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While the applicability of instantaneous normal mode~INM ! analysis of liquids to short time
dynamics is in principle obvious, its relevance to long time dynamics is not clear. Recent attempts
by Keyes and co-workers to apply information obtained from this analysis to self-diffusion in
supercooled liquid argon is critically analyzed. By extending the range of frequencies studied we
show that both imaginary and real branches of the density of modes are represented better, for large
v, by ln@r~v!#;v2/T than by ln@r~v!#;v4/T2 as advocated by Keyes@J. Chem. Phys.101, 5081
~1994!#. However, since in the relevant frequency range the two fits almost overlap, the numerical
results obtained by Keyes, showing good agreement with the simulation results for self-diffusion in
supercooled liquid argon, remain valid even though implications for the frequency dependence of
the barrier height distribution change. We also explore other possibilities for extracting information
from the INM analysis:~1! The density of ‘‘zero force modes,’’ defined as the distribution of normal
modes found at the bottom or top of their parabolic potential surfaces, can be computed with no
appreciable additional numerical effort. This distribution provides a better representation than the
total density of modes for the normal mode distribution at well bottoms and at saddles, however, we
find that it makes little difference in quantitative analysis.~2! We suggest that the ratioru~v!/rs~v!
between the density of modes in the unstable and stable branches provide an estimate for the
averaged barrier height distribution for largev. Using this estimate in a transition state theory
calculation of the average hopping time between locally stable liquid configurations and using the
resulting time in a calculation of the self-diffusion coefficient yields a very good agreement with
results of numerical simulation. ©1995 American Institute of Physics.
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I. INTRODUCTION

There has recently been a growing interest in applyi
normal mode analysis of instantaneous liquid configuratio
to the analysis of liquid state dynamics.1–22The applicability
of the instantaneous normal mode~INM ! picture ~based on
expanding the multidimensional potential surface up to qu
dratic terms in the deviation of the coordinates from the
stantaneous initial configuration! is quite evident for the liq-
uid dynamics at short times. This includes not only sh
time phenomena, but also transition and transport coe
cients associated with correlation functions dominated
short time dynamics. A beautiful example has recently be
given by the analysis of the short time dynamics of solvati
by Stratt and Cho.17

While many dynamical processes are controlled by ra
derived from relatively short lived time correlation function
it has to be conceded that often in normal liquids the ‘‘sho
times’’ involved are not short enough for a straightforwa
normal mode evaluation of these rates. Consider for exam
the self diffusion coefficientD5~1/3!*^v~0!–v~t)&dt, where
v(t) is the velocity. Its relatively small value in condense
systems results from cancellation of positive and negat
contributions to the integrand at short times, making the lo
time behavior important in determining the overall value
D. It is remarkable that sometimes, in particular for strong
arrested motions, e.g., for dense enough monoato
systems5 or for the rotational motion in highly polar liquids
such as water,18 the Fourier transform of the density ofstable
modes yields a reasonable approximation for the velocity~or
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angular velocity! correlation function for relatively long
times. ~The Fourier transform of the total density of modes
performs much more poorly because of the diverging tim
evolution of the imaginary frequency components.! Still,
these approximations to the velocity correlation function ar
not good enough for evaluation of the self diffusion coeffi-
cient. Problem arise also in evaluating rates associated w
finite frequency Fourier transforms of such time correlation
functions because they are usually very sensitive to the d
tailed structure of these functions.

In spite of these shortcomings, Keyes and co-workers, i
a series of recent papers2–8 have shown that it is possible to
use instantaneous normal mode analysis to obtain inform
tion about the self-diffusion coefficient of~supercooled! liq-
uids. Keyes’ ideas have developed substantially over the la
few years, and in what follows we summarize them as pre
sented recently by Keyes.8 The starting point is Zwanzig’s1

expression for the self-diffusion coefficient, based on view
ing the ~monoatomic! liquid dynamics as a collection of
damped harmonic motions

D5~kT/m!E
0

`

dv rq~v!
th

11th
2v2 , ~1!

wherem is the atomic mass,rq~v! is the density of harmonic
modes associated with quenched~local minima! configura-
tions andth is their lifetime. Zwanzig’s expression is in turn
based on the idea of Stillinger and Weber23 that the configu-
ration space of the liquid may be viewed as a collection o
‘‘inherent structures,’’ local minima on the many body poten-
2169169/9/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2170 G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
tial surface, about which the system executes two types
motions: small amplitude oscillations and~infrequent! tran-
sitions across potential barriers to other local minima. Zwa
zig assumes that such transitions rearrange the equilibr
configuration in local subvolumes of the overall syste
~which consists of many such equivalent subvolumes!, inter-
rupt the oscillations of the harmonic modes associated w
these subvolumes, and make the motions of these mo
after the transition uncorrelated with their motions before
th is identified as the average waiting time for these tran
tions. It is important to realize that the idea ofsubvolumes
affected by the transitions is associated with the realizat
that only modes of short enough wavelengths are affected
such transitions in a simple way; the lifetime of long wav
length hydrodynamic modes is controlled also by mac
scopic conservation laws.

The important contribution of Keyes and co-workers
to provide estimates forr~v! and th to be used in Eq.~1!.
The most recent analysis of Keyes8 is based on the following
points:

~a! In Eq. ~1!, th is taken as an average inverse hoppi
rate, independent ofv ~the ‘‘equivalent well model’’6!. Fur-
thermore, it is assumed thatth~v!@1, leading to

D5~kT/m!th
21E

0

`

dv rq~v!v22 ~2!

~b! The densityrq~v! in Eq. ~2! is approximated by the
form

rq~v!5~2vs!
21@12cos~pv/vs!#; 2vs>v>0, ~3!

wherevs is peak frequency in the low temperature density
modes of the stable branch,rs~v!. @For argon at reduced
densityd51 ~1.68 gr/cm3! vS512 ~55.5•1012 s21! estimated
from the peak inrs~v! at T540 K.!#

~c! The hopping timesth are associated with barrie
crossing processes and are calculated using the transition
theory expression rate5~vm/2p!3@QB/Qm#exp(2EB/kT!,
wherevm is the characteristic well frequency,EB is the char-
acteristic barrier height andQB/Qm is the ratio between par-
tition functions associated with the subspace of stable mo
in the barrier and well regions.24

~d! th is estimated by averaging the barrier crossing ra
over a distribution of saddle points according to

th
215E

0

`

dv~vm /2p!@QB /Qm#sn~v!e2bEB~v! ~4!

whereEB~v![2b21 ln^e2bEB&v is the characteristic barrier
height for barrier frequencyv; the average being over al
barriers with curvaturev, s is the number of saddles con
nected to each well andn~v! is the distribution of saddle
frequencies, normalized to 1.

~e! The unstable branch of the normal mode dens
^ru(v)&, is fitted to the functional form

^ru~v!&5av exp~2cv4/T2! ~5!

where the parametersa andc can be obtained from the fit
Using earlier theoretical arguments6 yields an estimate for
the characteristic barrier height at frequencyv
J. Chem. Phys., Vol. 103Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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^e2bEB&v'exp~2cv4/T2!; cv4/T2@1. ~6!

~f! The term@QB/Qm]sn(v)exp~2bEB~v!! in Eq. ~4! is
associated with the averaged density of normal modes in
unstable~imaginary frequencies! branch,^ru~v!&, according
to8

@QB /Qm#sn~v!e2bEB~v!5
v

vm
M S a

3z
2 f uD 21

^ru~v!&,

~7!

whereM is the number of minima connected to each sadd
a/3z is the fraction of downward directions in a saddle an
f u is the fraction of unstable modes,

f u5E dv^ru~v!&. ~8!

~g! Equations~4!, ~5!, and~7! then lead to

th
215

M

2p~a/3z2 f u!
E
0

`

dv v^ru~v!&

5
Ma

2p~a/3z2 f u!
E
0

`

dv v2 exp~2cv4/T2!. ~9!

Equations~2!, ~3!, and ~9! now provide a direct route
from the averaged instantaneous normal modes density~both
stable and unstable branches! to the self-diffusion coefficient.
This analysis leads toD/T54.31•1028 MT3/2 ~T in K andD
in units of s2/tu! and, with the simplest choiceM52 ~i.e.,
one dimensional saddles connecting two neighbor minim!
yields an excellent agreement with results of numeric
simulations for supercooled liquid argon.8

The success of Keyes analysis is remarkable in that
demonstrates the feasibility of obtaining information pert
nent to long time dynamics from data that appears to
relevant only to short times. Some assumptions and so
intermediate results which underline Keyes analysis still a
pear questionable. Without underestimating the importan
of Keyes ideas, we address in the present paper these po
that we regard as weaker in the detailed analysis. The bott
line of our analysis is similar to that of Keyes, namely, th
instantaneous normal modes of a liquid indeed contain d
pertinent to long time dynamics. It appears however that t
success in fitting the self-diffusion coefficient cannot in itse
provide a confirmation to the detailed structure of this anal
sis.

In Sec. II, we re-examine the issue of barrier height di
tribution. Keyes8 already pointed out that a simple geometr
cal argument25 would suggest that the right-hand side of Eq
~6! should take the form exp~2cv2/T! for large enoughv.
Our numerical analysis of both normal and supercool
simulated liquid argon, lead us to indeed prefer this form f
large enoughv. We show however that with parameters ob
tained from our numerical analysis the result~based on
Keyes’ procedure! for D remains essentially unchanged.

We also consider the origin of the stable and unstab
normal mode distributions,rs~v! andru~v!. Keyes8 assumes
that these functions are dominated by wells, barriers a
saddle points. In fact, Eqs.~4a! and ~4b! in Ref. 8, which
provide the basis for this analysis, rely heavily on this a
, No. 6, 8 August 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2171G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
sumption. However, there is no reason to underestimate
contribution of other points in configuration space, who
contribution to these distributions depend on the lo
anharmonicities.26,27 Instead we suggest a procedure whi
bias the stable and unstable mode distributions in favo
the local vicinities of saddles and wells. As expected,
resulting distributions are significantly blueshifted relative
the normal, unbiased ones. It is significant and gratify
however that the resulting estimate for^exp~2bEB!&v is only
modestly affected by this new procedure.

In Sec. III, we consider another approach to the s
diffusion coefficient, based on the assumption that the r
ru~v!/rs~v! provides a measure of the relative barrier heig
between neighboring well and saddle characterized by a
quencyv. We show that this approach gives results in ve
close agreement to those obtained from numerical sim
tions for high density liquid argon. In Sec. IV, we summari
our findings and conclusions.

II. NORMAL MODE DISTRIBUTIONS

The numerical results presented in this paper are ba
on simulations of liquid argon as a Lennard-Jones fluid ch
acterized by the well depthe/kB5119.8 K and diameter
s53.405 A. The same model fluid was used by Keyes a
co-workers.8 Using the argon massm, the natural time unit
for this system istu[@ms2/e#1/252.18 ps. All frequencies
are expressed in units oftu

21. As usual all length coordinate
are scaled by the atomic mass,m1/2l→ l , so the force con-
stants ~eigenvalues of the Hessian matrix! satisfy k5v2,
wherev is the corresponding INM frequency. For reaso
that become apparent below, we often deviate from the u
norm of plotting the density of normal modes as a funct
of v, and plot it againstk instead. We userv and rk to
denote the corresponding mode densities. Note
rv~v!52vrk(uku!. In what follows, however, we sometime
omit the subscriptsv andk on r, when the meaning is ap
parent from the text.

The discussion in this paper focuses heavily on the n
mal modes distributions associated with the local mini
and with the saddle points of the multidimensional poten
surface of the liquid. Though these distributions can, in pr
ciple, be computed, the necessary numerical procedures
very time consuming especially with regards to saddle po
locations. For this reason, Keyes and co-workers have
cused on the density of modes obtained from sampling c
figurations from finite temperature trajectories. Here, we
amine a simple way to weight the configuration sampled
favor of well bottoms and saddle points without almost a
additional numerical effort. This is done by selecting on
those frequencies associated with modes subjected to
force in the sampled configuration. To this end suppose
for a given configuration the diagonalization of the Hess
leads to a set ofN normal mode force constants$kj % and
forces $f j %. For an arbitrary small fractiond!1 ~we have
usedd50.017!, we select only a subsetN0 of the modes:
those that satisfyf j,kjsd. For d small enough the numbe
N0/d is independent ofd, andN0/(Nd! measures the fraction
of ‘‘zero force modes’’ in the given configuration. Thus th
resulting subset contains only those modes which are fo
J. Chem. Phys., Vol. 10Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject
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at the minimum~for stable modes! or maximum~for unstable
modes! of the parabola on which they are defined. This set
used to construct the ‘‘density of zero force modes,’’r0~v!,
in the same way that the overall set of modes, obtained wi
out restrictions, is used to determiner~v!.

It is clear thatr0~v! does not necessarily represent th
saddles~for v2,0! or wells ~for v2.0!, because at such
pointsall modes should be zero force modes. However, it
also clear that~a! r0~v! is a better representation for the
density of modes associated with critical points~saddles and
wells! on the potential surface, and~b! that if the size of the
sample studies is larger than the size of the ‘‘independe
rearranging regions’’ then real critical points of the samp
are irrelevant.

Figures 1 and 2 showr~v! andr0~v! for liquid argon at
150 K for two densities;d50.78 andd51.0 ~molecules per
s3!. As in previous studies2–8 the negative axis is used to
display the branch of imaginary frequencies. These resu
and others shown below are based on simulations with 1
or 400 particles,28 and are only very weakly sensitive to the
system size. Note that bothr~v! andr0~v! are normalized to
1. We note that~a! Both real and imaginary branches ofr0
are shifted to higher frequencies relative tor. This is as
expected from considering simple 1-dimensional picture
since a substantial contribution to low frequencies arise fro
intermediate~between minima and maxima! configurations.
~b! The dip aboutv50 is much more pronounced inr0~v!
than in r~v!, again as expected from similar reasoning.~c!
Denoting the fraction of unstable modesf u5*2`

0 dv r~v!
and f u

(0)5*2`
0 dv r0~v!, it is clear from Figs. 1 and 2 that

f u.f u
0; again expected sincer0 samples a larger portion of

phase space associated with real extrema in the potential
face, and these are weighted by the Boltzmann factor in
vor of the local minima, i.e., real frequency extrema.

FIG. 1. The density of modes for liquid Ar at densityd50.78 ~molecules
per s3! and T5150 K. Full line—the total densityr~v!. Dotted line—
density of zero force modes,r0~v!.
3, No. 6, 8 August 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2172 G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
These observations are all consistent with the expec
tion that r0~v! represent the density of modes at sadd
points better thanr~v!. It should be noted, however, that th
substantial differences between these functions clearly in
cate that anharmonicities in the potential surface contrib
substantially to the detailed dependence ofr on v, and
simple pictures that assignr~v! to wells, barriers and saddle
may fail in quantitative estimates.

In what follows we denote byr0s~v! and r0u~v! the
stable and unstable branches, respectively, ofr0~v!. From the
reasons just stated,r0s~v! itself cannot be regarded as a re
liable approximation to the quenched density of mod
r0~v!, since most of the stable modes that contribute
r0s~v! are associated with saddles and not with wells.
comparison of these three distributions for thed51 liquid is
shown in Fig. 3, which also depicts the approximation~3!
used by Keyes forrq~v!. The quenched density of mode
used here is based on 50 configurations obtained fr
quenching 50 arbitrary initial configurations sampled fro
an equilibrium 150 K trajectory, using a conjugate gradie
algorithm. The high frequency tails seen inr~v! and ~in a
more pronounced way! in r0s~v! practically disappears in
rq~v!, which, in this respect, is represented relatively well
the approximation~3!. This behavior can be rationalized b
the fact that the saddles that contribute to the finite tempe
ture r0s~v! are of higher energy, therefore sample strong
repulsive parts of the interatomic interaction not accessible
lower energies. These strong interactions at close atomic
counters are associated with higher frequencies, which
probably the cause for the finite temperature high frequen
tails in r0s~v! andrs~v!.

Next consider the detailed dependence of these distri
tions on k5v2. We consider separately the stable and u
stable branches,rs(uku), ru(uku), and similarly r0s(uku),
r0u(uku). In constructing the corresponding histograms, wi

FIG. 2. Same as Fig. 1, for supercooled liquid Ar,d51 andT5150 K.
J. Chem. Phys., Vol. 103Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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dows of sizeDk50.075~4k!2/3 were used.29 This choice of
collecting data yields relatively smooth curves even whe
r~uku! is as low as 1028. The resulting functions are shown in
Figs. 4 and 5. Figures 4 display lnrs(uku) and lnru(uku),
respectively, for two liquid densities,d50.78 and 1.0 as
functions ofk. Similar results for lnr0s(uku) and lnr0u(uku)
are shown in Figs. 5. It is seen that for largeuku these distri-
butions are represented quite well by an exponential fun
tion, exp~2auku!, in contrast to the conclusion of Keyes who
has fittedru(uku! to the form exp~2auku2!.30 In Fig. 6 we
show again the data of Fig. 4~b! for the high density fluid,
now plotted againstk2. In addition to our data, this figure
also shows the fit by Keyes~results based on the dashed lin
of Fig. 11 in Ref. 8!. It is seen that there is actually an
excellent agreement between our results and Keyes’ in
range where they can be compared, but based on our la
range of data we have reached a different conclusion.

Figure 7~a! shows lnru(uku) vs k for several tempera-
tures,T560, 100, 150, and 200 K, for thed50.78 fluid. The
slopes of the largeuku linear dependencies are plotted vs 1/T
in the inset. Similar results for thed51 fluid atT5100, 150,
and 200 K are shown in Fig. 7~b!. We conclude that for large
uku ru(uku) is represented well by the form

ru~ uku!5A exp~2Buku/T!, ~10!

i.e., ru~v!52Av exp~2Bv2/T!. ~We find A56.431023 and
B53.7 for d50.78 andA5631023, B55.0 for d51.! Thus
like Keyes@Eq. ~5! above#, we find thatru~v! depends onT
through the variablev2/T. We note that Keyes has pointed
out that in going to low temperatures care has to be taken
include only supercooled fluid samples that did not becom

FIG. 3. Full line: The stable branch of the total density of modes,rs~v!, of
Fig. 2. Dotted line: The stable branch of the density of zero force mod
r0s~v!, also shown in Fig. 2. Dashed line: The distribution of quenched, ze
temperature modes,rq~v!. Dashed–dotted line: The approximation~3! for
rq~v!. All distributions are for the dense,d51, fluid. All are normalized to
1 in the domainv50•••`.
, No. 6, 8 August 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2173G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
solid glasses. This is not expected to create a problem for
lower density fluid, as we verified by monitoring the nume
cal self-diffusion coefficient, but it is the reason for limitin
our studies of the high density fluid toT>100 K.

Keyes8 has used his results to predict the self-diffusio
coefficient based on Eqs.~2!, ~3!, and~9!: ru~v! and f u are
directly obtained from the simulations and the parame
a/3z is estimated using the simulation data and the theory
Ref. 4~d!. This resulted inD/kBT51.68•105 MT3/2 cm2/s ~T
in K!, in close agreement with the simulation results ifM52
is chosen. This is an impressive success of the theory. H

FIG. 4. ~a! The distribution of eigenvalues in the stable mode branc
ln rs(k) vs k. Triangles—d50.78. Stars—d51.0. ~b! Same, for the distri-
bution of eigenvalues in the unstable branch,ru(uku).
J. Chem. Phys., Vol. 103Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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ever, since beyond the difference in the analytical form us
to fit ru~v! @Eq. ~10!# with k5v2 instead of Eq.~5!# the
numerical results are practically the same in thev range that
mostly contributes to the integral in Eq.~9!, we would get
very similar result forth using ru~v!52Av exp~2Bv2/T!.
Using this form and Eqs.~2!, ~3!, and~9!, with A, B, f u and
a/3z obtained from fitting our data forru~v! we indeed get
~usingM52! D/kBT51.42•105 MT3/2 cm2/s, in close agree-
ment with Keyes. We have to conclude that the success
fitting the self-diffusion coefficient cannot in itself indicate
the superiority of one of the forms used forru~v! over the
other.

h:FIG. 5. Same as Fig. 4, for the distribution of zero force modes,r0s(k) and
r0u(uku).
, No. 6, 8 August 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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III. THE INDEPENDENT MODE MODEL

The data analysis in the previous section has follow
that of Keyes,8 which is based on the ‘‘equivalent minima
fully collective model’’ of Madan and Keyes.6 In this section
we follow a considerably more naive approach which see
to do at least as well. This approach is based on the follo
ing assumptions:~a! The escape from a local well~associated
with an inherent liquid structure! is dominated by transitions
through simple saddle points characterized by a single ‘‘
action coordinate,’’ i.e., one unstable direction.~b! The cor-
responding neighboring well and barrier are associated w
similar frequencies; in fact we assign the same ‘‘reacti
coordinate’’ frequencyv ~in absolute magnitude! to both.~c!
The corresponding barrier height is correlated withv. If the
geometrical argument25 that leads toe~v!;uvu25uku holds,
the stable and unstable branches of the instantaneous no
mode distribution would satisfy

ru~v!

rs~v!
5A exp~2e~v!/kBT!; e~v!;v2~v→`!

~12a!

or

ru~ uku!
rs~ uku!

5A exp~2e~ uku!/kBT!; e~ uku!;uku~ uku→`!.

~12b!

Figures 8–11 show that this expectation is indeed confirm
by the numerical experiment, provided thatk5v2 is large
enough. Figure 8 show ln@ru(uku)/rs(uku)# plotted againstk
for the densityd50.78 at temperatures 60, 100, 150, and 2
K. Figure 9 shows similar results for ln@r0u(uku)/r0s(uku)#.
Linear dependence is seen for largek, and the corresponding
slopes are displayed against 1/T in the insets. Similar results
for the high density,d51, fluid are shown in Figs. 10 and 11

FIG. 6. Stars: Same results as in Fig. 4~b! ~high density fluid,d51! plotted
againstk2. Full line: results from Ref. 8.~See the text.!
J. Chem. Phys., Vol. 103Downloaded¬21¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
d

s
-

-

th
n

mal

d

0

It is seen that Eq.~12! is satisfied for bothr and r0. The
~relatively small! quantitative difference observed between
the behavior ofr and r0 indicates again that the total fre-
quency distribution does not represent fully the distribution
associated with wells, barriers and saddles. Table I summ
rizes the parameters obtained from these fits.

The function exp~2Buvu2/kB/T! should be interpreted as
the result of the present theory for the average~over all bar-
riers associated with frequencyv! of the Boltzmann factor
exp~2EB/kBT!, which in Keyes’ theory is given by Eq.~6!

FIG. 7. ~a! ln ru(uku) vs uku for the d50.78 fluid at different temperatures:
60 K ~stars!, 100 K ~circles!, 150 K ~triangles!, and 200 K~diamonds!. The
inset shows the slopes of these lines as functions of inverse temperature.~b!
Same as~a!, for thed51 fluid atT5100 K ~circles!, 150 K ~triangles!, and
200 K ~diamonds!.
, No. 6, 8 August 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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and for which we have already argued in the previous sect
that a quadratic frequency dependence of the barrier he
provides a better representation than Eq.~6!. The pre-
exponential termA is, in the same average sense, a meas
of the ratio of volumes associated with the non reacti
modes in the corresponding saddle and well, the equiva
of the factorQB/Qm in Eq. ~4!.

FIG. 8. ln@ru(uku)/rs(uku)# plotted againstuku for the low density~d50.78!
fluid at T560 K ~stars!, 100 K ~circles!, 150 K ~triangles!, and 200 K
~diamonds!. In the inset the slopes of these lines are plotted against 1/T.

FIG. 9. Same as Fig. 8, for the ratios of zero force distributions obtained
the d50.78 fluid: ln@r0u(uku)/r0s(uku)] plotted againstuku at different tem-
peratures with inset showing the slopes of the resulting linear dependen
plotted against 1/T.
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Carrying this picture to its naive conclusion, we now
assign the lifetimeth in Eq. ~1! to the inverse rate for cross-
ing the barrier~s! connecting a local well to its neighbors,
calculated from the transition state theory expression

th
215cE

0

`

dv rq~v!
v

2p
A exp@2be~v!#, ~13!

where the integral is an average over all the normal mod
frequencies in the well and where the factorA exp~2be~v!!

for

cies

FIG. 10. Same as Fig. 8 for the high density~d51.0! fluid at T5100 K
~circles!, 150 K ~triangles!, and 200 K~diamonds!.

FIG. 11. Same as Fig. 9 for the high density,d51. Mark notations are as in
Fig. 10.
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2176 G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
is obtained from Eq.~12!. In Eq. ~13! we have allowed a
constant fitting parameterc to allow for the fact that there
may be more than one escape route out of a given wel
gives the same flexibility to Eq.~13! as given by the param
eterM to Eq. ~9! of Keyes’ theory.

Figures 12 and 13 show the resulting diffusion coe
cient, calculated from Eqs.~1! and ~13!, as a function of
temperature for fluid densityd51.0. The simulation results
from Keyes8 are shown together with the best~integer! fit
obtained by changing the multiplicative factorc in Eq. ~13!.
Note that all calculations are done at constant volume.
full and dotted lines represent results obtained using Eq.~12!
with the total density of modesr, and the density of zero
force modes,r0, respectively. In Fig. 12rq~v! was repre-
sented by Eq.~3! with vs512, as in the applications done b
Keyes. In this case the choicec53 in Eq.~13! is seen to give
a very reasonable fit. In Fig. 13, the numerically obtain
quenched density of states shown in Fig. 3~dashed line! was
used. Here, good fits were obtained withc51. We note that
an attempt to repeat the same procedure for the normal
at d50.78 did not succeed to reproduce the results of
merical simulations, and the best fits~which are still worse
from those seen in Figs. 11 and 12! were obtained only for

TABLE I. The parametersA and B obtained from fitting the ratio
ru(uku)/rs(uku) to the form~12b! with e~uku!/kB5Buku ~in K!.

Density/Distribution A B

0.78/Total 3.5 3.4
0.78/Zero forces 2.5 2.9

1.0/Total 3.8 4.4
1.0/Zero forces 3.2 2.8

FIG. 12. D/T plotted againstT for the high density,d51, fluid. The tri-
angles are Keyes’ simulation results. Full line—results obtained using
~12! for estimatingA exp~2e/kBT! in Eq. ~13! using the total density of
modesr and the multiplicative parameterc53. Dotted line—results ob-
tained similarly, using the density of zero force modes,r0~v!, instead of
r~v!. To produce the theoretical results the approximated quenched de
of state, Eq.~3!, has been used forrq~v! in Eq. ~13!.
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c>15. This indicates, as emphasized by other workers8,22,31

that the hopping mechanism for mass transport in liquids
relevant only at high densities, though perhaps not neces
ily restricted tosupercooledliquids.

IV. CONCLUSIONS

We have re-examined the application of instantaneo
normal mode analysis tolong timedynamics in liquids. Un-
like the use of this concept to short time dynamics which
relatively straightforward, applications to long time dynam
processes such as self-diffusion rely on information about
distribution of barrier heights for hopping between inhere
liquid structures~when this hopping dominates the dynam
ics!. This course, taken before by Keyes,8 was followed by
us in the present work. Even though our conclusion conce
ing the barrier height distribution are different from Keyes
we have shown that in the range of numerically relevant d
our results are very similar, providing support for the princ
pal conclusions of Ref. 8. For the dependence of the aver
barrier height on the local reaction coordinate frequency
advocate^EB&v;v2, different from Keyes but more intu-
itively appealing.

We have also suggested another route for obtaining
formation on^EB&v . This was based on the assumption th
ratio ru~uvu!/rs~uvu! between the density of modes in the un
stable and stable branches is directly related to the rela
barrier height associated with local wells and nearest nei
bor saddles characterized by the frequencyv. We have
shown that the barrier height distribution inferred from th
approach, supplemented by a primitive form of transitio
state theory, provides a very reliable estimate for the se
diffusion coefficient of liquid argon at high density.

We should end with a word of caution: The success
our procedure, as well as that of Keyes,8 indicates that the
approaches taken contain much of the correct physics. H

q.

sity

FIG. 13. Same as Fig. 12, except that the result of numerical quenching
dashed line in Fig. 3, is used forrq~v! in Eq. ~13!, yielding c51 as the
parameter for best fit.
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2177G. V. Vijayadamodar and A. Nitzan: Long time dynamics of liquids
ever, thequantitativeagreements seen in Figs. 12 and 1
should not be taken too seriously, as some assumptions w
made with no real foundation. In particular it should b
pointed out that the use of Eq.~13! in the present application
is stretching this expression somewhat beyond the limits
its validity: This expression is valid forbe~v!@1, however,
this inequality is not satisfied in part of thev region which
contributes substantially toth

21. This is seen in Fig. 14,
where bothbe~v! and the integrand in Eq.~13! is plotted as
a function of v. Here, the numerically quenched densit
rq~v! is used for the integrand of Eq.~13! and the total
density of states is used in Eq.~12! to calculatebe~v!. @Very
similar results are obtained whenr0 is used instead ofr in
Eq. ~12!.# It is seen thatbe<1 when the integrand attains its
maximum as a function ofv. A similar problem exists also in
Keyes’ calculation. Nevertheless, the qualitative aspects
the present approach seem valid and it should be interest
to examine its applicability for more complicated liquids, in
particular polar solvents.
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FIG. 14. e~v!/kBT ~dashed–dotted line! and the full integrand of Eq.~13!
~full line!, plotted as a function ofv.
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