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While the applicability of instantaneous normal modBM) analysis of liquids to short time
dynamics is in principle obvious, its relevance to long time dynamics is not clear. Recent attempts
by Keyes and co-workers to apply information obtained from this analysis to self-diffusion in
supercooled liquid argon is critically analyzed. By extending the range of frequencies studied we
show that both imaginary and real branches of the density of modes are represented better, for large
o, by IN[p(w)]~wT than by IHp(w)]~w*T? as advocated by Keydsd. Chem. Phys101, 5081

(1994 ]. However, since in the relevant frequency range the two fits almost overlap, the numerical
results obtained by Keyes, showing good agreement with the simulation results for self-diffusion in
supercooled liquid argon, remain valid even though implications for the frequency dependence of
the barrier height distribution change. We also explore other possibilities for extracting information
from the INM analysis(1) The density of “zero force modes,” defined as the distribution of normal
modes found at the bottom or top of their parabolic potential surfaces, can be computed with no
appreciable additional numerical effort. This distribution provides a better representation than the
total density of modes for the normal mode distribution at well bottoms and at saddles, however, we
find that it makes little difference in quantitative analy$®. We suggest that the ratjg,(w)/ps(w)
between the density of modes in the unstable and stable branches provide an estimate for the
averaged barrier height distribution for large Using this estimate in a transition state theory
calculation of the average hopping time between locally stable liquid configurations and using the
resulting time in a calculation of the self-diffusion coefficient yields a very good agreement with
results of numerical simulation. @995 American Institute of Physics.

I. INTRODUCTION angular velocity correlation function for relatively long
times. (The Fourier transform of the total density of modes
There has recently been a growing interest in applyingperforms much more poorly because of the diverging time
normal mode analysis of instantaneous liquid configurationgvolution of the imaginary frequency componentstill,
to the analysis of liquid state dynamits2 The applicability — these approximations to the velocity correlation function are
of the instantaneous normal mod&M) picture (based on  not good enough for evaluation of the self diffusion coeffi-
expanding the multidimensional potential surface up to quaeient. Problem arise also in evaluating rates associated with
dratic terms in the deviation of the coordinates from the in-finite frequency Fourier transforms of such time correlation
stantaneous initial configuratipis quite evident for the lig- functions because they are usually very sensitive to the de-
uid dynamics at short times. This includes not only shorttailed structure of these functions.
time phenomena, but also transition and transport coeffi- In spite of these shortcomings, Keyes and co-workers, in
cients associated with correlation functions dominated by series of recent papéf§ have shown that it is possible to
short time dynamics. A beautiful example has recently beemise instantaneous normal mode analysis to obtain informa-
given by the analysis of the short time dynamics of solvatiortion about the self-diffusion coefficient ¢éupercooleglig-
by Stratt and Chd’ uids. Keyes' ideas have developed substantially over the last
While many dynamical processes are controlled by rategew years, and in what follows we summarize them as pre-
derived from relatively short lived time correlation functions, sented recently by Key&sThe starting point is Zwanzig's
it has to be conceded that often in normal liquids the “shortexpression for the self-diffusion coefficient, based on view-
times” involved are not short enough for a straightforwarding the (monoatomi¢ liquid dynamics as a collection of
normal mode evaluation of these rates. Consider for exampléamped harmonic motions
the self diffusion coefficienD =(1/3)(v(0)-v(t))dt, where
v(t) is the velocity. Its relatively small value in condensed
systems results from cancellation of positive and negative
contributions to the integrand at short times, making the long
time behavior important in determining the overall value ofwherem is the atomic massgy(w) is the density of harmonic
D. It is remarkable that sometimes, in particular for stronglymodes associated with quench@dcal minima configura-
arrested motions, e.g., for dense enough monoatomitons ands, is their lifetime. Zwanzig's expression is in turn
systems or for the rotational motion in highly polar liquids based on the idea of Stillinger and Webahat the configu-
such as watel® the Fourier transform of the density sable  ration space of the liquid may be viewed as a collection of
modes yields a reasonable approximation for the veldoity “inherent structures,” local minima on the many body poten-
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tial surface, about which the system executes two types of (e AEs) ~exp —cw®/T?); co*/T?>1. (6)
motions: small amplitude oscillations arfithfrequeny tran- i )
sitions across potential barriers to other local minima. zwan-  (f) The term[Qg/Qp]sn(w)exp(— BEg(w)) in Eq. (4) is
zig assumes that such transitions rearrange the equilibriu@ssociated with the averaged density of normal modes in the
configuration in local subvolumes of the overall Systemur;stable(lmagmary frequencigsbranch,(p,(w)), according
(which consists of many such equivalent subvolumieger- to
rupt the oscillations of the harmonic modes associated with w a -1
these subvolumes, and make the motions of these modes [QB/Qm]sn(w)e_ﬁEB(“’)=—M(§—fu) (pu(®)),
after the transition uncorrelated with their motions before it. @m 7)
7, is identified as the average waiting time for these transi-
tions. It is important to realize that the idea sibvolumes WhereM is the number of minima connected to each saddle,
affected by the transitions is associated with the realizatio/3z is the fraction of downward directions in a saddle and
that only modes of short enough wavelengths are affected bfy is the fraction of unstable modes,
such transitions in a simple way; the lifetime of long wave-
length hydrodynamic modes is controlled also by macro- fu=f do(p,(w)). €)]
scopic conservation laws.

The important contribution of Keyes and co-workers is (g) Equations(4), (5), and(7) then lead to
to provide estimates fop(w) and 7, to be used in Eq(1). M .
The most recent analysis of Keyeas based on the followin -1__ 0
points: ’ v ’ ™ _27T(a’/3z_fu)J'0 do w(py(@)

(@ In Eqg. (1), 7, is taken as an average inverse hopping M
rate, independent ab (the “equivalent well model®). Fur- a

—— % [T4e 0? exg—co®T?. (9
thermore, it is assumed that(w)>1, leading to 27T(a/32—fu)fo

o Equations(2), (3), and (9) now provide a direct route
D= (kT/m) Tﬁlj do pg(w)o™? (2)  from the averaged instantaneous normal modes de(tsiti
0 stable and unstable branchésthe self-diffusion coefficient.
(b) The densityp,(w) in Eq. (2) is approximated by the This analysis leads tB/T=4.31-10"°* MT? (T in K andD
form in units of 0‘2/tu) and, with the simplest choickl =2 (i.e.,
one dimensional saddles connecting two neighbor mihima
yields an excellent agreement with results of numerical

wherew, is peak frequency in the low temperature density ofSimulations for supercooled liquid argbn.

pq(w)=(2ws)_1[1—Cos{ﬂ'w/ws)]; 2ws=w=0, (3)

modes of the stable brancpy(w). [For argon at reduced The success of Keyes analysis is remarkable in that it
densityd=1 (1.68 gr/cn) ws=12 (=5.5-102s™1) estimated demonstrates the feasibility of obtaining information perti-
from the peak inpy(w) at T=40 K))] nent to long time dynamics from data that appears to be

(c) The hopping timesr, are associated with barrier relevant 'only to short t.imes. Some assumptions 'and'some
crossing processes and are calculated using the transition rdfdérmediate results which underline Keyes analysis still ap-
theory expression rate-(w,/2m) X[Qg/Q,Jexp(—Eg/kT),  Pear quegtlonable. Without l_mderesnmatlng the importance
wherew,, is the characteristic well frequendg is the char-  Of Keyes ideas, we address in the present paper these points
acteristic barrier height an@g/Q,, is the ratio between par- t.hat we regard as _wgakgr in the detailed analysis. The bottom
tition functions associated with the subspace of stable moddii€ of our analysis is similar to that of Keyes, namely, the

in the barrier and well regioré. instantaneous normal modes of a liquid indeed contain data
(d) =, is estimated by averaging the barrier crossing ratdPertinent to long time dynamics. It appears however that the
over a distribution of saddle points according to success in fitting the self-diffusion coefficient cannot in itself
provide a confirmation to the detailed structure of this analy-

sis.

In Sec. Il, we re-examine the issue of barrier height dis-
tribution. Keye$§ already pointed out that a simple geometri-
whereEg(w)=—p8""In(e”#%8), is the characteristic barrier cal argumerff would suggest that the right-hand side of Eq.
helght for barrier frequency); the average being over all (6) should take the form E)(ﬂ'CwZ/T) for |arge enoughu_
barriers with curvaturew, s is the number of saddles con- Our numerical ana]ysis of both normal and Supercoo]ed
nected to each well and(w) is the distribution of saddle simulated liquid argon, lead us to indeed prefer this form for

Tﬁl=f:dw(wm/2w)[QB/Qm]sn(w)e’ﬁEB(“') (4

frequencies, normalized to 1. _ large enougho. We show however that with parameters ob-
(¢) The unstable branch of the normal mode densitytained from our numerical analysis the resdiiased on

(pu(®)), is fitted to the functional form Keyes' procedurefor D remains essentially unchanged.
(po(@))=aw exp —cw*/T?) (5) We also consider the origin of the stable and unstable

normal mode distributiongis(w) andp,(w). Keye$ assumes
where the parametegs andc can be obtained from the fit. that these functions are dominated by wells, barriers and
Using earlier theoretical argumefitgields an estimate for saddle points. In fact, Eq$4a and (4b) in Ref. 8, which
the characteristic barrier height at frequeney provide the basis for this analysis, rely heavily on this as-
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sumption. However, there is no reason to underestimate the ¢ g5
contribution of other points in configuration space, whose
contribution to these distributions depend on the local
anharmonicitie$®?’ Instead we suggest a procedure which
bias the stable and unstable mode distributions in favor of
the local vicinities of saddles and wells. As expected, the
resulting distributions are significantly blueshifted relative to
the normal, unbiased ones. It is significant and gratifying _ 0-03 |

0.04

however that the resulting estimate fexp(—8Eg)),, is only 35
modestly affected by this new procedure. <
In Sec. Ill, we consider another approach to the self- 3 0.02

diffusion coefficient, based on the assumption that the ratio &
pu(w)/ps(w) provides a measure of the relative barrier height
between neighboring well and saddle characterized by a fre-
guencyw. We show that this approach gives results in very
close agreement to those obtained from numerical simula-
tions for high density liquid argon. In Sec. IV, we summarize

our findings and conclusions.

0.01

0.0

IIl. NORMAL MODE DISTRIBUTIONS -2I0 0 20 w 40 60 80

The numerical results presented in this paper are based
on simulations of liquid argon as a Lennard-Jones fluid charE!G- 1. The density of modes for liquid Ar at densidy-0.78 (molecules
acterized by the well deptierks=119.8 K and diameter 3:;;’;; gPSeTr: ]}osrgeKrﬁozu!p:&‘;—the total density(w). Dotted line—
0=3.405 A. The same model fluid was used by Keyes and
co-workers® Using the argon mass, the natural time unit
for this system istuE[mazle]l’2:2.18 ps. All frequencies at the minimum(for stable modesor maximum(for unstable
are expressed in units 6f 1. As usual all length coordinates mode$ of the parabola on which they are defined. This set is
are scaled by the atomic mass4—1, so the force con- used to construct the “density of zero force modesy(w),
stants (eigenvalues of the Hessian maijrisatisfy k=w? ~ in the same way that the overall set of modes, obtained with-
where w is the corresponding INM frequency. For reasonsout restrictions, is used to determipéw).
that become apparent below, we often deviate from the usual It is clear thatpy(w) does not necessarily represent the
norm of plotting the density of normal modes as a functionsaddles(for w?<0) or wells (for w?>0), because at such
of w, and plot it againsk instead. We use, and p, to  pointsall modes should be zero force modes. However, it is
denote the corresponding mode densities. Note thalso clear that@ py(w) is a better representation for the
po(®)=2wp(|k|). In what follows, however, we sometimes density of modes associated with critical poifgaddles and
omit the subscripte andk on p, when the meaning is ap- wells) on the potential surface, artt) that if the size of the
parent from the text. sample studies is larger than the size of the “independent

The discussion in this paper focuses heavily on the norrearranging regions” then real critical points of the sample
mal modes distributions associated with the local minimaare irrelevant.
and with the saddle points of the multidimensional potential ~ Figures 1 and 2 show(w) and py(w) for liquid argon at
surface of the liquid. Though these distributions can, in prin-150 K for two densitiesg=0.78 andd=1.0 (molecules per
ciple, be computed, the necessary numerical procedures asd). As in previous studiés® the negative axis is used to
very time consuming especially with regards to saddle pointdisplay the branch of imaginary frequencies. These results
locations. For this reason, Keyes and co-workers have foand others shown below are based on simulations with 100
cused on the density of modes obtained from sampling corer 400 particle€® and are only very weakly sensitive to the
figurations from finite temperature trajectories. Here, we exsystem size. Note that bofw) and py(w) are normalized to
amine a simple way to weight the configuration sampled inl. We note thata) Both real and imaginary branches gf
favor of well bottoms and saddle points without almost anyare shifted to higher frequencies relative go This is as
additional numerical effort. This is done by selecting only expected from considering simple 1-dimensional pictures,
those frequencies associated with modes subjected to zesince a substantial contribution to low frequencies arise from
force in the sampled configuration. To this end suppose thantermediate(between minima and maximaonfigurations.
for a given configuration the diagonalization of the Hessian(b) The dip aboutw=0 is much more pronounced i(w)
leads to a set oN normal mode force constantk;} and than inp(w), again as expected from similar reasonifg.
forces{f;}. For an arbitrary small fractiod<1 (we have Denoting the fraction of unstable modég= 1% dw p(w)
used 5=0.017, we select only a subsé, of the modes: and f¥=/°_dw py(w), it is clear from Figs. 1 and 2 that
those that satisfy;<k;o8. For 6 small enough the number f,>f2 again expected singg, samples a larger portion of
No/éis independent 06, andNy/(NS) measures the fraction phase space associated with real extrema in the potential sur-
of “zero force modes” in the given configuration. Thus the face, and these are weighted by the Boltzmann factor in fa-
resulting subset contains only those modes which are foundor of the local minima, i.e., real frequency extrema.
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FIG. 2. Same as Fig. 1, for supercooled liquid Ar1 andT=150 K. FIG. 3. Full line: The stable branch of the total density of moge@y), of

Fig. 2. Dotted line: The stable branch of the density of zero force modes,
pos(w), also shown in Fig. 2. Dashed line: The distribution of quenched, zero
. . . temperature modeg,(w). Dashed—dotted line: The approximati8) for
These observations are all consistent with the EXpeCtap'q(w). All distributions are for the densel=1, fluid. All are normalized to

tion that py(w) represent the density of modes at saddlel in the domainw=0---.

points better tham(w). It should be noted, however, that the

substantial differences between these functions clearly indi-

cate that anharmonicities in the potential surface contributelows of sizeAk=0.0754k)?® were used® This choice of
substantially to the detailed dependencepobn w, and collecting data yields relatively smooth curves even when
simple pictures that assigiiw) to wells, barriers and saddles p(|k|) is as low as 10%. The resulting functions are shown in
may fail in quantitative estimates. Figs. 4 and 5. Figures 4 display ga(|k|) and Inp,(|Kk|),

In what follows we denote byys(w) and poy(w) the  respectively, for two liquid densities}=0.78 and 1.0 as
stable and unstable branches, respectivelyy@$). From the  functions ofk. Similar results for Inpy(|k|) and Inpg,(|k|)
reasons just state@ys(w) itself cannot be regarded as a re- are shown in Figs. 5. It is seen that for lajgéthese distri-
liable approximation to the quenched density of modesputions are represented quite well by an exponential func-
polw), since most of the stable modes that contribute tation, exd—alk|), in contrast to the conclusion of Keyes who
pos(w) are associated with saddles and not with wells. Anhas fittedp,(|k|) to the form exp—ak|?).>° In Fig. 6 we
comparison of these three distributions for thel liquid is  show again the data of Fig(#) for the high density fluid,
shown in Fig. 3, which also depicts the approximati@  now plotted againsk®. In addition to our data, this figure
used by Keyes fop,(w). The quenched density of modes also shows the fit by Keyegesults based on the dashed line
used here is based on 50 configurations obtained fromf Fig. 11 in Ref. 8. It is seen that there is actually an
quenching 50 arbitrary initial configurations sampled fromexcellent agreement between our results and Keyes’ in the
an equilibrium 150 K trajectory, using a conjugate gradientrange where they can be compared, but based on our larger
algorithm. The high frequency tails seengfw) and (in a  range of data we have reached a different conclusion.
more pronounced wayin py(w) practically disappears in Figure 7a) shows Inp,(|k|) vs k for several tempera-
pq(w), Which, in this respect, is represented relatively well bytures, T=60, 100, 150, and 200 K, for th=0.78 fluid. The
the approximatior(3). This behavior can be rationalized by slopes of the largék| linear dependencies are plotted v¥ 1/
the fact that the saddles that contribute to the finite temperan the inset. Similar results for thee=1 fluid at T=100, 150,
ture pos(w) are of higher energy, therefore sample stronglyand 200 K are shown in Fig(f). We conclude that for large
repulsive parts of the interatomic interaction not accessible gk| p,(|k|) is represented well by the form
lower energies. These strong interactions at close atomic en-
counters are associated with higher frequencies, which is pu(lk))=A exp(—BIK|/T), (10
probably the cause for the finite temperature high frequencie., p,(w)=2Aw exp(—Bw?/T). (We find A=6.4x10"2 and
tails in pgs(w) and pg(w). B=3.7 ford=0.78 andA=6x103, B=5.0 ford=1.) Thus

Next consider the detailed dependence of these distribdike Keyes[Eq. (5) abovd, we find thatp,(w) depends ol
tions onk=w?. We consider separately the stable and unthrough the variables”T. We note that Keyes has pointed
stable branchesp.(|k|), py(|k|]), and similarly po(|k|),  out that in going to low temperatures care has to be taken to
pou(|K]). In constructing the corresponding histograms, win-include only supercooled fluid samples that did not become
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FIG. 4. (a) The distribution of eigenvalues in the stable mode branch:FIG. 5. Same as Fig. 4, for the distribution of zero force mogggk) and

In ps(k) vs k. Triangles—€=0.78. Stars-d=1.0. (b) Same, for the distri-

bution of eigenvalues in the unstable brangl/k|).

our studies of the high density fluid =100 K.

coefficient based on Eg€2), (3), and(9): p,(w) andf, are

pou(ll).

ever, since beyond the difference in the analytical form used
solid glasses. This is not expected to create a problem for th® fit p,(w) [Eq. (10)] with k=w? instead of Eq.(5)] the
lower density fluid, as we verified by monitoring the numeri- numerical results are practically the same in ¢heange that

cal self-diffusion coefficient, but it is the reason for limiting mostly contributes to the integral in EQ), we would get
very similar result forz, using p,(w)=2Aw exp(—Bw?/T).
Keye$ has used his results to predict the self-diffusionUsing this form and Eqg2), (3), and(9), with A, B, f, and

a/3z obtained from fitting our data fos,(w) we indeed get

directly obtained from the simulations and the parametefusingM=2) D/kgT=1.4210° MT*?cn/s, in close agree-
a/3z is estimated using the simulation data and the theory oment with Keyes. We have to conclude that the success in

Ref. 4d). This resulted iD/kgT=1.68 10° MT*2 cné/s (T
in K), in close agreement with the simulation resultMif=2

is chosen. This is an impressive success of the theory. Howsther.

fitting the self-diffusion coefficient cannot in itself indicate
the superiority of one of the forms used fat(w) over the

Downloaded-21-Mar-2004-t0~132.66.16.34 LFREEitRMh - Y0 d Q3¢ NS 6.-BAHIESH LAy right, ~see—http:/jcp.aip.org/jcp/copyright.jsp



2174

G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids

-4 4
2
8
RN -0.02
By
oago
BN -0.04
B L0l
= — RS
\:f ) Aot 200,06
= AL ()
=) x =N Lo Ao
- =10y e & % 0.01 0.09
* O A';A 0 l/T
. LA e
. g Y
* €]
6l . . =% o0
_ . . [ A':‘ O
K o
* -14 | . an
% O, &
-18 . ‘ i .. $-
0 ! 5. 2 2 3 260 4?)0 * 600
107k (@) k
FIG. 6. Stars: Same results as in Figh)(high density fluidd=1) plotted 4
againstk?. Full line: results from Ref. 8(See the tex}. 00
I1l. THE INDEPENDENT MODE MODEL
The data analysis in the previous section has followed -0.02
that of Keye€ which is based on the “equivalent minima- )
fully collective model” of Madan and Keye5lIn this section ,_;,_
we follow a considerably more naive approach which seems __ 8 o A<> 0.04
to do at least as well. This approach is based on the follow- < R
. . . B o A Ty
ing assumptiongia) The escape from a local wetssociated =
. : J . . e i 4 A 500 0.005 0.01
with an inherent liquid structuyeés dominated by transitions 10| 1T
through simple saddle points characterized by a single “re- o an o
action coordinate,” i.e., one unstable directigh) The cor- ) A o
responding neighboring well and barrier are associated with 5 R
similar frequencies; in fact we assign the same “reaction -12 f e R
coordinate” frequency (in absolute magnitudeo both.(c) S an o
The corresponding barrier height is correlated withif the © o
geometrical argumefnt that leads toe(w)~|w|?>=|k| holds, “ o A Io ;
the stable and unstable branches of the instantaneous normal 200 400 600
mode distribution would satisfy () k

FIG. 7. (@ In py(|k|) vs|k| for the d=0.78 fluid at different temperatures:
60 K (starg, 100 K (circles, 150 K (triangles, and 200 K(diamond$. The
inset shows the slopes of these lines as functions of inverse tempethjure.

Same aga), for thed=1 fluid at T=100 K (circles, 150 K (triangles, and

Z:EZ; =A exp(— e(w)/kgT);  €(w)~ 0 (0—)
(129
or
pu(|k|) _ B . N
o[k~ A exp—e(kD/keT): - e([k])~k|([k| —<).

200 K (diamonds.

It is seen that Eq(12) is satisfied for bothp and py. The

(12b (relatively small quantitative difference observed between
Figures 8—11 show that this expectation is indeed confirmethe behavior ofp and p, indicates again that the total fre-
by the numerical experiment, provided thetw? is large  quency distribution does not represent fully the distribution
enough. Figure 8 show [In,(|k|)/ps(|k|)] plotted againsk  associated with wells, barriers and saddles. Table | summa-
for the densityd=0.78 at temperatures 60, 100, 150, and 200rizes the parameters obtained from these fits.
K. Figure 9 shows similar results for [y, (|K|)/pos(|K|)]- The function exp—B|w|?/kg/T) should be interpreted as
Linear dependence is seen for lafgeand the corresponding the result of the present theory for the averaoeer all bar-
slopes are displayed againsfTlih the insets. Similar results riers associated with frequeney) of the Boltzmann factor
for the high densityd =1, fluid are shown in Figs. 10 and 11. exp(—Eg/kgT), which in Keyes’ theory is given by Ed6)
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FIG. 8. Ifp,(|k|)/ps(|K|)] plotted againstk| for the low density(d=0.78
fluid at T=60 K (starg, 100 K (circles, 150 K (triangles, and 200 K
(diamonds. In the inset the slopes of these lines are plotted agaifist 1/

provides a better representation than E6). The pre-
exponential ternA is, in the same average sense, a measure
of the ratio of volumes associated with the non reactive
modes in the corresponding saddle and well, the equivalent

of the factorQg/Q,, in Eq. (4).
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FIG. 10. Same as Fig. 8 for the high densit/=1.0) fluid at T=100 K
(circles, 150 K (triangles, and 200 K(diamond$.

) ) ) _ Carrying this picture to its naive conclusion, we now
and for which we have already argued in the previous SeCt'Oassign the lifetimer, in Eq. (1) to the inverse rate for cross-

that a quadratic frequency dependence of the barrier heigmg the barriefs) connecting a local well to its neighbors,

w

rglch:dw pa(w) 5—A exl — Be(w)],

calculated from the transition state theory expression

(13

where the integral is an average over all the normal mode
frequencies in the well and where the facfoexp(— Be(w))
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FIG. 9. Same as Fig. 8, for the ratios of zero force distributions obtained for

the d=0.78 fluid: Ifpo,(|K|)/pos(|K|)] plotted againstk| at different tem-

600

peratures with inset showing the slopes of the resulting linear dependenci¢dG. 11. Same as Fig. 9 for the high densiy; 1. Mark notations are as in

plotted against 1I¥.

Fig. 10.
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TABLE |. The parametersA and B obtained from fitting the ratio
pu([K)/ps(|K]) to the form(12b) with e(|k|)/kg=BJK| (in K).

Density/Distribution A B

0.78/Total 35 3.4
0.78/Zero forces 2.5 2.9

1.0/Total 3.8 4.4
1.0/Zero forces 3.2 2.8

is obtained from Eq(12). In Eq. (13) we have allowed a

constant fitting parametear to allow for the fact that there

may be more than one escape route out of a given well. It

gives the same flexibility to Eq13) as given by the param- |

eterM to Eq.(9) of Keyes' theory. a
Figures 12 and 13 show the resulting diffusion coeffi-

cient, calculated from Eq91) and (13), as a function of , . , .

temperature for fluid densitg=1.0. The simulation results 0 40 80 120 160 200

from Keye$ are shown together with the be@ntegey fit T

obtained by Chang'”g the multiplicative facoin Eq. (13). FIG. 13. Same as Fig. 12, except that the result of numerical quenching, the

Note that all calculations are done at constant volume. Th@ashed line in Fig. 3, is used fag(w) in Eq. (13), yielding c=1 as the

full and dotted lines represent results obtained using(EZ).  parameter for best fit.

with the total density of modep, and the density of zero

force modesypy, respectively. In Fig. 12,(w) was repre- S )
sented by Eq(3) with w;=12, as in the applications done by c=15. This indicates, as emphasized by other wofié@rs'

Keyes. In this case the choice=3 in Eq.(13) is seen to give that the hopping mechanism for mass transport in liquids is

a very reasonable fit. In Fig. 13, the numerically obtained’€levant only at high densities, though perhaps not necessar-
quenched density of states shown in Figdashed linpwas iy restricted tosupercoolediquids.

used. Here, good fits were obtained witlk1. We note that

an attempt to repeat the same procedure for the normal fluipy,. CONCLUSIONS

at d=0.78 did not succeed to reproduce the results of nu-
merical simulations, and the best fitwhich are still worse
from those seen in Figs. 11 and)lRere obtained only for

We have re-examined the application of instantaneous
normal mode analysis tlong timedynamics in liquids. Un-
like the use of this concept to short time dynamics which is
relatively straightforward, applications to long time dynamic
14 . : : : processes such as self-diffusion rely on information about the
distribution of barrier heights for hopping between inherent
liquid structures(when this hopping dominates the dynam-
ics). This course, taken before by Keyesjas followed by

us in the present work. Even though our conclusion concern-
ing the barrier height distribution are different from Keyes’,
we have shown that in the range of nhumerically relevant data
our results are very similar, providing support for the princi-
pal conclusions of Ref. 8. For the dependence of the average
barrier height on the local reaction coordinate frequency we
advocate(Eg),~w?, different from Keyes but more intu-
itively appealing.

We have also suggested another route for obtaining in-
formation on(Eg),. This was based on the assumption that
ratio p,(|w|)/ps(|w|) between the density of modes in the un-
stable and stable branches is directly related to the relative
0 . . . . barrier height associated with local wells and nearest neigh-

0 40 80 120 160 200 bor saddles characterized by the frequenay We have
T shown that the barrier height distribution inferred from this
FIG. 12. D/T plotted againsf for the high densityd=1, fluid. The ti- ~ @PProach, supplemented by a primitive form of transition
angles are Keyes' simulation results. Full line—results obtained using EgState theory, provides a very reliable estimate for the self-
(12) for estimatingA exp(—e/kgT) in Eq. (13) using the total density of  diffusion coefficient of liquid argon at high density.
m_odeSp_ar_]d the multlpllcatlve parameterzs. Dotted Ilne—results ob- We should end with a word of caution: The success of
tained similarly, using the density of zero force modegw), instead of L
Qur procedure, as well as that of Keyemdicates that the

p(w). To produce the theoretical results the approximated quenched densi ° °
of state, Eq(3), has been used fgr,(w) in Eq. (13). approaches taken contain much of the correct physics. How-

12 ¢

10 ¢

D/T (x10%
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FIG. 14. e(w)/kgT (dashed—dotted lineand the full integrand of Eq(13)
(full line), plotted as a function ob.

ever, thequantitative agreements seen in Figs. 12 and 13
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ZNote that the definition 0Qg/Q,, here is different fromvg/v,,, the ratio
of phase space volumes in the barrier and well regions of Ref. 8, by a

should npt be taken too SeriQUSW- as some asgumptions WET€actor of (in the harmonic approximationvg/ w,, Wherewg is the barrier
made with no real foundation. In particular it should be frequency.

pointed out that the use of E(L3) in the present application

For a pair of neighboring barrier and well associated with the same fre-

is Stretching this expression somewhat beyond the limits of duencyw and located at a fixed distance from each other, the vertical

its validity: This expression is valid foBe(w)>1, however,
this inequality is not satisfied in part of the region which
contributes substantially te, 1. This is seen in Fig. 14,
where bothBe(w) and the integrand in Eq13) is plotted as

energy difference scales a&. This is expected to hold for modes of
strong local character, i.e., largs.

ZNumerically we see a large accumulationkef 0 modes in thep(k) spec-
trum [see Fig. 4a)], pointing to the importance of contributions not from
saddles and not from well bottoms.

a function of w. Here, the numerically quenched density Z"\We believe that the large estimate for the paramet8z~0.43 (a is the

pg(w) is used for the integrand of Eq13) and the total
density of states is used in E{.2) to calculateBe(w). [Very
similar results are obtained whey is used instead op in
Eq. (12).] It is seen thaBe<1 when the integrand attains its
maximum as a function ab. A similar problem exists also in

number of atoms in the independent rearranging regimsilts from this
assumption. For a modest=6 this would imply =8. This implies that
the dimension of the saddle—the number of downward directionz éd
the typical saddle has 8 reactive directions, while the fit to the diffusion
constant uses one such direction.

ZEnsembles of 2000 configurations and of 50 configurations were used for

Keyes' calculation. Nevertheless, the qualitative aspects of the 100 particle system and the 400 particle system, respectively.

the present approach seem valid and it should be interesting

29This is done by definingt=x%4 and using windows of constant width in
X. The natural alternative, to use windows of fixed width dn i.e.,

to examine its applicability for more complicated liquids, in = 2kY250, with 6w=0.1 was used to construct the histogramsgias)

particular polar solvents.
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