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A formula for computing approximate leakage of population from an initially prepared electronic 
state with a nonequilibrium nuclear distribution to a second nonadiabatically coupled electronic 
state is derived and applied. The formula is a nonequilibtium generalization of the familiar golden 
rule, which applies when the initial nuclear state is a rovibrational eigenstate of the potential energy 
surface associated with the initially populated electronic state. Here, more general initial nuclear 
states are considered. The resultant prescription, termed the nonequilibrium golden rule formula, can 
be evaluated via semiclassical, procedures and hence applied to multidimensionai, e.g., condensed 
phase systems. To illustrate its accuracy, application is made to a spin-boson model of “inner 
sphere” electron transf&. This model, introduced by Garg et al. [J. Chem. Phys. 83, 4491 (19X5)] 
for the nonadiabatic transition out of a thermal distribution of states in the initial (donor) electronic 
level, is extended to include nonequilibrium, nonstationary initial nuclear states on the donor 
surface. The predictions of the nonequilibrium golden rule are found to agree well with numerically 
exact path integral results for a wide range of initial distortions of the initial nuclear wave packet 
from its equilibrium configuration. 

1. INTRODUCTION 

The motion of molecules on electronically excited po- 
tential surfaces plays a major role in fundamental processes 
such as photochemistry and electron transfer. A very com- 
mon, and often essential, feature of excited state dynamics is 
the coupling of motion on two or more Born-Oppenheimer 
potential surfaces. This interaction may result from spin- 
orbit coupling,* breakdown of the Born-Oppenheimer 
approximation,” coupling between molecular centers that 
gives rise to electron transfer, etc. The consequence is the 
transfer of occupation probability from one electronic state 
to another. Such phenomena play a major role in linear and 
nonlinear spectroscopies,3 relaxation rates and quantum 
yields,” electron transfer, 5(a)V(b)~ and other nonadiabatic chemi- 
cal rate processes.5(c1 

While curve-crossing phenomena play an important role 
in excited state dynamics of isolated small molecules (e.g., 
photodissociation of ICN,6 methyl iodideyca) and alkali 
halides7@)), most chemically interesting processes take place 
in condensed phases. Coupling to the condensed phase sol- 
vent greatly complicates the relevant solute quantum dynam- 
ics. Exact solution of the Schrijdinger equation is in general 
impossible. Reliable and efficient approximation procedures 
are needed. 

Of central importance in the theory of condensed phase 
rate processes is the golden rule (GR).8 Application of this 
procedure to the computation of electronic population dy- 
namics in systems characterized by nonadiabatic transitions 
between different electronic states requires certain condi- 
tions. First, the interstate coupling should be small, since at 
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the heart of the golden rule is an application of low order 
time-dependent perturbation theory. Many experimentally 
relevant systems fall in this category, which in the context of 
electron transfer is known as the nonadiabatic regime. Sec- 
ond, the golden rule assumes that the system is prepared in a 
rovibrational eigenstate of the initially populated electronic 
potential surface, or that the population on that surface is 
maintained in thermal equilibrium throughout the nonadia- 
batic relaxation process. The latter condition holds, irrespec- 
tive of the initially prepared state, provided that thermal 
equilibration takes place on the initial surface on a time scale 
much shorter than the characteristic time required for signifi- 
cant changes in the electronic population. Under these con- 
ditions, the standard golden rule provides a simple formula 
for the rate constant,g which can be expressed as a time in- 
tegral over a function (to be termed a time kernel) deter- 
mined by sequential propagation of nuclear coordinate wave 
packets or density matrices on the two coupled surfaces. 
While exact evaluation of the relevant time l?emels is in gen- 
eral not possible, a variety of semiclassical techniques have 
been developed,‘0-‘2 and recent implementations”~12 suggest 
that they can be applied successfully to many condensed 
phase problems. 

The standard golden rule (GR) is also useful for a par- 
ticular limit of nonequilibrium nuclear dynamics. In this 
limit, thermal relaxation is not necessarily fast relative to the 
nonadiabatic transition, but thermal dephasing is. In this 
case, only diagonal elements of the nuclear density matrix 
are relevantI and the time evolution is described by a master 
equation in the space of the nuclear level populations in the 
initial electronic state, where each such level decays because 
of the nonadiabatic coupling to the other electronic states 
with the rate determined by the standard GR formula. We 
note that vibrational dephasing is indeed much faster than 
vibrational relaxation for small molecules in the condensed 
phase at room temperature.14 The same observation has also 
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been made for several cases involving large solute 
molecules.r5 

In the most general nonequilibrium situation, the initial 
distribution in nuclear space is characterized not only by 
nonequilibrium populations, but also by coherences. For ex- 
ample, a sudden electronic transition from the lowest vibra- 
tional level of the ground electronic state produces a Gauss- 
ian wave packet on the excited potential surface. The 
subsequent adiabatic evolution of such a wave packet in- 
volves determininstic motion, thermal relaxation, and ther- 
mal dephasing of the nuclear motion. The effect of these 
nonequilibrium processes in the initially occupied excited 
electronic state on its subsequent time evolution can be most 
generally taken into account within generalized master equa- 
tion models, where time evolution of coherences and pos- 
sible non-Markovian effects are taken into account.16 While 
being a very powerful pheaomenological approach, this 
method cannot be used in computations involving realistic 
model systems, particularly in condensed phases. On the 
other hand, the adiabatic evolution of the initially prepared 
nuclear wave packet can be calculated using time dependent 
quantum or semiclassical methods. In this paper, we consider 
nonadiabatic electronic transitions in the presence of such 
nonequilibrium time evolution on the initial electronic sur- 
face. Provided that the backflow from the initially unoccu- 
pied electronic state to the initially occupied one can be ne- 
glected (a condition for the validity of the standard GR at 
long times), we find that it is possible to modify the standard 
GR prescription in a simple way in order to treat electronic 
population relaxation in the case of nonequilibrium prepara- 
tion of the initial electronic state. The result, to be denoted as 
the nonequilibrium golden rule (NGR) formula, is only mar- 
ginally more elaborate than the standard equilibrium version 
and is amenable to calculation by the same semiclassical 
techniques that have been successful in the equilibrium case. 
A similar approach in a more limited framework was sug- 
gested previously by Nitzan and Jortner;17 however, no tests 
of its validity were carried out. 

As a result of second order time dependent perturbation 
theory, the golden rule can only guarantee accuracy in its 
prediction of short-time dynamics. More sophisticated deri- 
vations of the GR rate’8”91a) extend its validity to long times 
under conditions which promote simple exponential decay. 
The question of whether the nonequilibrium golden rule can 
correctly predict the full history of the electronic population 
evolution can only be answered by comparing nonequilib- 
rium golden rule results to exact results for appropriate 
model problems. Since our development of the formula relies 
strongly on the presence of a multidimensional “bath” of 
nuclear coordinates, there are not many systems (featuring 
both a large environment of bath coordinates and curve 
crossing between two potential surfaces) for which exact re- 
sults can be obtained. 

Fortunately, a model for electron transfer, due to Garg, 
Onuchic, and Ambegaokar (GOA), which is of spin-boson 
type, is very useful for our purposes in two ways. First, it is 
multidimensional in nuclear space, and second, it can be 
solved essentially exactly. We note that Garg et al. were in- 
terested in initial conditions corresponding to equilibrium 

preparation in the donor electronic state. Here we study cases 
of nonequilibrium initial preparation as well. We have suc- 
ceeded, by explicit enumeration of the spin configurations 
that arise in the path integral (PI) representation of the dy- 
namics of the spin-boson model, to converge the quantum 
dynamics of substantial portions of the electronic decay 
curves over a range of initial conditions and potential param- 
eters. These results have been compared to the prediction?of 
the nonequilibrium golden rule formula, with good agree- 
ment obtained in all cases studied. In the rest of this paper, 
we present our formulation and the results of our numerical 
studies according to the following outline. 

In Sec. II, the NGR formalism is presented. In Sec. III, 
the GOA model is introduced and our procedure for modify- 
ing it in the case of nonequilibrium preparation on the ini- 
tially populated (donor) potential surface is described. Then, 
in Sec. IV, numerically exact results for this model, obtained 
by explicit spin-path enumeration, are compared to approxi- 
mate results obtained from the NGR formula. The paper con- 
cludes with a discussion in Sec. V in which the strengths and 
weaknesses of the NGR method are summarized and pos- 
sible directions for future work suggested. 

II. A NONEQUILIBRIUM GOLDEN RULE FORMULA 

A. The time dependent rate constant 

Consider two nuclear Hamiltonians fi, and fi, that de- 
scribe the motion on different electronic potential surfaces 
V, and V, and which interact via nonadiabatic or other cou- 
FlingA terms.“’ To be concrete, let fib=?+ V,(i) and 
h,= T+ V,(2), where ? is the nuclear kinetic energy opera- 
tor. The dimensionality of the nuclear coordinate space, the 
coordinate system employed, and the functional form of V,,, 
are arbitrary. (In this section we employ a one dimensional 
description of the nuclear motion for notational simplicity. 
To treat the multidimensional case, regard the position and 
momentum variables as vector quantities, with one compo- 
nent for each Cartesian degree of freedom.) The subscripts 
“b” and “d” stand for “bright” and “dark,” a designation 
again adopted for concreteness.2” In a common scenario, a 
molecule in its electronic ground state is optically excited to 
a bright electronic state and its subsequent evolution is af- 
fected by radiationless transition induced by nonadiabatic 
coupling to a second electronic state nearby in energy, but 
radiatively dark, i.e., not coupled radiatively to the ground 
state. The nonadiabatic coupling function is denoted by 
sGJ3. 

The specific question asked is “Given preparation of an 
initial nuclear wave packet 40(xj on the bright surface V, , 
what is the probability that the molecule remains on the 
bright surface at a later time t, or, equivalently, what is the 
time dependence of the electronic population of the bright 
state?” Let us term this quantity Pb( t). It is related to nuclear 
dynamics on the coupled surfaces V, and V, . The molecular 
Hamiltonian operator that governs this motion is 

rl=Ib)(bl~b+Id)(dl~d+g^(lb)(dl+Id)(bI). (2.1) 

Here lb) and Id) are the bright and dark electronic states, 
respectively, which are assumed independent of nuclear co; 
ordinates. 
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In terms of the Hamiltonian (2.1), the bright state elec- 
tronic population is, irrespective of the rovibrational state of 
the nuclear motion, 

k(t) can be interpreted as a time dependent rate constant in 
the following manner: 

Pb(t)=(&l(ble”lb)(ble-ik~b)/qho). cm 

Note that we set h=l throughout. Furthermore, for simplic- 
ity, we concentrate on the case that the nuclear coordinates 
are prepared at t = 0 in a pure state, described by a wave 
function $o(~). Our results can easily be adapted to the case 
where the nuclear coordinates are prepared in a mixed state 
described by an appropriate density matrix. 

We calculate Pb(t) to lowest nontrivial order in pertur- 
bation theory. This perturbation expansion is predicated on 
the smallness of *the nonadiabatic coupling strength, i.e., we 
decompose H = Ho + VI with 

E;To=lb)(bl&,+ld)(dlfid (2.2a) 

and 

iil=tTilb)(dl+ Id)@l).- (2.2b) 

Hence the Heisenberg operator PI(t) = eir@?,e -Gt is 
given explicitly by 

dt’k(t’)+e.e 

=exp[ -/idt’K(t’)]. 

The exponentiation step in Eq. (2.9b) can be justified, under 
certain conditions, for the special case where I#o) is an 
eigenstate of i,. One manifestation of these conditions is 
“one-way flow,” i.e., the probability amplitude that leaks 
onto V, does not find its way back to V,. It is intuitively 
expected and we make the ansatz that Eq. (2.9b) holds also 
for general nonstationary 140),~ provided that the conditions 
for one-way 0ow are satisfied. Of course, this expectation 
remains to be checked; a careful attempt to do so is presented 
in Sets. III and IV. 

An alternative way to write k(t) is 

Q,(t) = efb’&-“Y’I~)(dl+ e&~e-GJId)(fil. @3) 

Then -the, propagator e -& can be written as eYiHt 
= e -i4tUr(t), where the interaction picture evolution opera- 
tor l?,(t) can be computed order by order in perturbation 
theory according to 

f 

t 

k(t)=2 Re d7 tr[fi(t)ie-‘bTgeGbq (2.lOa) 
0 

+... 

Pb(t) can be written directly in terms of c,(t), 

Pbit)=(~ol(bl~~,(t)+lb)(bl~~it)Ib)l~o). 

(2.4) 

(2.5) 

Thus, the critical quantity is (b [ fill(t) I b), which is an opera- 
tor on nuclear coordinates. It is obtained (perturbatively) by 
taking the appropriate electronic matrix element of Eq. (2.4) 

Xexp[-i&(t’-tr’)]~e-~r”+O(g”). (2.6) 

Inserting this expression into Eq. (2.5) leads to an explicit 
evaluation of the short-time evolution of the electronic popu- 
lation t 

P,(t)=l-2 Re dt’ I s t’ dt”( +ole’it’i 
0 0 

Xexp[-i~d(t’-t”)]~e-‘~f”~c$o)+o(g4j. 
(2.7) 

It is convenient to define 

rC is the time scale on which the integrand in Eq. (2.11) 
decays to zero, and the conditions for validity of Eq. (2.11) 
are essentially those that ensure that such relaxation to zero 
indeed occurs on a short enough time scale. Neglecting de- 
viations at short t-un;s, this implies simple exponential decay, 
i.e., P&t) = e I , with the rate constant given in Eq. 
(2.11). The purpose of the present work is, again, to gener- 
alize our understanding to the case of out-of-equilibrium ini- 
tial preparation. By following-a similar line of reasoning that 
leads to Eq. (2.1 l), we may assert that provided that t%- TV, 
then the generalization of Eq. (2.11) ,to the nonequilibrium 
case is 

I 

m 

k(t)=2 Re d~(~o(t)l~e-‘~~~e~bTl~o(t))~ (2.12) 
0 

k(t)=2 Re 
I 

ot dt’(qSole’b’g^ 

Xexp[-i~d(t-t’)]~e-‘̂ f’l+o); (2.8) 
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Equation (2.12) provides an elegant interpretation of the time 
dependent rate constant as the rate associated with the relax- 
ation of the instantaneous wave function I f$o(t)). Lf, in an 
interacting many body system, the relaxation of do(t) leads 

(2.9a) 

=2 Re dd7(~0(t)l~e-‘~~~e~~l~o(t)). 
I 

(2.10b) 

Here ij(tj=I~dtj)(~O(tjl, with Ic,bo(t)) .= e-&‘I+o). That 
is, I +o(t)) is the wave packet obtained by-propagating I@o) 
on V, or, equivalently, fi(t) is the-density matrix associated 
with the evolution of initial density matrix I +,,)( +ol according 
to fi, . The form of k(t) given in Eq. (2.10) has some inter- 
pretive and computational advantages. 

In the case where I$o) is an eigenstate of 16,) say I #“}, 
then provided certain conditions are satisfied, after the tran- 
sient time rC, k(t) attains a time independent value given by 
the standard GR result 

ccl 
kj=2 Re I, d7( ~~)l&-‘hdTge’i~j 4y)). (2.11) 
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to a thermal distribution on the bright surface, Eq. (2.12) will 
again become the standard GR expression for times t that 
exceed the thermal relaxation time. 

B. Semiclassical ewaluation of the rate’ constant 

The expressions for k(t) in Eqs. (2.9), (2.10), and (2.12) 
rely on sequential nuclear wave packet propagations on 
bright and dark potential energy surfaces. For interacting 
many-body systems, exact evaluation is not feasible. How- 
ever, several semiclassical evaluation schemes appear viable. 
First, if. the initial wave packet I&o> can be expressed as a 
linear combination of Gaussian wave packets, then Gaussian 
wave packet dynamics at either the “thawed” or “frozen 
Gaussian” levei33 can be carried out even in condensed 
phase systems. Indeed, Neria and Nitzan have recently dem- 
onstrated the applicability of such techniques to the case of 
standard golden rule rates, i.e., Eq. (2.11)” There is no ob- 
vious reason why the same procedures should not work as 
well in the case of nonequilibrium initial state preparation 
covered by Eqs. (2.9b) and (2.10). 

Another kind of semiclassical procedure is suggested by 
the argument presented above that the integrand of Eq. (2.10) 
decays rapidly as a function of 5 For small 7, it is 
legitimate” to replace e-ihd~~eihh7~~e-iBvcx)7, with 
J V(i) = IJ’~(.?)‘~ V&?) . This implies the approximate for- 
mula k(tj=J& Jr c(7,tj with 

C(~,t)=i Re L&X Po(x,t)g’(x)e-‘Av(x)7 
I 

(2.13a) 

and 

POW) = I do(x,t)12. (2.13b) 

In Eqs. (2.13), spatial integrals are over all nuclear coordi- 
nate space. Also, we have assumed the nonadiabatic coupling 
function is not a function of momentum in obtaining this 
form. The advantage of this result is that it can be evaluated 
numerically using classical or quantum molecular dynamics 
simulation to evaluate P,(x,t). We note that in the semiclas- 
sical spirit of the approximation, it is expected that Wigner 
distributions can be used to define a phase space representa- 
tion of I&)(+o~, ‘cl 1 an c assical mechanics used to-propagate it. 

C. Classical Franck-Condon approximation to k(t) 

If we approximate the time kernel which appears in Eq. 
(2;lO) by C(r,t) given in Eq. (2.13), and simultaneously 
extend the upper limit of the time integration to infinity [cf. 
Eq. (2.12)], we obtain the “classical Franck-Condon” type 
expression 

k(t)~2rr 
I 

dx Po(x,t)g2(X)SCAv(X)]; (2.14) 

where “8’ is the Dirac delta function. In this quasiclassical 
limit, the only part of the coordinate space that contributes to 
the nonadiabatic transition rate is the crossing seam between 
V, and Vd. Points along the seam are weighted by the in- 
stantaneous probability of the system to be at the seam (and 
also, in a milder way, by the gradient of the potential surface 
difference along the seam). This formula shows clearly the 

modulation of the time dependent rate constant as the wave 
packet enters and leaves the crossing region, as may have 
been expected on intuitive grounds and as has been observed 
recently in the photodissociation of NaI and NaBr by Zewail 
and co-workers.7(b) Also, as discussed above, it shows the 
approach to the thermally relaxed rate as P,(x,t) relaxes to 
thermal equilibrium. Thus the time evolution of the elec- 
tronic population is governed by leakage to the dark surface 
and (vibrational) relaxation on the bright surface. 

It is important to appreciate that although we have cho- 
sen to describe the curve-crossing scenario in the language of 
radiationless transition theory, the same scenario and same 
analysis applies to a variety of phenomena. Electron transfer 
reactions are a particularly popular case in point, where 
bright and dark states become “donor” and “acceptor” 
states, respectively. In the next section, we study a multi- 
mode model of electron transfer which can be addressed di- 
rectly by the NGR formula. 

Ill. A SPIN-BOSON MODEL OF “INNER-SPHERE” 
ELECTRON TRANSFER IN THE CASE OF 
NONEQUILIBRIUM PREPARATION OF THE DONOR 
STATE 

Many eiectron transfer reactions are thought to proceed 
via the so-called “inner-sphere” mechanism. Namely, one 
(or a few) degrees of freedom are directly coupled to the 
electron transfer process. These “primary” or “reaction” co- 
ordinates are coupled to the environment of “secondary” or 
“bath” coordinates. The latter thus affect the electron trans- 
fer process indirectly, put possibly in a significant way. 

Garg et a1.” have modeled the reaction coordinate dy- 
namics via two harmonic potential wells-one for the donor 
state and one for the acceptor state. The two wells are char- 
acterized by the same frequency and are shifted with respect 
to the locations of the minima and their energetic origins. 
The bath is modeled as a collection- of uncoupled harmonic 
oscillators, each of which is coupled bilinearly to the reac- 
tion coordinate. Such a description of the environment and 
its coupling to the reaction coordinate has been very popular 
in recent years.” It results in relatively tractable reduced 
dynamics of the reaction coordinate at both classical and 
quantum levels. Moreover, by choosing the frequencies and 
bilinear coupling strengths of the bath oscillators appropri- 
ately, a variety of condensed phase environments can be 
mimicked. 

The Hamiltonian -corresponding to this model can be 
written as 

Ei=~+~+)(+~+~-~-)(-)+~Ao(I+)(-I+I-)(+I). 
i3.1) 

Here I+) and I-) are the diabatic electronic states corre- 
sponding to the donor and acceptor electronic configurations, 
respectively. The nuclear coordinate Hamiltonians h, are 
specified as 

. (3.2) 
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We have labeled the reaction coordinate as y, and the reac- 
tion coordinate potentials appropriate to donor and acceptor 
electronic state are labeled as V,(y). (Our notation follows 
Garg et al. throughout, except that for simplicity and without 
any loss of generality, we have set ?L and all masses to unity.) 
In the simplest version of the GOA model (described above), 

V,(y)= ~c12(y+yo)2-I&g. (3.3) 

These reaction coordinate potentials represent two harmonic 
oscillator wells with the same angular frequency n whose 
equilibrium positions are separated by a distance 2ya and 
whose minima differ in energy by Q. There are two very 
appealing features about the ET Hamiltonian defined in Eqs. 
(3.1)-(3.3). First, irrespective of any particular model for 
V,(y), the classical mechanics of the system coordinate 
(moving on one of the diabatic potential energy surfaces) can 
be described via a generalized Langevin equation in which 
the memory friction kernel is determined by the frequency 
distribution of the bath oscillators and by the bilinear cou- 
pling coefficients that connect them to the system coordinate 
(see below). Second, if the functional form given in Eq. (3.3) 
is adopted for Vr , the ET Hamiltonian is then of canonical 
spin-boson form. Garg et al. utilized this mapping to per- 
form elegant but approximate analysis of the quantum dy- 
namics of the model using techni 

3 
ues developed in the mac- 

roscopic tunneling literature.‘g(a Our approach to the 
computation of the necessary quantum dynamics will be 
somewhat different. We have found that it is possible to ex- 
plicitly enumerate enough spin configurations in the path in- 
tegral representation of the spin-boson (SB) model to obtain 
numerical results of desired accuracy. 

Regardless of the manner in which the quantum dynam- 
ics calculations are performed, there remains the issue of 
choosing the parameters in the Hamiltonian and the initially 
prepared nuclear state on the donor surface. Here we will 
extend the line of reasoning adopted by Garg et al. to con- 
struct the simplest model that has the necessary features. We 
consider nuclear motion on the initially occupied donor po- 
tential surface. If one chooses the bath oscillator frequencies 
w, and the system-bath coupling coefficients c, according 
to the spectral density 

c2 
Jo(w)=f C -2 @o--w,)= gw exp(-w/R), (3.4) 

n 

and the initial displacements x’,) of the bath coordinates are 
tuned to the initial displacement y(O) of the reaction coordi- 
nate as x&o) = - c (yy (O)/& then the classical dynamics of the 
reaction coordinate obeys the simple (zero-temperature) 
Langevin equatiot? 

d2yldt2+dV+(y)ldy+ vdyldt=O. (3.5) 
[The factor exp(-w/A) in Eq. (3.4) ensures a smooth cutoff 
of the spectral density at higher frequency. As h-+w, the 
A-independent Langevin equation (3.5) is obtained.] Since 
the donor surface is of harmonic oscillator type, the quantum 
dynamics of a Gaussian wave packet placed on the donor 
surface at t = 0 will reflect the classical evolution given by 
Eq. (3.5). p/Iore specifically, the center of the position space 
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Gaussian, i.e., the center of the reduced probability distribu- 
tion in the reaction coordinate, will relax in exactly the man- 
ner prescribed in Eq. (3.5). 

The construction of the details of the system-bath cou- 
pling scheme-just sketched follows the reasoning of Garg 
et al. closely. Their work only considered the equilibrium 
case y (‘)=yo, and thus explicit relaxation of the reduced 
probability distribution of the reaction coordinate was not 
studied. The new feature that we have to contend with is 
starting the reaction coordinate out of equilibrium; i.e., 
y(‘)#yo. Our inclusion of this feature introduces one addi- 
tional complication, namely, the need to prescribe the re- 
maining features of the initially prepared wave packet on the 
donor surface. 

In the GOA model, the appropriate initial nuclearstate at 
zero temperature is simply a product of Gaussian wave pack- 
ets that represent the vibrational ground state of each of the 
normal modes of the full system-bath potential energy func- 
tion associated with the donor electronic state. This state 
corresponds to e~quilibrium preparation on the donor surface 
at zero temperature and, moreover, is easy to process within 
the standard procedures utilized to compute real-time dy- 
namics of spin-boson models. 

In our generalization, the initial nuclear state is pre- 
scribed by a product of one-dimensional coherent state wave 
packets in the normal modes of the donor potential surface. 
Each coherent state is simply a displaced version of the 
ground state Gaussian wave packet for that mode, with its 
center in position space taken as the appropriate normal 
mode displacement that wiIl produce the Cartesian displace- 
ments y (‘)#yo and .xa= -cay (‘)/wi introduced above. 

The model just described has the following desirable 
properties: It mimics the properties of an interacting many- 
body system well enough to exhibit vibrational relaxation of 
the reaction coordinate as it dissipates its initial energy into 
its environment. Because the reaction coordinate is directly 
coupled to the electronic degrees of freedom of the system, 
the model enables study of the joint contributions of vibra- 
tional relaxation and electron transfer to the overall decay of 
the donor state .popuIation. Finally, the model is of spin- 
boson form. This means that the problem can be mapped 
onto one of enumerating configurations of a linear chain of 
Ising spins. Although previous work that has used this for- 
mulation of the SB model to compute real-time dynamical 
signatures has assumed preparation in vibrational eigenstates 
(or the associated thermal density operator1g720,25), the same 
explicit enumeration procedure can be utilized to study the 
evolution of the displaced initial state that is relevant in our 
scenario. 

We stress that the spin-boson model of nonequilibrium 
inner sphere ET which has been constructed is not without 
deficiencies. The spectral densities invoked mimic relaxation 
of the reaction coordinate via dissipative couplings to an en- 
vironmental bath, but we have no evidence that the relax- 
ation of any particular molecular ET system is gc#erned spe- 
cifically by the Langevin equation (3.5). In addition, the 
details of the initial nonequilibrium nuclear coordinate wave 
packet are chosen largely for convenience. The need to shift 
the center of the wave packet along the reaction coordinate 
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away from the equilibrium position along that coordinate is 
self-evident, but other features such as the widths of the ini- 
tial wave packet in each direction of nuclear coordinate 
space depend intimately on the nature of preparation of the 
initial state, an issue which is beyond the scope of the 
present study. Moreover, the nuclear motion on the bright 
surface cannot truly exhibit relaxation to equilibrium, since 
the bright surface potential energy function is quadratic in 
the nuclear coordinates. Hence the evolution j?(t)-+;p, 
where j$ is the thermal equilibrium density matrix associ- 
ated with Lb, does not occur in this model. Fortunately, for 
the spectral densities adopted in this work (full details are 
given below), the critical time kernels do have the property 
that for long times t, 

(3.6) 
Hence the time dependent rate constant k(t) relaxes at long 
times to an asymptotic value given by the standard CR in our 
model calculations. 

Another type of limitation of the present model, in which 
the coupling between the reaction coordinate and the bath is 
linear in the reaction coordinate, is that it underestimates the 
role of vibrational dephasing in the molecular relaxation pro- 
cess. It does not account for dephasing processes not directly 
associated with population relaxation (i.e., “proper dephas- 
ing”). From the point of view of the present calculation, this 
does not raise any difficulty because, as pointed out in Sec. I, 
in the limit of fast dephasing, the relaxation can be described 
by a standard master equation in the space of vibrational 
levels of the initial electronic state with each level assigned a 
decay rate given by the standard golden rule. Here we focus 
on the opposite limit. In the next section, we provide specific 
parameter choices, details of computation, and results for 
electron transfer in the case of preparation in a nonequilib- 
rium nuclear coordinate state of the donor potential surface. 

IV. COMPUTATIONAL DETAILS AND RESULTS 

The electron transfer Hamiltonian used in our numerical 
study is given in Eqs. (3.1)-(3.3). The displacements which 
describe the shift of the dark state from the bright state are 
specified by the spectral density J,(o) given by Eq. (3.4). 
The nuclear coordinates y and {x,} can be exchanged for 
linear combinations (ip} corresponding to the normal modes 
of the quadratic potential indicated in Eqs. (3.2) and (3.3) 
(i.e., the coordinates in which the associated force constant 
matrix is diagonal). Expressed in terms of normal mode co- 
ordinates, the ET Hamiltonian reads 

&p+ -2 -2 2 

%fYo% 
5 

+&l-C pf +; a2g$+~ 1 
P i P i 

where Xp are the normal modes, and jip and 6p are the 
corresponding canonical momenta and frequencies, respec- 
tively. (If there are N bath oscillators J,, then there are of 
course N+ 1 normal mode coordinates xIp. Also, for nota- 

tional simplicity, circumflexes on the position and momen- 
tum operators associated with the normal mode coordinates 
are suppressed in this section.) fin, is now in the form of a 
spin-$ system (represented by 2X2 Pauli spin matrices ox 
and a, and the 2X2 unit matrix) coupled to a set of mutually 
independent harmonic oscillators. The dynamics of the com- 
posite spin-boson system is amenable to calculation via ex- 
act path integral methods as well as the (approximate) non- 
equilibrium golden rule method introduced here. As shown 
by Garg et al. the coefficients Cp and the frequencies 6’p that 
correspond to Jo(w) in Eq. (3.4) are prescribed by the spec- 
tral density 

E; 
J&o)=; c 5p s(ti-uip)=(~2~~~~~w~~2. 

!3 
(4.2) 

For the nonequilibrium model, the initial wave packet is not 
in thermal equilibrium on the + surface. As was noted in 
Sec. III, if the initial displacement of the reaction coordinate 
jsy , (‘) then the initial displacement of the bath coordinates 
xc’ must be taken as n&O’= --~,y(~)lw$ in order for the 
reaction coordinate to obey the simple zero-temperature 
Langevin equation dynamics given in Eq. (3.5) 

If the transformation matrix between the local modes 
and the normal modes is denoted by T (i.e., the columns of T 
are the unit normed eigenvectors of the force constant matrix 
associated with the coupled reaction coordinate-bath poten- 
tial energy surface), then 

(4.3) 

The initial displacements y(O) and x’,o’= - c,yCo)lo~ on the 
+ (donor) potential energy surface correspond to normal 
mode displacements .$’ given by 

ZZ~(~)T’ 

1 \ 
Cl 

-7 
*I 

=y(o) 

C, 
-2 Ly I- (4.4) 

Thus the initial displacements on the + surface are propor- 
tional to Zp16& where the parameters E, are chosen accord- 
ing to Jeff given in Eq. (4.2). More precisely, the displace- 
ment of the pth normal mode wave packet from the 
equilibrium position of this mode on the + surface can there- 
fore be written as 

(y(O) +yo) % . . 
9 

(4.5) 
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FIG. 1. P*(t) obtained from the nonequilibrium golden rule formula, indicated by a solid line, is compared with exact results (indicated by a dashed line) for 
the “barrierless crossing” electron transfer (ET) Hamiltonian discussed in Sec. IV. The value of the nonadiabatic coupling strength is Ac=O.6. In (a), the wave 
packet is started at the equilibrium position of the + (donor) surface, i.e., y(O)= - 
extent of the initial displacement 6,s=- (y”)+yo) from equilibrium is indicated. 

y. ; in (b)-(e), the initial wave packet is started out of equilibrium. The 

The system which has been studied consists of a reaction 
coordinate y with a frequency of oscillation a= 1. As men- 

pling coefficients EP are chosen according to J&o), using a 

tioned above, the mass is taken as unity, and so is the param- 
value for the friction constant of v= 1. The procedure by 
which the normal mode frequencies, their equilibrium posi- 

eter ye which determines the horizontal displacement of the tions, and the relevant initial (displaced) wave packet states 
minima corresponding to V, . The reaction coordinate is 
coupled bilmearly to a bath of oscillators of unit mass, as 

are chosen may be summarized as follows: mode frequencies 

described in the GOA Hamiltonian [cf. Eq: (3.2)]. The cou- 
are evenly -distributed between zero and a cut-off frequency 
much larger than CL. For each frequency LjP, the parameter 
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FIG. 2 Classical dynamics of the system coordinate y(t) on the + elec- 
tronic surface. Trajectories are shown for three initial displacements from 
equilibrium. Values of $ are indicated on the figure. 

.?b is chosen according to kc& (4.2), and the displacement of 
the mode from equilibritim is given by Eq. (4.5). As indi- 
cated above, the- width of the i&al wave packet associated 
with normal mode coordinate p is the same as for the vibra- 
tional ground state of a simple harmonic oscillator having 
unit mass and angular frequency CZZ~. 

We have examined situations corresponding to several 
values of the bias energy E. In the first example to be pre- 
sented, the minimum of the - surface is lower in energy by 
an amount eo= Zcp2$l~~ than that of the + surface, so that 
the - surface intersects the + surface at the minimum 
Y = -y. of the latter. This arrangement promotes rapid leak- 
age of the wave packet onto the dark surface (assuming that 
the initial nuclear wave packet is prepared in or quickly ap- 
proaches the equilibrium region.of the donor surface). In the 
ET literature, it is referred to as the case of “activationless” 
transfer. The nonadiabatic coupling parameter A, is set to 
0.6. Results for a series of model systems in which the initial 
wave packet is gradually shifted further from the thermal 
equilibration position are shown in Fig. 1. In all cases, the 
initial displacement of the wave packet from equilibrium 
-(yCo)+yo)=S, is indicated. 

In Fig. 1, Pb(t) obtained via the nonequilibrium golden 
rule formula [Eqs. (2.8) and (2.9b)] is compared with the 
result obtained by the exact spin enumeration procedure. 
Panels (la)-(le) show results for increasing values of &. 
The details of the exact calculation .of Pb( t) are outlined in 
the Appendix. In all calculations, a discrete set of bath oscil-- 
lators was used and the number of oscillators was increased 
until convergence over the desired time period was achieved. 
In general, this required approximately 200 oscillators. 

Figure l(a) depicts the case of equilibrium preparation, 
i.e., y(O) = - yo. This curve shows the familiar behavior as- 
sociated with the standard golden rule. At short times, Pb(t) 
decays quadratically with time, but at longer times, exponen- 
tial decay sets in. Panels l(b)-l(e) show results for increas- 
ing initial displacement of the reaction coordinate. The first 
noticable effect of such a displacement is a delay in the ini- 
tial probability leakage due to the fact that the initial nuclear 
coordinates have a very small probability to be at the cross- 
ing seam (which goes through the equilibrium position of the 
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donor surface for this system). As the initial state begins to 
evolve on the bright surface, it “rolls down” to the bottom of 
the donor surface and nonadiabatic transfer to the acceptor 
surface can occur. As the initial dispacement is increased 
further,.a succession of plateaus and dips develop in Pb(t). 
These reflect successive seam crossings [manifested in dips 
in Ph(t)] and departures from the seam region [manifested 
as plateaus in am]. Because the reaction coordinate dy- 
namics is coupled to a zero temperature harmonic bath, the 
center of the nuclear probability density along Be reaction 
coordinate coordinate damps to yo, which results in an as- 
ymptotically time-independent rate constant, i.e., simple ex- 
ponential decay of Pb(t). 

This interpretation of the dynamics is supported by Fig. 
2, which shows the classical motion for the reaction coordi- 
nate on the + electronic surface, computed from the Lange- 
vin equation (3.5). As noted above, increasing the displace- 
ment of the y coordinate from the equilibrium position 
results in slower initial decay of Pb(t). Since the intersection 
of + and - surfaces occurs at the bottom of the + surface 
well, transfer to the dark surface is most efficient when the 
wave packet is in this region. According to the classical de- 
cay dynamics of y(t), the larger the initial displacements are 
from the minimum in the potential energy surface, the further 
the system is from its equilibrium position at shorter times. 
In a quantum mechanical scenario, this may be interpreted as 
the center of the wave packet being further displaced from 
the crossing point and hence less efficient transfer at shorter 
times. 

Further insight into the dynamics is obtained by plotting 
ln[P,(t)] vs t for the curves obtained in Figs. l(a)-l(e). 
This is done in Fig. 3. At sufficiently long times, alJ the 
curves become straight lines with nearly the same slope. This 
reflects expectations set forth in Set; II above. The time de- 
pendent rate constant k(t) {the negative of the slope of 
ln[P,(t)]}.directly mirrors the evolution on the donor sur- 
face of the initially prepared nuclear wave packet, as indi- 
cated in Eq.. (2.12). After a long enough time, for the donor 
surface used in the present study; the reduction indicated, in 

3.5 

3 

-In Pb(t) 2 

1.5 

0 
0.2 4 6 8 10 12 14 16 18 .20 L 

FIG. 3. Pb(t) vs time for the ET system considered in Fig. 1. Data are taken 
from NGR computations. All curves have essentially the same asymptotic 
slope, consistent with the standard golden rule rate. The curves correspond- 
ing to the initial displacements in Fig. l(aj and l(e) are indicated on the 
graph. The curves for Figs. l(b)-l(d) progress smoothly between these two 
cases. 
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Eq. (3.6) occurs. We expect this to be the case in more com- 
plicated condensed phase systems as well for reasons out- 
lined in the discussion of the classical Franck-Condon ap- 
proximation to k(t) above. 

For the range of displacements from equilibrium consid- 
ered in Fig. 1, the NGR provides a good approximation to 
the exact solution, up to times where less than about 30% of 
the initial population remains on the + surface. It should be 
noted that the exact calculations of the population decay, 
using the spin enumeration procedure described in the Ap- 
pendix, require enough spins to achieve convergence over 
the time period of interest. The number needed depends in 
part on the values of the parameters that appear in the ET 
Hamiltonian (4.1), and also on the time interval of interest. 
For the systems considered in Fig. 1, it was found that for 
td 8, about 14 spins, or 214 spin configurations were suffi- 
cient, while for the long time tails 8 stall 0, considerably 
more configurations Were required for convergence, typically 
218-p 

The case of “barrierless crossing” is special, since-it is 
defined by the condition that the diabatic acceptor surface 
crosses the donor surface exactly at the minimum of the lat- 
ter. In general, this condition will not be met and, conse- 
quently, an “activation barrier” develops in the system. The 
introduction of such a barrier results in decreased efficiency 
of population transfer from donor to acceptor surfaces. We 
created an activation barrier by “raising up” the diabatic 
acceptor potential surface. without shifting its equilibrium 
position in nuclear coordinate space. Specifically, we 
changed the bias between the diabatic surface minima ac- 
cording to Q= - 1c~~2~~l~~. When ~=l, the barrierless 
crossing case is recovered. As K is reduced, the acceptor 
potential surface is lifted vertically, and consequently the en- 
ergetic crossing point between the two diabatic surfaces is 
given by zlp(l - ~)‘i$//2$j above the minimum of the + 
surface. This energy gives a rough estimate of the height of 
the activation barrier and hence lowering K is expected to 
result in slower decay of P,(t). By the time that ~=0.5/1.99, 
deviations from the results displayed in Fig. 1 (K= 1) are 
clearly noticeable. The correspondiig results for ~=0.5/1.99 

are shown in Fig. 4. In each panel, the results of the GR 
approximation [in Fig. 4(a)] or NGR approximation [in Figs. 
4(b)-4(e)] are compared to exact path integral results. It can 
be seen that the accuracy of the (N)GR approximation is not 
quite as good as in the barrierless crossing case considered 
above. although its performance is still encouraging. Inter- 
estingly, it is the standard GR situation (i.e., where 
y(O)= - yo), cbnsidered in Fig. 4(a), where the approxima- 
tion is least accurate. When the initial wave packet is dis- 
placed from the center of the donor potential surface,- the 
NGR approximation does quite well at following the pla- 
teaus and drops associated with the oscillation of the bright 
surface wave packet. Overall, the NGR approximation for 
this case of crossing through the activation barrier is accurate 
to within about lo%-15% down to bright surface electronic 
probabilities of 0.3-0.35. In Fig. 5, we plot In Pb(tj vs t for 
the case considered in Fig. 4. Again it is seen that after a 
sufficiently long time, In Ph(t) varies linearly with time for 
all initial conditions studied, and the asymptotic slope is 

given essentially by the standard GR rate constant [cf. Eq. 
(2.11j-J. 

Because the NGR approximation is intimately tied to 
time-dependent perturbation theory (cf. Sec. II), it is of in- 
terest to explore the extent to which it is limited to small 
nonadiabatic coupling strengths A,. In Fig. 6, we show re- 
sults for the scenario considered in Fig. 1 (the barrierless 
crossing case), except that the nonadiabatic coupling strength 
has, been increased to A,= 1.0. The decay of Pb(t) is notice- 
ably more rapid due to the stronger value of the nonadiabatic 
coupling strength. Perhaps surprisingly, the NGR results are 
quite accurate down to populations of a few percent. Even 
though we are far from the limit where nonadiabatic cou- 
pling can be classified as a small perturbation, the exponen- 
tiation of the short-time dynamics analyzed in detail in Sec. 
II proves fruitful. It is worth noting that convergence of the 
path integral procedure requires more spins in the equivalent 
Ising chain as A0 is increased. The computational details of 
the (N)GR approximation, on the other hand, are essentially 
independent of the magnitude of the nonadiabatic coupling 
strength. Hence (N) GR type approximations may find unex- 
pected utiIity in this regime. 

V. DISCUSSION AND CONCLUSION 

In this work, we have derived and applied a formula for 
computing approximate leakage of population from an ini- 
tially prepared electronic state to a second, nonadiabatically 
coupled, electronic state. The formula is a generalization of 
the standard golden rule, which applies when the initial 
nuclear coordinate is a rovibrational eigenstate of the poten- 
tial energy surface associated with the initially populated 
electronic state. Here, more general initial nuclear states have 
been considered. In particular, our result, contained in Eqs. 
(2.8) and (2.9), and termed the nonequilibrium golden rule . 
formula, incorporates effects due to preparation of the initial 
state out of equilibrium with respect to the nuclear coordi- 
nates. For simplicity, we have assumed that the process is 
dominated by “one-way leakage,” i.e., no backflow of prob- 
ability to the initially prepared electronic state. This assump- 
tion, which is expected to be applicable in many important 
cases, e.g., the exothermic regime of electron transfer reac- 
tions, makes the exponential expression in Eq. (2.9bj valid 
for relatively long times (on the time scale of the electronic 
transition). 

To establish the accuracy of the nonequilibrium golden 
rule formula, application’was made to a spin-boson model 
of inner sphere electron transfer. The model introduced by 
Garg et al. for transition out of the equilibrium nuclear state 
of the Donor electronic state*’ was extended to include initial 
conditions corresponding to nonequilibrium preparation on 
the donor surface. The predictions of the nonequilibrium 
golden rule were found to agree well with exact path integral 
results for a wide range of initial distortions of the initial 
nuclear wave packet from ifs equilibrium configuration. 

A number of extensions of the themes developed in this 
work would be of useful. First, the inclusion of electronic 
population “backflow” to the initially populated state is nec- 
essary to treat important cases such as the “symmetric case” 
of equivalent donor and acceptor moieties. Presumably, a 
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FIG. 4. Pc(t) obtained from the nonequiIibrium golden rule formula, indicated by a solid line, is compared with exact results (indicated by a dashed line) for 
the ET Hamiltonian discussed in text with vertical displacement of the (acceptor) surface %=-OS. (This corresponds to a significant barrier for the ET 
process.) The nonadiabatic coupling strength is~&=O.6. In (a), the initial wave packet is at equilibrium on the bright surface. (b)-(e) show results for the same 
series of initial wave packet displacements considered in Fig. 1. 

time-dependent version of the “backward” rate constant that chlorophyll species. 26 If vibronic interactions are important 
arises in standard golden rule or master equation treatments” in this electron transfer process, it may be necessary to treat 
can be constructed. Another interesting generalization would effects due to nonequilibrium preparation of the nuclear co- 
be to the case of more than two nonadiabatically coupled ordinates on the donor potential surface. Yet another question 
electronic states. There is, e.g., extensive speculation that the concerns the relationship between the optical preparation 
electron transfer in the photosynthetic reaction center pro- process and the electronuclear dynamics which follows this 
ceeds via an intermediate state associated with a bridging preparation step. If the optical pulse duration is comparable 
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FIG. 5. P,,(t) versus time for the ET system considered in Fig. 4. Data are 
taken from NGR computations. All curves have essentially the same asymp- 
totic slope, consistent with the standard golden rule rate. Curves correspond- 
ing to the displacements shown in Figs:4(a) and 4(e) are indicated on the 
graph as (a) and (e), respectively. 

to, say, the time scale of vibrational relaxation -on the bright 
or donor state, then it should be considered on the same 
dynamical footing as the electronuclear motion. In this case, 
the pulse preparation step needs to be folded into the evolu- 
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FIG. 6. P,,(r) for the case of the “barrierless crossing” ET system consid- 
ered in Fig. 1, except that here the nonadiabatic coupling A0 is increased to 
the value 1.0. In (a) the wave packet is initially in equilibrium position on 
the + (donor) surface. In (b) the initial wave packet. displacement is 
ses= 1.0. 

tion of the electronuclear motion according to the time- 
dependent SchrGdinger equation. Fdr all these more elabo- 
rate processes, as well as the simpler one considered directly 
in the paper, the essential simplicity of the nonequilibrium 
golden rule prescription opens the way to a variety of inter- 
esting condensed phase applications. 

Note added in proqf After this paper was accepted for 
publication we learned of work by L. D. Zusman and A. B. 
Gelman on the optical absorption spectrum of a solvating 
electron [Opt. Spectrosc. (USSR) 53, 248 (1982)] in which 
formulas similar to our Eq. (2.8) were obtained. The focus of 
the two articles is, however, much different. Iii this paper we 
have pointed out the potential for semiclassical calculation of 
time-dependent rate constants for interacting many-body sys- 
tems, and the ability to extend the short-time perturbation 
theory analyses by appropriate processing of the short-time- 
data. In addition, an extensive application to the GOA model 
of inner sphere electron transfer, including numerically exact 
Path Integral solutions that demonstrate the utility of the 
nonequiIibrium golden rule procedure, is novel. We thank Dr. 
L. Zusman for bringing his work to our attention. 
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APPENDIX: SPIN-ENUMERATION PROCEDURE FOR 
EVALUATION OF ELECTRONIC POPULATION 
DYNAMICS IN THE SPIN-BOSON MODEL 

An exact calculation of the + surface population dynam- 
ics P,(t) is required in order to gauge the accuracy of the 
approximate calculations proposed in Sec. III. The exact cal- 
culation is based on the spin-boson path integral formalism. 
This formalism converts the problem of quantum mechanical 
evolution on nonadiabatically coupled electronic potential 
surfaces into a sum over configurations of a 1D Ising spin 
chain. As in the standard Ising model, each spin interacts 
with a local external field and, in addition, all pairs of spins 
interact. Unlike the standard Ising model, however, the spin- 
spin interactions are long range and both spin-spin coupling 
coefficients and external field parameters ‘are complex val- 
ued. This renders evaluation of the required spin’surns non- 
trivial. Most attempts to evaluate these sums have been 
based on Monte Carlo sampling.25 Here we opt instead for 
direct enumeration of spin configurations. We have found 
this procedure to be useful in applications of the spectro- 
scopic spin-boson model, a variant of the canonical spin- 
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boson model which is useful for computing Franck-Condon 
absorption spectra in systems-characterized by nonadiabati- 
tally coupled excited electronic states.u The details are 
slightly different in the case of present interest, i.e., compu- 
tation of electronic state population dynamics; and hence are 
sketched in the following paragraphs. 

We wish to calculate the + surface population 

Mt>=~+l~~ol~ ‘~~~l+)(+[e-~~~~l~o)l+) (Al) 

in the case of the electron transfer models such as that pro- 
posed in Sec. III [cf. also Eq. (2.2)]. H&e #,, is the initial 
nuclear wave packet on the + electronic surface. 

Insertion of a set of complete electronic states into Eq. 
(Al) gives 

Xhle --ikq +>I 4,>, (‘42) 

where E= t/N and ISi) is an eigenstate of crz, i.e., 
a,le>= ?I+). Equation (A2) is exact for any N, but a solu- 
tion is only possible in the limit where N--co. As e-+0, each 
of the propagators may be disentangled [with errors at @(&I 
to give 

.* * 
(s~I~-~~~EIs~)~,,,~~ exp(-i&+,-j, (A44 ‘. 

where 

fi2.SI = 
cos(~A~/2), sl=sz 
-i sin(eA0/2), s1 -fsz’ Wb) 

and 

I 

L 
h,,-- . 

s1=+ 

h-9 sl=-’ (A4c) 

Equation (A4) actua$y holds for Hamiltonians of the form 
(-3.1) with arbitrary hr, but in the case of direct interest has 
the simple form 

h,=x L (~;+w;x,~)+&x~ 2;. 
1 k 2 1 

(Compare Eq. (4.1). For notational simplicity, we suppress 
the tildes here and label the oscillator modes by the index k. 
Furthermore, the linear shift coefficients are denoted simply 
by 8, and overall additive constants are ignored [since they 
do not affect P,,(t)].} This enables us to write 

Pb(t)= 2 --- c c *** c ~?zF,-~ 
s, = r sp+,=+ sN+‘=c S2p+,‘tk 

Xexp[j il sj-75: Sk) ;] 

wolmw4o). @5) 

The factor !%Q” c = nf$lFzjXj.M, , and fi< is the time develop; 
ment operator for a set of linearly driven harmonic oscillator 
evolving according to 

&Xk) +fk(u)xk ; 
here &?(xk) is the standard harmonic oscillator Hamiltonian 
for mode k, and u is the time variable. Furthermore, fk(u) is 
a pulse function that on the interval je<u<(j + 1) E takes 
values of + 6, if sj = -+ for 0 c js N - 1. The propagator’ fi”, : .I. 
is defined analogously, with a pulse function that depends in 
an obvious way on the spin variables sN-szN- 1. 

In order to calculate Pb(t), we need to calculate the 
factor (&,I ( fiI”,> i @.I 4,) ..This quantity can be obtained ana- 
lytically, since the initial wave packet for each mode is a 
Gaussian coherent state which is to be evolved according to 
a linearly driven harmonic oscillator potential,28 with a driv- 
ing force defined by the spin configuration as just discussed. 

Essentially the same technique described in this appen- 
dix has been used in previous calculations of spectroscopic 
line shapes within the spectroscopic spin-boson mode1.27 
The presence of both a forward and a reverse time develop- 
ment operator (rif and fi”,) in the electronic population cal- 
culations renders calculation of Ph(t) to longer times more 
difficult than analogous optical spectra. Effectively, it re- 
quires twice as many spins to compute the population decay 
as it does to calculate the value of an electronic absorption 
kernel at the same time value. 
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