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The transient response of ions upon sudden creation or removal of a local, external charge in a
one-component Coulomb lattice gas is investigated by Monte Carlo simulations. Our model can be
regarded as a simplified description of solvation dynamics processes in electrolyte systems. Effects
of the nonlinearity of the relaxation are pointed out and are contrasted with predictions from linear
~Debye–Hu¨ckel and Debye–Falkenhagen! theories. ©1995 American Institute of Physics.
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I. INTRODUCTION

Classical motion and relaxation of interacting char
carriers in condensed matter can often be described by C
lomb lattice gas models. For example, the linear transp
properties of such systems have been studied theoretical
considerable detail in connection with ionic motions in sol
electrolytes1,2 and were used successfully to interpret expe
mental data.3 In this paper we apply such models in order
investigate several aspects of solvation dynamics in elec
lyte systems.

Solvation dynamics, i.e., the process of solvent rela
ation following a sudden change in a solute’s charge dis
bution has been under active study in recent years.4 Our fo-
cus here is on solvation dynamics processes in electro
solutions. Several experimental studies by Huppert a
co-workers5 and by Chapman and Maroncelli6 have indi-
cated that in such systems, in addition to the fast relaxat
mode associated with the host dielectric solvent, there ex
a slow, nonexponential relaxation component associated w
the mobile ions. This latter process occurs on a time scale
up to several nanoseconds, more than an order of magni
slower than estimates based on the linear Deby
Falkenhagen~DF! theory.7 For the relaxation of the ionic
atmosphere following the sudden creation or removal of
ion of chargeQ, this theory, which essentially combines di
fusion with the linearized Poisson–Boltzmann equation, p
dicts

EDF~ t !5EDH erf~At/tDF!, ~1!

whereEDF is the energy of interaction between the centr
ion and the ionic atmosphere, andtDF is given by

tDF5~Dk2!21 ~2!

with D being the diffusion constant of the ions andk the
inverse Debye length. Ast→`, Eq. ~1! approachesEDH , the
equilibrium value obtained from the Debye–Hu¨ckel theory.8

In the weak coupling limit, where the Debye-lengthk21 is
much larger than the ion radius,EDH is given by

EDH52Q2k. ~3!

A microscopic derivation of the DF dynamics has recen
been provided by Chandra and Pater.10 It should be men-
tioned that predictions based on Eq.~3! strongly underesti-
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mate, by more than an order of magnitude, the ionic cont
bution to the solvation energy of a charge or a char
distribution in an electrolyte solution, which is obtained ex
perimentally from observed spectral shifts.6

The failure of Debye–Falkenhagen-type theories to a
count for the observed ion dynamics, which accompani
solvation processes in electrolyte solutions, has been att
uted to its neglect of correlated ion–solvent motions in th
immediate vicinity of the solute.6,9 However, other factors
may contribute as well. The theory, being essentially a mea
field approximation, ignores ion–ion correlations. Furthe
more, being a linear theory, it cannot account for nonline
processes that may affect the observed dynamics. The b
role of these additional factors are the subject of the pres
work. Rather than aiming at a realistic description of solv
tion we focus on ionic relaxation in the simplified model of
one-component Coulomb lattice gas. Our primary aim is
analyze the systematic deviations from the DF theory due
both the nonlinearity of the relaxation and the correlated d
fusion of ions, while disregarding solvent dynamics. The la
ter simplification means that we assume that solvent diele
tric relaxation is fast enough relative to the ionic motion t
permit accounting for it by the trivial static dielectric screen
ing. Studying a lattice system directly pertains to crystallin
solid electrolytes, but results forak,1 should also be appli-
cable to amorphous and liquid electrolytes if the lattice co
stanta is interpreted as an effective hard core radius. No
however, that the experimental observation6 that the ionic
contribution to the solvation energy is larger than the DH
prediction is associated with the fact that the solute–ion i
teraction in the neighborhood of the solute is only partial
screened by the solvent molecules. This effect cannot be
produced by a model which disregards the solvent or rep
sents it by uniformly reducing the strength of the electro
static interaction.

A Monte Carlo~MC! procedure is used to affect the ion
dynamics. Such a dynamic MC-procedure relies on the a
sumption that the actual time is proportional to the numb
of Monte Carlo steps per particle. At the same time the use
the MC method together with the exclusion of solvent from
the lattice gas model makes it possible to treat systems w
much lower concentrations of ions and for much larger tim
than in full scale MD simulations. We note in passing tha
the MD simulations of Neria and Nitzan9 could not be per-
465/465/6/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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466 Knödler et al.: Dynamics in a Coulomb lattice gas
formed under conditions where the DH- and the DF theor
could be expected to be valid.

In what follows we first provide more details of our lat
tice model. We then discuss the deviations of our syst
from linearity as reflected in its dynamical behavior. On
manifestation of nonlinearity is the asymmetry of the rela
ation with respect to the sign of the central chargeQ. An-
other is the dependence onQ of the correlation function

C~ t !5
^df~ t !df~0!&

^df2&
~4!

of the fluctuations in the potentialf induced by the ions at
the position of the central charge. ForQ→0 ~i.e., when the
response toQ is linear! this correlation function is equal to
the solvation function

S6~ t !5
E6~ t !2E6~`!

E6~0!2E6~`!
, ~5!

whereE6~t! is the average energy of interaction between t
central charge and the mobile ions.E6~0! corresponds to the
initial situation in which the mobile ions have not yet re
sponded to the onset of the central charge, andE6~`! is the
equilibrium interaction energy after the ionic atmosphe
about the central charge has fully formed. In Eq.~5! we have
anticipated our later discussion and distinguished betw
the response to a central charge of sign equal to that of
mobile ions,S1, and the response to a central charge
opposite sign,S2. Linear response theory predicts th
S1(t)5S2(t)5C(t). In writing Eq. ~5! for the experimen-
tally measured solvation function, we have made the co
mon assumption that solvation~free! energies are approxi-
mated byE6/2, which strictly holds under linear respons
conditions.

We also investigate the detailed behavior of the rela
ation as expressed byS6(t), and study the conditions unde
which it can be accounted for by the DF theory. As expec
we find that the observed relaxation deviates from the
prediction as soon as nonlinearity sets in. In this case
linear theory generally underestimates the relaxation time
agreement with experimental observations.5,6 Finally, we
present the time-dependent radial distribution function wh
reflects the dynamics of the screening of the central char

II. MODEL AND METHOD

We consider a simple-cubic substrate lattice of spacina
and sizeL, with periodic boundary conditions. A fractionc of
lattice sites is occupied by ions of chargeq, which interact
via long-range Coulomb-forces, whereas the remaining s
are vacant. Multiple occupation of sites is excluded. Cha
neutrality is maintained through a homogeneous backgro
charge density2qc/a3. In our Monte Carlo simulations ions
are allowed to hop to vacant nearest-neighbor sites. The
responding hopping probabilities are determined by the
ergy differenceDH between configurations before and aft
an attempted hop, and are chosen according to the stan
Metropolis algorithm.11 In calculatingDH we employ Ewald
summations.
J. Chem. Phys., Vol. 102Downloaded¬17¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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Equilibrium and linear transport properties of a stochas
tic Coulomb lattice gas defined in this way have been studie
previously in some detail.2 Here we are interested in both the
linear and nonlinear transient response to the addition or r
moval of a central chargeQ5Zq; Z561; at time t50.
The position of this charge is fixed to the center of a uni
cube of the underlying simple-cubic lattice, and the neutra
izing background is adjusted to keep the overall system ne
tral. Primarily we are interested in the time-dependent inte
action energyE6(t) between ions and the central charge, in
the comparison of the corresponding solvation function Eq
~5! with the correlation function Eq.~4!, and also in the
time-dependent radial distribution functiong6(r ,t).

Simulations were carried out for systems up to a siz
L523 and the results are averaged over 200 up to 104 ~for
different cases! equilibrated initial configurations. For the
ionic concentration we choosec51022. Temperature enters
via the dimensionless parameterV/kBT, whereV5q2/a is a
typical Coulomb-energy in our lattice system.~The dielectric
constante of the solvent system could be incorporated by the
redefinition V5q2/ea.! In terms of these parameters the
Debye-lengthk21 is determined by the dimensionless quan
tity ak5(4pcV/kBT)

1/2.

III. RESULTS AND DISCUSSION

In this section we present the results of our simulations
The variables of interest are the correlation functionC(t),
Eq. ~4!, the solvation functionsS6(t), Eq. ~5!, the equilib-
rium interaction energyE6~`!, and the characteristic relax-
ation times defined by

t652 E
0

`

S6~ t !dt. ~6!

Under the DF theory,S15S2 andt65tDF.
Before we proceed, some remarks concerning the effec

of the finite system sizeL and the periodic boundary condi-
tions in our simulations are appropriate. The time-depende
energy of interaction between the central charge in the sim
lation cell with its total environment is then the sum of a
contributionEL

6(t) due to all mobile ions in the periodic
system and the interactionSL52Q2a/L of the central
charge with its periodic images~including a uniform excess
background of charge density2Q/L3!. The corresponding
Madelung constant isa.2.837. Consider an equilibrated
system~t→`! in the physically most interesting case, where
the Debye-lengthk21 is much smaller thanL. Then the pe-
riodic images of the central charge together with their ionic
atmospheres represent localized, neutral charge distributio
whose interaction with the central charge in the simulatio
cell converges faster asL→` than the individual terms
EL

6~`! or SL . From simulations with varyingL we have
verified, that results for the quantityEL

6~`!1SL for our larg-
est system~L523! and forak.1 are in fact representative
of an infinite system and are therefore used for approxima
ing the solvation energy. Clearly, the self-energySL does not
contribute to the solvation function, Eq.~5!.

On the other hand, for the purpose of a quantitative te
of our simulations against analytic calculations we are inter
, No. 1, 1 January 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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467Knödler et al.: Dynamics in a Coulomb lattice gas
ested also in the weak-coupling regimeak!1, where linear
theories are applicable. Covering this regime will also com
plete our picture on the systematic trends in the results un
varying degrees of the nonlinearity. However, because of o
limitations with respect to the system sizeL, the Debye-
length will necessarily become of orderL as ak!1, and
results will depend onL in an essential way. Hence the linea
DH or DF theory has to be adapted to our situation of pe
odic boundary conditions. This leads to the following form
for theL-dependent potential of the equilibrated ionic atmo
sphere at the site of the central charge

fL52~4pQ/L3! (
kÞ0

k2

k2~k21k2!
. ~7!

Here the summation is over components of the wave vec
k which are integer multiples of 2p/L, restricted to the first
Brillouin-zone. Similarly, we obtain for theL-dependent sol-
vation function

SL~ t !5~1/AL3! (
kÞ0

exp2@D~k21k2!t#

k2~k21k2!
, ~8!

whereD is the diffusion constant of ions in the dilute limit
andA is a normalization factor. BytL we denote the relax-
ation time derived from Eq.~8! in analogy to Eq.~6!. As
L→`, the familiar expressionsfDH5Qk and SDF(t)
5 erfc(At/tDF) are recovered from Eqs.~7! and ~8!. How-
ever, evaluation of Eqs.~7! and~8! for finite L leads to sub-
stantially different results which are depicted in Figs. 1–
Note thatfL;k2, tL;const. forL fixed andak→0.

Now let us turn to our numerical simulations. Figure
displays data for the interaction energy in the two cas
Z561 and for systems of sizeL513 andL523. As seen
from the figure, the influence ofL on the quantity
EL

6~`!1(L is practically negligible forak*1. In that range
of ak, the reaction of the system is nonlinear and the solv
tion energy forZ511 is found to be substantially smaller
than for Z521. This is to be expected since in the cas
Z521 a strong contribution toEL

2~`! of the order ofV will
arise from ions on nearest-neighbor sites with respect to

FIG. 1. Calculated interaction energy, including anL-dependent self-energy
of the central charge, vsak for Z561 and for different system sizeL.
Dashed curve and full curve are derived from Eq.~7! for L513 andL523,
respectively. Statistical errors are of the order of the size of symbols.
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central charge. By contrast, in the caseZ511 a correlation
hole will form with strong depletion of ions in the neighbor-
hood of the central charge, in complete analogy with th
behavior of the radial distribution function in the unper-
turbed system.1,12 Hence,EL

1~`! is roughly estimated as
Q2/r 0 , wherer 0.a measures the radius of the correlation
hole.

For smallak, the two sets of data referring toZ561
tend to agree. This is an indication of the validity of linear
response theory, whereEL

6~`!5QfL}Z
2 is independent of

sgnZ. At the same time, anL-dependence of our data ap-
pears. By loweringak, the simulations for differentL seem
to extrapolate to the dashed and the full curve, which wer
derived from Eq.~7! settingL513 andL523, respectively.

Figure 2 shows plots of the solvation function for two
different values of the parameterak, whereas the systematic
deviations of the relaxation times, Eq.~6!, from the corre-
sponding DF values are shown in Fig. 3. As before, the re
sponse in the caseak.0.35(V/kBT51) can be regarded as
essentially linear. Indeed, in this case the two function
S6(t) become practically identical and are represented we
by the prediction based on Eq.~8!, which is given by the full
lines in Figs. 2~a! and 2~b!. To obtain these lines, the diffu-
sion constantsD6 in the two casesZ561 were regarded as
fit parameters, with the result thatD1 andD2 are almost
identical but both are smaller than the diffusion constant of
noninteracting reference system by about 20%. We note

FIG. 2. Solvation functionsS1(t) ~a! andS2(t) ~b! for two different values
of the parameterak andL523. Full and dashed curves represent fits to Eq
~8! ~see text!.
No. 1, 1 January 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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468 Knödler et al.: Dynamics in a Coulomb lattice gas
passing that a slowing down in diffusion and conductivit
coefficients upon the onset of interparticle interactions
well-known.1,2 In the nonlinear regime, e.g., for
ak.1.58(V/kBT520!, fits of S6(t) to Eq.~8! become less
accurate@see the dashed lines in Figs. 2~a! and 2~b!# and
yield vastly different values ofD1 andD2.

Focusing now our attention on the average relaxatio
times t6 displayed in Fig. 3, the following trends are ob
served:

~a! The relaxation of the ionic atmosphere about a centr
charge of the same sign is in general faster than th
about a central charge of the opposite sign, i.e.,t2.t1.
This can be qualitatively understood from the inequa
ity E2,E1 that suggests that relaxation towards a so
ute particle of opposite charge involves more ind
vidual ionic hopping events. The fact thatt2.t1 is
seen even more clearly from the~non-normalized! sol-
vation energiesE6(t) depicted in Fig. 4. It is interest-
ing to note that the same trend has been observed i
recent MD-study including solvent degrees of freedo
by Neria and Nitzan,9 whose results are shown in the
inset of Fig. 4.

~b! As ak→0, the difference betweent2 andt1 seems to
disappear within the statistical errors, but both quan
ties show a pronouncedL-dependence, which is ac-
counted for by the results fortL obtained from Eq.~8!.

FIG. 3. Relaxation timest6 according to Eq.~6!, vsak for Z561 and for
a system sizeL513 ~a! andL523 ~b!. Full curves are derived from Eq.
~8!, usingD51/6.
J. Chem. Phys., Vol. 102,Downloaded¬17¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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~c! As the coupling increases,ak*1, the relaxation time
becomes less sensitive to the system sizeL. Consider
again the caseak.1.58. Thefunction S1(t) relaxes
considerably faster thanS2(t) ~Fig. 2!. Both quantities
t6 are substantially larger than the corresponding DF
time tL . For example,t

2/tL.10. ~Note that in this
casetL is virtually identical to the corresponding infi-
nite system valuetDF.! This observation reveals an-
other mechanism for the experimental observation tha
relaxation times measured in electrolyte systems can
exceed the DF prediction by more than an order of
magnitude,5,6 in addition to the mechanism of corre-
lated ion–solvent motion mentioned in the Introduc-
tion.

We have also determined from our simulations the correla
tion function defined by Eq.~4!. Actually, we determined
three different functions,C0(t) andC6(t), referring to fluc-
tuations in systems without a central charge and with a cen
tral chargeQ56q, respectively. We note that calculating the
correlation function to within a certain statistical accuracy
requires averaging over a much smaller ensemble~typically
200 configurations! than in calculating the solvation func-
tion. Figure 5 shows a comparison of the functionsC6(t)
and S6(t) for cases of weak coupling~ak .0.35, V/
kBT51! and strong coupling (ak.1.58,V/kBT520). In
the weak coupling case we find that the functionsC6(t) are
essentially identical and also agree with the corresponding
solvation functionsS6(t), in accordance with linear re-
sponse theory. In the other strong coupling case, the correla
tion functionsC1(t) andC2(t) differ from each other. In-
terestingly,C1(t) closely agrees withS1(t) even in this
case@Fig. 5~a!#, whileC2(t) decays considerably faster than
S2(t). Preliminary calculations at even higher values of
V/kBT show a slowly decaying tail inC2(t) which is absent
in S2(t). Such a tail is not observed inC1(t). To conclude,
up to fairly strong interactions~V/kBT&20) the correlation
functionsC6(t) and the corresponding solvation functions
S6(t) show qualitatively similar trends; in the caseZ511
there is even good quantitative agreement.

FIG. 4. Time-dependent functionsE6(t) for ak.0.79 (V/kBT55! and
L523. Molecular dynamics data~Ref. 9! are shown in the inset for a quali-
tative comparison. Full and dotted line in the inset refers to the contribution
of positive and negative ions, respectively, the latter showing slower relax-
ation. For details see Ref. 9.
No. 1, 1 January 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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469Knödler et al.: Dynamics in a Coulomb lattice gas
Details of the relaxation process can be deduced fro
the time-dependent radial distribution function plotted in Fig
6~a! for the caseZ521. As expected, after putting on the
central charge, the occupation of the first shell at distan
r 15aA3/2 strongly grows with time. The occupation of the
second shell~r 25aA11/2! in the caseak.1.12 initially
grows, too, but subsequently reaches a maximum and th
decays to a value less than its initial value. This behavi
clearly reflects the screening of the central charge by ions
the first shell, which ultimately leads to an ‘‘antiscreening
effect in the second shell. Conversely, as the central charg
removed suddenly, the decay ofg2(r 1 ,t! initially leads to an
increase ofg2(r 2 ,t! before the equilibrium state is reached

IV. CONCLUSIONS

In this paper we have presented the results of a nume
cal investigation of a lattice gas model for solvation dynam
ics in a one-component charged system. Though highly si
plified, this model makes it possible to study relatively lon
times and low ion concentrations, thereby allowing us
study the full range of coupling strengths, from the wea
coupling limit where the predictions of the Debye–Hu¨ckel
and Debye–Falkenhagen theories are confirmed, up to
strong coupling regime. In the latter case strong deviatio
from the predictions of the DH and DF theories are foun
These are due to both the nonlinearity of the response and

FIG. 5. Time-dependent correlation functionsC6(t) for L523. Dashed
curve, ak.0.35 ~V/kBT51!; full curve, ak.1.58 ~V/kBT520!. Also
shown are data for the solvation functionsS6(t) from Fig. 2.
J. Chem. Phys., Vol. 102,Downloaded¬17¬Mar¬2004¬to¬132.66.16.34.¬Redistribution¬subject¬
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the importance of correlated ion motions in the immediat
vicinity of the ‘‘solute.’’ These deviations from the DH and
DF theories appear most significantly in~i! the dependence
of the response on the nature of the solute’s charge distrib
tion ~e.g., the sign of the solute charge!, and~ii ! the signifi-
cantly slower relaxation relative to the DF prediction.

Obviously, the model presented here disregards som
potentially important contributions of the observed dynam
ics, in particular solvent motion, correlated ion–solvent mol
ecules motion near the solute,9 and the formation and motion
of ionic aggregates in systems containing two species of o
positely charged mobile ions.13 Therefore the results pre-
sented here do not constitute the full picture of solvation in
electrolyte solutions. There exist however systems for whic
the present simulations may be highly relevant. These a
framework solid ionic conductors and ionically conducting
glasses in which the host relaxation is dominated by loca
vibrations of high frequencies and small amplitudes. In thes
systems time scale separability between matrix and ion m
tions may be assumed and the ion dynamics is dominated
ion–ion interactions. Ion dynamics in such systems hav
been under active study for many years and solvation dy
namics experiments of the kind described here, which so f
were limited to liquid electrolyte solutions,14 may provide a
new tool for studies of nonlinear relaxation in solid electro-
lyte systems.

FIG. 6. Time-dependent radial distribution functionsg6(r ,t) for the first
(r 1! and second~r 2! shell after adding~a! or removing ~b! the central
charge.
No. 1, 1 January 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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