneous chains. Deviations of the QCA prediction from the ‘‘exact’’
numerical results are traced to three-body and higher order correlations. The success of the QCA for
interacting solvents of nonhomogeneous chains is associated with cancellation of opposing effects
of such correlations. ©1995 American Institute of Physics.
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I. INTRODUCTION

Following the increasing interest in the equilibriu
properties of polymeric ionic conductors, such as the so
tion and association of ions in polymeric hosts,1 we have
studied2 these properties using a lattice theory of solvatio
In particular, we have used2~b! Guggenheim’s quasichemica
approximation~QCA! ~Refs. 3 and 4! to derive expressions
for the thermodynamic quantities of solvation~free energy,
entropy, enthalpy, and volume! at infinite dilution of the ions,
and for the equilibrium constant for ion-pairing as a functi
of temperature, pressure, and solvent properties. We h
shown that a combination of dielectric continuum theory
long range interactions together with the application of Q
for the short range interactions can be used to rationaliz
range of experimental results for ions solvated in low a
high molecular weight polyethers.

In the present work we examine the validity of the QC
when applied to this problem by comparing the QCA solv
tion energy to that obtained from Monte Carlo~MC! simu-
lations for the same model and for various system par
eters. We focus on the temperature dependence of
solvation energy, from which free energy and entropy of s
vation can be obtained.

In the model considered, the ion–polymer mixture
contained in a cubic lattice characterized by a coordina
numberz. A molecule of typei occupiesr i connected lattice
sites and interacts with all the other molecules in the mixt
by site exclusion and nearest neighbor interactions. Th
molecules may have several kinds of ‘‘beads,’’ each intera
ing differently with the other components of the mixture. T
lattice contains empty sites~component of typei50 whose
chain length is 1! which interact with the other componen
by site exclusion only.
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The simulations are done at constant volume, and th
QCA calculation is performed accordingly. Details of the
QCA procedure@similar to the constant pressure calculation
of Ref. 2~b!# are summarized in Appendix A.

II. QUASICHEMICAL APPROXIMATION

In this section we briefly review the QCA formalism for
a general lattice gas mixture, focusing on the expression
that will be used for comparing between theory and simula
tions. The system considered consists of a mixture ofNi

molecules of typei ( i50,...,n), wherei denotes a particular
component of the (n11)-component mixture andi50 re-
fers to the empty sites. Each molecule in the mixture is mad
of r i ‘‘beads’’ connected in a chainlike manner, each occu
pying one site on a lattice of coordination numberz. By
definition r 051. The volume of the system is expressed by
V5Mv* , whereM5( i50

n r iNi is the total number of sites
andv* is the average volume of a lattice site in the mixture
v* is a constant parameter in this study. The density of com
ponenti is defined asr i5r iNi /M , and is the average prob-
ability that a site is occupied by a segment of a molecule o
type i .

From the QCA, the free energy of the system is given in
terms of the composition$Ni% and of the number of nearest
neighbor pairs of beads of typesi and j , $Ni j %. The Helm-
holtz free energy is obtained asA($Ni%,$Ni j %)
5E($Ni%,$Ni j %)2TS($Ni%,$Ni j %). Here the energyE is
given by the sum of terms2Ni j e i j over all types of nearest-
neighbor pairs, where the interaction energies$2e i j % are
constant parameters~e i j.0 for attractive interactions!. The
interactions with empty sites$e i0% are zero. The entropyS is
obtained from Guggenheim’s formula3,4 for the total number
of configurations of the chains in the lattice@Eq. ~1! of Ref.
6275)/6275/8/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6276 Olender et al.: Solvation in macromolecular fluids
2~b!#. From the minimization of the free energy of the sy
tem with respect to$Ni j %, the well-known quasichemica
equation is obtained

4NiiNj j5eDe i j /kTNi j
2 , ~1!

whereDe i j[(e i i1e j j22e i j ). The quantities$Ni% and$Ni j %
are related by3

2Nii1 (
j ~Þ i !

Ni j5qizNi , ~2!

where the parameterqi is defined by

qi5@r i~z22!12#/z. ~3!

For an unbranched chainzqi is the number of nonbonded
nearest neighbors to a molecule of typei .3 For empty sites
q051. The total number of nonbonded pairs is (z/2)Nq ,
whereNq[( i50

n qiNi .
Following Barker,5 Eqs.~1! and ~2! can be generalized

within the QCA, to consider chains with beads of differe
kinds. For simplicity consider the case where all molecu
are identical chains of sizer , however each chain contain
several types of beads. The generalization is done by sim
redefining molecular types as referring to these distinct typ
of beads, and the parameterzqi then corresponds to the num
ber of nonbonded nearest neighbor to all beads of typei in a
given chain.qi is not given now by Eq.~3!, which is valid
only for a whole molecule of typei , and depends on the
locations of beads of typei in the chain. However,

(
i
qi5@r ~z22!12#/z, ~4!

where the sum is over all the different types of beads in
molecule.

The set of Eqs.~1! and ~2! is sufficient for determining
the values of$Ni j % in terms of $e i j %, T, $zqi% and $Ni%,
( i50,...,n). These equations can be simplified by scali
the amount of pairsNi j , as well as the total number of non
bonded nearest neighbors to molecules~or beads! of type i ,
zqiNi , by the total number of pairs (z/2)Nq . In terms of the
scaled variables$x i j % and$w i%, defined by

x i i[
Nii
z
2 Nq

, x i j[
1

2

Ni j
z
2 Nq

, w i[
qiNi

Nq
, ~5!

Eqs.~1! and ~2! become

x i ix i j5eDe i j /kTx i j
2 , ~6!

w i5x i i1 (
j ~Þ i !

x i j . ~7!

The system of nonlinear Eqs.~6! and ~7! can be solved ex-
actly for a two component mixture (n51) @cf. Eq. ~22! in
Ref. 2~b!#. An exact solution can be also obtained for a mu
ticomponent system in the random mixing limi
De i j /kT50, for anyi and j , which leads tox i j5w iw j ~all i
and j !. In the general case these equations have to be so
numerically, and this was done using the multidimension
Newton–Raphson method.6 This iterative method can be
used efficiently by starting with the known solution atb51/
J. Chem. Phys., Vol. 103,Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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kT50, then increasingb stepwise, using the solution$x i j %
obtained for the previous temperature as a first trial in
calculations at the new temperature.

The parameters$x i j % obtained in this way are used t
calculate thermodynamic quantities for the solvat
process.2~b! Here we compare them with the MC simulatio
of the same system. We focus on the average solvation
ergy which is easily obtained from the simulations. The te
perature dependence of this quantity is directly related to
other thermodynamic functions of solvation.

In a system containing a single solute molecule of typI
~‘‘ion’’ ! the solute–solvent interaction energy of this imp
rity is given by

E I5(
i
8 e I iNIi5zNq(

i
8 e I ix I i , ~8!

where( i8 denotes summation over alliÞI , andx I i is ob-
tained from the QCA Eqs.~6! and~7!. For a solvent made o
noninteracting chains,7 E I is equal to the solvation energ
DEI . In this caseE I obtained from the QCA at infinite dilu
tion takes the form~see the Appendix!,

E I52zqI
( i8e I ix0i

0 ee I i /kT

( i8x0i
0 ee I i /kT

52zqI
( i8e I iw i

0ee I i /kT

( i8w i
0ee I i /kT

, ~9!

where the superscript 0 indicates quantities calculated for
pure solvent, i.e., withw I50, and where the second equali
follows from the fact thatx i j

05w i
0w j

0 in the case of noninter
acting chains. In the actual QCA calculations based on E
~8! and ~9! the system considered was the same one use
the simulation, containing a single ‘‘ion’’ in a lattice of 100
sites. The infinite dilution result~9! constitutes an excellen
approximation for this case.@For the system parameters
Table I we have found that results based on Eq.~9! differ by
no more than 0.1% from those obtained from Eq.~8!.#

TABLE I. Systems of noninteracting chains studied by Monte Carlo sim
lations.C denotes a bead which does not interact, andX a bead which
interacts attractively, with the impurity.N is the number of chains in the
10310310 lattice, r is the corresponding density~fraction of occupied
sites!, rX is the density ofX sites which interact attractively~at nearest
neighbor distance! with the impurity. zqX and zqC are the number~per
chain! of nearest neighbors toX sites and toC sites, respectively.

Label Chain N r rX zqX zqC

A1 X4 100 0.400 0.400 18 •••
A2 X4 130 0.520 0.520 18 •••
A3 X4 162 0.648 0.648 18 •••
A4 X13 40 0.520 0.520 54 •••
A5 X13 54 0.702 0.702 54 •••
B1 CXCC 100 0.400 0.100 4 14
B2 CXCC 130 0.520 0.130 4 14
B3 CXCC 162 0.648 0.162 4 14
C1 C(XCC)2 74 0.518 0.148 8 22
C2 C(XCC)4 40 0.520 0.160 16 38
C3 C(XCC)4 54 0.702 0.216 16 38
C4 C(XCC)8 21 0.525 0.168 32 70
D1 C(XCCC)2 58 0.522 0.116 8 30
D2 C(XCCC)3 40 0.520 0.120 12 42
D3 C(XCCC)3 54 0.702 0.158 12 42
D4 C(XCCC)6 21 0.525 0.126 24 78
No. 14, 8 October 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6277Olender et al.: Solvation in macromolecular fluids
An approximate expression forE I can be obtained by
making the mean-field approximation for the solve
~MFAS! as was done in Refs. 2~b! and 8. This involves tak-
ing e i j→0 andz→` for i , jÞI ~this is exact in the presen
system of noninteracting solvent molecules!, while keeping
ze i j constant, together with the substitutionsx i j→w iw j ,
qi→r i , andw i→r i . Under this approximation Eq.~9! be-
comes

E I
MF52zqI

( i8e I ir i
0ee I i /kT

( i8r i
0ee I i /kT

. ~10!

Exact results are obtained in the limits of zero and infin
temperature. WhenT→` Eqs.~9! and~10! become, respec-
tively, E I 5 2zqI( i8e I iw i

0 andE I
MF 5 2zqI( i8e I ir i

0. At zero
temperature all the sites nearest neighbor to the ion are
cupied with the bead of typei5X whose attractive interac-
tion with the ion is largest, and the solvation energy becom
E I52zqIe IX .

Free energies can be obtained from the energies us
standard methods. The Helmholtz free energyA of the whole
system can be obtained from the temperature dependenc
the average energy using

bA~b!2b8A~b8!5E
b8

b

E~b!db. ~11!

Similarly, the free energy of solvation,AI , is calculated by
scaling the impurity-solvent interaction by an auxiliary p
rameterl and integrating the resultingE I(l),

AI~l51!2AI~l50!5E
0

1 E I~l!

l
dl. ~12!

Equations~11! and ~12! are equivalent in the case o
noninteracting chains~E5E I in this case!. Note that the free
energy of solvation defined by Eq.~12! does not include the
energy associated with cavity formation~see the Appendix!.

III. MONTE CARLO SIMULATIONS

The simulated system consists of a single impur
~‘‘ion’’ ! and several chains of equal size in a simple cub
lattice (z56). Two types of beads are considered; beads
type ‘‘C’’ which do not interact with the ‘‘ion’’ and beads of
type X which interacts attractively with it. We use ‘‘homo
geneous chains’’ where all beads are of typeX, and nonho-
mogeneous chains consisting of beads of both typesX and
C. Our typical lattice is of size 10310310. Most of the
present work is concerned with solvents of noninteracti
chains, although some results for interacting chains are
scribed later.

The configurations of the system are propagated usin
metropolis algorithm with kink–jump and cranksha
moves.9 In addition, for the trial move of the end-beads w
choose, with equal probabilities, any of the four directio
perpendicular to the end bond of the chain. Finally, the tr
moves of the ion are made into any available nearest ne
bor location. For a lattice gas model of pure macromolecu
melts this algorithm was shown to provide an adequate sa
pling of the configuration space. It was argued that it a
provides a useful shortcut to dynamical properties.10
J. Chem. Phys., Vol. 103,Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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The initial configuration of the system is constructed b
successively adding chains to the lattice up to the desi
density. Each chain is constructed by randomly choosing
position of its first bead, then growing it to the final size b
successively adding beads at randomly chosen sites nea
neighbor to the last bead added, until the final size
reached. If this process fails it is restarted from a differe
initial position. This simple algorithm cannot efficiently gen
erate very dense configurations, particularly for long chain
For the densities and chain lengths studied in this work~see
Table I!, it worked well.

Following this preparation process the system was th
malized until the end-to-end distance and the gyration rad
of the chains, as well as the total energy in the syste
ceased to vary in a systematic way. This typically requir
1000–2000 MC steps per particle, depending on the ch
length. The results represented below were obtained fr
averages over 40–100 different MC trajectories, each w
2000 MC steps per bead~4000 steps per particle for the
longest chains!.

IV. RESULTS AND DISCUSSION

We consider first noninteracting solvents~i.e., non-
bonded interactions between solvent beads are assumed
but double occupancy of sites is forbidden!. The characteris-
tics of the systems studied are summarized in Table I. T
systems of group A are homogeneous chainsXn of variable
lengthn at different densities. In the systems of group B th
solvent molecule isCXCC. The molecules of group C are o
the form C(XCC)n , with variable length and densities a
indicated in Table I. Molecules of group D,C(XCCC)n ,
have a lower relative content of attraction sitesX. rX is the
density of these sites in the system andzqX is the number of
nonbonded nearest neighbor~per chain! to these sites.zqC is
the number of nearest neighbors, per chain, to theC-sites.

Results of simulations with homogeneous chain solven
~group A! are shown in Fig. 1. Here the solvation energ
E I /e IX , which in this case is equal toNIX , is plotted against
e IX/(kT) for systems A2 and A4~Table I!. Shown are the
simulation results, as well as results of the QCA, Eq.~8!, and
of the mean-field approximation for the solvent~MFAS!, Eq.
~10!. The error bars shown here and in Fig. 2 represent
standard deviation of the energy from its average along
trajectory. The QCA is seen to be in excellent agreeme
with the numerical results while the MFAS shows slight de
viations. In the present model the only source of error in t
MFAS is in usingr instead ofq for the effective molecular
length. For the cubic lattice this leads to a maximum dev
tion of less than 20% between the QCA and the MFAS r
sults.

The same excellent agreement between the QCA and
numerical simulation results was found at the other densit
and chain lengths~systems A in Table I!. The QCA repre-
sents solvation in this model very well, despite its inhere
seemingly gross simplifications. In the QCA correlations b
tween beads belonging to the same chain are disregarded
the information about the chain connectivity enters only v
the parameterzq, the number of nonbonded nearest neig
bors.
No. 14, 8 October 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6278 Olender et al.: Solvation in macromolecular fluids
The agreement between the QCA equation, Eq.~8!, and
the numerical results is not as good for heterogene
chains. Figures 2 display results for the solvation energy
temperature for the systems B2, C2, and D2. These sys
are characterized by the same total density,r50.52 and dif-
ferent densities of theX ~binding! sites. The deviations of the
QCA from the ‘‘exact’’ numerical results are shown expli
itly in Fig. 2~d!, where the ratioE I

sim/E I
QCA between the nu-

merical and the QCA solvation energy is shown as a func
of temperature. Similar results for the systems B3, C2,
D3 are shown in Fig. 3. These systems are characterize
approximately similar densities ofX beads and different tota
densities.

Figures 4 and 5 compare the exact and the QCA res
for solvents of the same kind. In Fig. 4E I

sim/E I
QCA is shown

as a function ofe IX/(kT) for the solvents B1, B2, and B3—
CXCC molecules at different densities. In Fig. 5 a similar
plot is displayed for solvents B2, C1, C2, an
C4—C(XCC)n at densityr'0.52. Figure 6 is similar to Fig
5, using solvents of typeC(XCCC)n ~systems D1, D2, and
D4!.

Finally, from the dependence of the scaled solvation
ergy on the strength of the interactione IX , and using Eq.
~12!, the free energy of solvation,AI , and the corresponding
entropy, SI , can be calculated. Results are shown,
e IX/(kT)56 in Table II.

The following observations can be made on these
sults:

~1! The QCA provides a reasonable approximation to
thermodynamics of solvation in the present model, w
the largest errors not exceeding;20%.

~2! The QCA is virtually exact in the infinite temperatur

FIG. 1. Results from the MC simulations~circles!, QCA ~solid lines!, and
MFAS ~dashed lines! for cases A2~a! and A4~b!. Both systems are at a tota
density ofr50.520.
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e IX/(kT)→0, limit. This is consistent with the succes
of the QCA for homogeneous solvent chains. In the ze
temperature limit the QCA also produces for the pres
model the exact solvation energy, which corresponds
the configurations were all sites nearest to the solute
occupied by X beads.

~3! The QCA seems to work better at higher system den
ties and lower chain lengths. The effect of chain leng
seems to saturate beyondn52–3 ~see Figs. 5 and 6!.

Figures 2–4 also provide a qualitative understanding
the inadequacies of the QCA. In the present model the s
vation energy is determined by the number of pairs cons
ing of the ion and a binding site. The QCA provides a go
approximation for this number in the case of homogeneo
chains. For heterogeneous chains this approximation d

FIG. 2. Results from MC simulations for systems defined in Table I. B2@s
in ~a! and ~d!#, C2 @n in ~b! and ~d!#, and D2@h in ~c! and ~d!#, together
with the corresponding results using QCA~solid lines! and MFAS~dashed
lines!. These systems are characterized by the same value ofr50.520 and
different values ofrX . ~d! shows the ratio between the energies obtain
from the simulations and from the QCA~s for B2, n for C2, andh for
D2!. The dotted lines connecting the points in~d! and in Figs. 3–6 serve just
to guide the eyes.
No. 14, 8 October 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6279Olender et al.: Solvation in macromolecular fluids
not account well for the correlation between anI –X pair and
a third X bead. Such correlations arise from both intram
lecular and intermolecular origins. Intermolecular corre
tions can be best understood by considering the cas
chains with only oneX bead per chain. The attachment of
X-bead to the impurity implies a larger concentration ofC
beads~originating from the same chain! near the impurity,
therefore a smaller probability~smaller than if the chains
were dismembered! for anotherX-bead to attach. Anothe
statement of the same argument is that if two chains at
simultaneously to the ion the number of available configu
tions for each chain is reduced relative to the number
configurations available to a singly attached chain, thus
ating an entropic effect which decreases the averageNIX .
The exact solvation energy will therefore be smaller~in ab-
solute value! than predicted by the QCA, as indeed seen
Figs. 2–4. The behavior of systems B~Fig. 4! is character-
istic of such interchain correlation.

Intramolecular correlations arise from the specific geo
etry of the solvent molecules involved and the specific ste
nature of the impurity-solvent bond~here determined by the
lattice geometry!. In the present model, linear chain mo
ecules on a cubic lattice where the impurity as well as e
bead occupies one lattice site, such correlations arise f

FIG. 4. Ratio between the energies obtained from the MC simulations
from the QCA for the systems B in Table I~CXCC at different densities!
~n, system B1;s, system B2; andh, system B3!.

FIG. 3. Ratio between the energies obtained from the MC simulations
from the QCA for systems B3, C2, and D3 in Table I.~s, system B3;n,
system C2; andh, system D3!. All the systems have the approximate
same density ofX sitesrX'0.16.
J. Chem. Phys., Vol. 103,Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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the fact that inC(XCC)n chains two consecutiveX beads
cannot both attach to the impurity because of the geometric
restrictions. The solvation energy inC(XCC)n solvents is
therefore expected to be even lower than expected on t
basis of interchain correlations only. The opposite situatio
holds for C(XCCC)n chains. Here the attachment of one
X-bead to the ion correlates positively~on our cubic lattice!
with the attachment of the nearest neighborX-bead on the
same chain with the same ion~see Fig. 7!. Therefore the
solvation energy in this case will be higher than expecte
based on the interchain correlation alone. This difference b
tweenC(XCC)n and C(XCCC)n can be seen comparing
Figs. 5 and 6.

Next consider the energy, free energy, and entropy o
solvation. Table II shows the energy,E I , free energy,AI , and
the entropy,SI , of solvation for the systems displayed in
Table I, for the temperaturekT/e IX51/6. Thefree energy
was computed from Eq.~12! andSI5~E I2AI)/T. Note that
at this temperature the sites neighboring to the ion are almo
fully occupied by solventX beads soE I is close to its maxi-
mum value of 6. The entropy of solvation shows a stron
dependence on the solvent density and a relatively week d
pendence on the solvent molecular size~for a given density!.
The biggest effect seen in Table II is the very different en
tropies of solvation between solvents with a different fractio

nd

FIG. 5. Ratio between the energies obtained from the MC simulations a
from the QCA for the solventsC(XCC)n ; n51,2,4,8; atdensityr'0.52
~s, system B2;n, system C1;h, system C2; andL, system C4!.

FIG. 6. Ratio between the energies obtained from the MC simulations a
from the QCA for the solventsC(XCCC)n ; n52,3,6; atdensityr'0.52
~n, system D1;h, system D2; andL, system D4!.

nd
No. 14, 8 October 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6280 Olender et al.: Solvation in macromolecular fluids
of binding sites. Thus, for example,SI /k524.69 for the
solventX4 at densityr50.52 andSI /k5213.9 for thesol-
ventCXCC at the same overall density. Much of this effe
is associated with the effective density of binding sites,
can be seen by considering a solvent of unconnected be
For a solvent made of independentX andC beads atr50.52
we calculate@using expressions provided in Ref. 2~a!# under
the same conditionSI /k523.83 if all beads areX type and
SI /k5211.6 if rX50.130 ~as in solvent B2!.

In addition to the noninteracting solvents considered
far, we have performed a limited set of simulations with t
solvents characterized by attractive interactions betwe
nonbonded nearest-neighbor beads. We note in passing
imposing strong attractive interactions between the cha
may have a profound effect on the system structure as w
as on its dynamical behavior. This is seen in Figs. 8 and
which for the solventX13 display the vacancy pair correla
tion functionG(r ) and the ‘‘time’’ ~in terms of number of
MC steps per particle! dependence of the mean square d
placement of the chain’s center of mass for three differe
values of the solvent bead–bead interactionebb ;

FIG. 7. Possible configurations of theXCCCXsegment about a central ion
I showing the positive correlation in attaching two neighboringX-beads to
the ion as discussed in the text.

TABLE II. Thermodynamic quantities for solvation forkT/e IX51/6. The
superscript~1! means that the thermodynamic values were obtained from
integration of the QCA results, Eqs.~8! or ~9!, using Eq.~12!.

Label r rX E I /e IX AI /e IX SI /k

A1~1! 0.400 0.400 25.97 24.91 26.39
A2~1! 0.520 0.520 25.98 25.20 24.69
A3~1! 0.648 0.648 25.99 25.46 23.19
A4~1! 0.520 0.520 25.98 25.16 24.95
A5~1! 0.702 0.702 25.99 25.52 22.80
B1 0.400 0.100 25.53 23.03 215.0
B2 0.520 0.130 25.65 23.34 213.9
B3 0.648 0.162 25.76 23.67 212.5
C1 0.518 0.148 25.63 23.34 213.7
C2 0.520 0.160 25.62 23.43 213.2
C2~1! 0.520 0.160 25.90 23.95 211.7
C3 0.702 0.216 25.79 23.89 211.4
C4 0.525 0.168 25.61 23.45 213.0
D1 0.522 0.116 25.61 23.36 213.7
D2 0.520 0.120 25.71 23.49 213.3
D3 0.702 0.158 25.70 23.80 211.4
D4 0.525 0.126 25.72 23.58 212.9
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ebb/kT50.1, 0.5, and 1.5. The drastic reduction in chain
mobility for ebb/kT51.5 suggests that permanent immobil
aggregates are formed in this system. Therefore the solvat
studies described below were limited to systems wi
ebb/kT50.1 andebb/kT50.5.

Note that for an interacting solvent the solute–solve
interaction energyE I , Eq. ~8!, does not represent the full
solvation energy,DEI , of species I since the solvent reorga
nization energy is not included. However, for the purpose
comparing to the QCA prediction we continue to conside
this quantity.

For ebb/kT50.1,E I is found to be virtually unchanged
~within numerical errors! from the results obtained for
ebb50; while for ebb/kT50.5 E I differs by up to 15% from
the noninteracting case. An interesting trend is seen in t
performance of the QCA. Figures 10 and 11 show the rat
of the ‘‘exact’’ and the QCA results forE I for two systems;
X13 andC(XCC)4 at r50.52. For comparison the same re
sults for systems A4 and C2 are shown. It is seen that wh
QCA is very accurate for noninteractingX13 solvent, its per-
formance is somewhat reduced in the corresponding intera
ing (ebb/kT50.5) solvent. In contrast, the relatively poor
performance of the QCA in the noninteracting system is im

he

FIG. 8. Vacancy pair correlation function in the pure solventX13 for differ-
ent values of the bead–bead interaction,ebb . Solid lineebb/kT50.1,dotted
line ebb/kT50.5, and dashed lineebb/kT51.5. The bead density is
r50.52.

FIG. 9. Mean square displacement of the chain’s (X13) center of mass in
terms of the number of MC steps per bead, for different values ofebb . Solid
line ebb/kT50.1, dotted lineebb/kT50.5, anddashed lineebb/kT51.5.
Bead density isr50.52.
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6281Olender et al.: Solvation in macromolecular fluids
proved when interactions are present. The same trends
observed with shorter chain solvents.

These observations can be rationalized by noticing ag
that the QCA disregards three-body and higher correlatio
Consider first the homogeneousX13 solvent~Fig. 10!. When
e IX,0.5kT5ebb the solvent prefers the neighborhood
other solvent molecules, effectively ‘‘rejecting’’ the solu
thus leading to a three-body contribution to the solvat
energy which makes it smaller~in absolute value! than the
QCA value which does not account for such correlations.
stronger ion–solvent interaction the ion attracts the solv
and solvent–solvent attractions will further increase the s
vent occupation of sites nearest-neighbor to the ion, bey
the QCA prediction. The QCA then somewhat undere
mates the actual solvation energy as seen in Fig. 10.

For heterogeneousC(XCC)4 solvent we have argue
above that the effect of many-body correlations is to ma
the actual interaction energy lower~in absolute value! than
the QCA prediction. The correlations imposed by the bea
bead attraction however work in the opposite direction si
the attachment of one bead to the ion enhances the so
density about the ion, hence the solvation energy. The r

FIG. 10. Ratio between the energies obtained from the MC simulations
from the QCA for the solventX13 , at densityr50.52, for interacting and
noninteracting systems~s, ebb/kT50.0;n, ebb/kT50.5!. The dotted lines
connecting the points in Figs. 10 and 11 serve just to guide the eyes.
that here~and in Fig. 11! the parametere IX/kT is varied at constant tem
perature, and the intrachain interactions remain constant.

FIG. 11. Ratio between the energies obtained from the MC simulations
from the QCA for the solventC(XCC)4 , at densityr50.52, for interacting
and noninteracting systems~s, ebb/kT50.0;n, ebb/kT50.5!.
J. Chem. Phys., Vol. 103,Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
ere

ain
ns.

f

n

or
nt,
ol-
nd
ti-

ke

d–
ce
ent
la-

tive success of the QCA in this case thus results from ca
cellation of opposing effects of many-body correlations.

V. CONCLUSIONS

The application of the~two-body! quasichemical ap-
proximation in the calculation of solvation energies in lattic
models of solvation provides a reasonable approximation~er-
ror smaller than 20%! for all systems studied. Deviations
from the QCA may be qualitatively explained in terms o
many-body correlations.

APPENDIX: DERIVATION OF THE SOLVATION
ENERGY

In this section we summarize the calculations for th
standard~infinite dilution! free energy of solvation in the
constant volume ensemble. The calculation is very similar
the one developed in Ref. 2~b! for the constant pressure en-
semble, so we keep the description brief referring to Re
2~b! for the details.

The chemical potential of molecules of kindi (Þ0) in
this ensemble is obtained from the derivative of the Helm
holtz free energyA with respect to the amount of componen
i . This can be formally written in the form

m i5S ]A

]Ni D
T,V,$Nj %Þ0,i

5F S ]A

]Ni D
T,V,$Nj %Þ i ,$Ni j %

1(
i

(
j. i S ]A

]Ni j D
T,V,$Nj %,$Nlm%Þ i j

•S ]Ni j

]Ni D
T,V,$Nj %Þ i ,$Nlm%Þ i j

1S ]A

]N0D
T,V,$Nj %Þ0 ,$Ni j %

•S ]N0

]Ni D
T,V,$Nj %Þ0,i ,$Ni j %

G . ~A1!

From the QCA the second term on the right-hand side of E
~A1! is zero at equilibrium. Using Guggenheim’s expression3

for the entropyS($Ni%,$Ni j %) @e.g., Eq.~1! of Ref. 2~b!# and
the energyE($Ni%,$Ni j %)52( i51

n ( j> i
n Ni j e i j , and keeping

in mindM5( i50
n r iNi5V/v* , we get

m i52
z

2
qie i i1kTH ln Ni2 ln

d i
s i

1
z

2
qi lnF 2Nii

z~qiNi !
2G J

2r ikTH ln N01
z

2
lnF 2N00

z~N0!
2G J , ~A2!

where the parametersd i ands i are related to the number of
configurations of a chain of kindi in the lattice. Equation
~A2! can be rewritten in term of the scaled variables define
by Eq. ~5! as

nd

ote

nd
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m i52
z

2
qie i i1kTF ln Ni

M
2 ln

d i
s i

2r i ln
N0

M
1
z

2
~qi

2r i ! ln
M

Nq
1
z

2
qi ln

x i i

w i
22

z

2
r i ln

x00

w0
2 G . ~A3!

This result can be shown to have the same form as the
obtained in Ref. 2~b! for m i using the isothermal–isobari
ensemble.11 As in Ref. 2~b!, we identify the infinite dilution
limit of m I ~i.e., limw I→0m I! as the standard free energy
solvation of speciesI , DAI , in the solvent mixture. Disre
garding the second and third terms in Eq.~A3!,2~b! we are left
with

DAI52
z

2
qie II1kTF1

z

2
~qI2r I !ln

M0

Nq
02r I ln

N0
0

M0

1
z

2
qI lim

w I→0
ln

x II

w I
22

z

2
r I ln

x00
0

~w0
0!2G , ~A4!

where the superscript 0 indicates quantities calculated for
pure solvent, i.e., withw I50 ~while subscript 0 indicates
properties evaluated for the ‘‘vacancy species’’!. Using Eq.
~18! of Ref. 2~b!,

lim
w I→0

ln
x II

w I
2 522 lnS (

i
8 e21/2De I i /kTAx i i

0 D , ~A5!

where( i8 denotes summation over alliÞI ~including i50!,
and repeating manipulations of the kind used in Ref. 2~b!, we
finally get

DAI5kTF z2 ~qI2r I !ln
M0

Nq
02r I ln

N0
0

M0 1
z

2
~qI

2r I !ln
x00
0

~w0
0!2

2zqI lnS (
i
8 ee I i /kT

x0i
0

w0
0 D G

5DAI82kTzqI lnS (
i
8 ee I i /kT

x0i
0

w0
0 D , ~A6!

whereDAI8 , the term which survives ife I i50 for all i , is the
cavity formation term.2~b! The corresponding solvation en
ergy is obtained from

DEI5S ]bDAI

]b D
V,$Nm%

5S ]bDAI

]b D
V,$Nm%,$Ni j %

1(
i
8 (

j. i
8 S ]bDAI

]Ni j
D
T,V,$Nm%,$Nlm%Þ i j

•S ]Ni j

]b D
V,$Nm%,$Nlm%Þ i j

. ~A7!

The first term of the right-hand side of Eq.~A7! leads after
some algebra to Eq.~9!. For the free energy derivative ap
J. Chem. Phys., Vol. 103Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject
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pearing on the second term of Eq.~A7! we find, using Eq.
~A6!, that [](bDAI)/]Ni j ]50 if i , jÞ0, while

S ]bDAI

]N0 j
D
T,V,$Nm%,$Nlm%Þ0 j

52
z

2
~qI2r I !•

1

N00

2zqI
ee I j /kT

(m8 x0m
0 ee Im /kT . ~A8!

Also, using Eq.~1! we get

S ]N0 j

]b D
V,$Nm%,$Nlm%Þ0 j

52e j j S 2

N0 j
1

1

Nj j
1

1

N00
D 21

.

~A9!

For noninteracting chainse j j50 for all j , therefore the sec-
ond term of Eq.~A7! vanishes, leading to Eq.~9!. Finally
note that the cavity formation term,DAI8 in Eq. ~A6! is not
calculated in the MC computation and therefore should
omitted when comparing the QCA and the simulation resu
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