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Electron tunneling through a dielectric barrier is considered with special attention given to questions 
relevant for STM experiments in dielectric liquids. The effect of the barrier dielectric response on 
the tunneling probability is studied using the effective Hamiltonian formalism for the polarization 
dynamics in the barrier, and two different theoretical approaches for the calculation of the tunneling 
probability: A generalization of the Bardeen’s formalism to inelastic tunneling and the quasiclassical 
of Brink, Nemes, and Vautherin as expanded by Sumetskii. Although based on different 
approximations, both approaches yield similar results in the slow barrier limit, where their ranges of 
validity coincide. The approach based on the Bardeen’s formalism relies on the adiabatic 
approximation and fails for fast barrier dynamics. The overall effect of the barrier dielectric 
response is to enhance the tunneling probability relative to the rigid barrier case. The enhancement 
factor is larger for thicker barrier, higher temperature and faster barrier dynamics. Both the elastic 
and inelastic components of the tunneling current show these trends in the relevant range of 
parameters, 

I. INTRODUCTION 

The scanning tunneling microscope (STM) can poten- 
tially revolutionize the field of electrochemistry. The realistic 
possibility of observing the atomic structure of an electrode 
surface under working conditions has attracted much effort 
since the applicability of “underwater” tunneling micros- 
copy was demonstrated less than a decade ago.lv2 While 
atomic resolution can be achieved and the change in elec- 
trode structure can be observed during an electrochemical 
process, a full understanding of the tunneling .process and of 
the observed signal is still lacking. Some question, such as 
the role played by the dynamical response of the tip and the 
electrode in the tunneling process, the effect of the electronic 
structure of the absorbate site on the tunneling current or the 
origin and nature of noise in the observed signal, are relevant 
in all STM operations. Others are specific to- the electro- 
chemical interface: (a) What is the effect of the molecular 
structure of the solvent near the solvent-electrode interface 
on the tunneling? (b) How does the dynamical response of 
the solvent affect the tunneling process? (c) How do unad- 
sorbed solutes affect the STM operation? More specifically 
these issues boil down to the practical questions -regarding 
the solvent effect on the barrier to tunneling, on the STM 
resolution and on the observed noise in the tunneling current. 

It has been suggested3-7 that one manifestation of sol- 
vent effect on the STM operation is the unusually low (rela- 
tive to expectations based on experience from the solid- 
vacuum interface) barrier to tunneling observed in under- 
water STM experiments.3 Such observations can be related 
to uncertainties in the vertical scaling of the tip displacement 
due to tip-surface interaction forces,* however, some of the 
observations are done at tip-surface separations large 
enough for this effect not to be very significant. Schmickler 
and Henderson4 have considered the electronic polarizability 
of the solvent as the possible source of barrier lowering. The 
same effect is the source of reduction of the threshold for 

photoemission in liquids relative to the corresponding 
vacuum value.’ For tip and surface represented by jellium 
with r,=2 and a solvent with c= 1.88 (water), Schmickler 
and Henderson estimate a barrier lowering of - 1.2 eV, of the 
same order as the solvent induced reduction of the work 
function. From the microscopic point of view this lowering 
is related to the location of the bottom of the solvent con- 
duction band below the vacuum level. A different but physi- 
cally equivalent approach is use extensions of the superex- 
change model of electron transfer, whereas an effective 
barrier lowering is caused by the presence of low lying elec- 
tronic states in the ban5er.t’ 

Arguing that the result of Schmickler and Henderson 
considerably underestimate the magnitude of the observed 
effect, Sass, Gimzewski, and co-workers6P7 have suggested 
two additional sources for the apparent barrier lowering. The 
fhst is the contribution of the solvent nuclear dielectric re- 
sponse, which for water is known to be dominated by fast 
inertial motion on a time scale of a few tens of femtosec- 
onds. The second originates from tunneling events controlled 
by rare fluctuations in the solvent configuration in the space 
between the tip and the surface. Such spontaneously occur- 
ring rare configurations characterised by very low barriers 
may dominate the tunneling current which itself depends ex- 
ponentially on the barrier hight. In particular these authors 
suggest that configurations that could support asolvated state 
of the electron enhance the tunneling by the existence of 
such resonance states in the’ barrier. Essential differences 
from regular resonance tunneling are the facts that the barrier 
structure may be affected by the presence of the tunneling 
electron and that the resonances in the present situation have 
very short lifetimes. 

The possibility that transient structures that support 
resonance tunneling may lead to an overall enhancement of 
the tunneling process may be dismissed at least as far as 
dielectric structures concerned: Solvent reorganization en- 
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where lJ> U1, U, and ergy IV, for forming the polarization cavity that will support 
the solvated electron (of radius u-2 A) can be estimated 
from 

2 
\Q& “2 

i i OP dt 

to be -1 eV.The thermal probability exp( - W,IR,T) to 
form such a structure at room temperature is far smaller-than 
the possible gain in tunneling probability. It is’ still possible 
that other rare structures (e.g., an ion located in the tunneling 
path) may have an essential effect on the tunneling current. 
In addition, resonance- tunneling via intermediate electronic 
levels of molecules adsorbed on the tip or on the electrode 
may also take place.“*” In the present work however we do 
not consider this possibility and focus on the effect of the 
barrier dielectric fluctuations. 

1 -d/2<z<dl2 
U,k) = 0 -d/2<z>dl2’ 

Numerical simulations of solvation dynamics in several 
neat dielectric solvents13 indicate that for singly charged spe- 
cies the time evolution is well accounted for by linear re- 
sponse theory. This suggests that at least the effect of the 
&namicnl response (as opposed to the rare quasistatic fluc- 
tuations) of the solvent may be accounted for by a linear 
theory. This is equally true for the nuclear and the electronic 
solvent response which, excluding chemical reactions in- 
volving the solvent, differ from each other essentially by 
their time scales. On this level of the theory the dielectric . 
barrier may be represented by a set of harmonic oscillators 
coupled linearly to the tunneling electron. This is analogous 
to the Caldeira-Leggett model used extensively in the past 
decade to describe tunneling in dissipating systems,14 with 
the important difference that coupling to the “phonon bath” 
exists only in the barrier region. Therefore, in spite of the 
linear form of the electron-phonon coupling, the hamil- 
tonian is not linear, in contrast to the Caldeira-Leggett 
model. l4 

A similar model was recently investigated by Sebastian 
and Doyen” within a path integral approach. While their 
method is in principle general, these authors have focused on 
the effect of the barrier dynamics on the elastic tunneling 
probability. When the barrier response is slow relative to the 
tunneling time their treatment results in the usual expression 
for tunneling through a ‘potential barrier, averaged over a 
Gaussian distribution of barrier hights. Following Persson 
and Baratoff16 these authors have also investigated the pos- 
sible effects of the dynamical image associated with the re- 
sponse of the metal electrode. This effect is disregarded in 
the present mode which focus on the barrier response and its 
effect on the elastic and inelastic tunneling probabilities and 
their numerical estimate in broad range of relevant physical 
parameters. We use two different approaches. The first is the 
Bardeen transfer Hamiltonian formalism’7 extended to in- 
clude inelastic tunneling. The second is based on a generali- 
zation of the WKB fo~rmalism to many degrees of freedom.r8 
The former approach is shown to be valid in the common 
case of slow barrier dynamics, and in this limit the two ap- 
proaches give identical results for the tunneling current. The 
latter approach is useful also in the limit where the barrier 
dynamics is as fast as the tunneling process. In both cases we 
apply-usual dielectric models for the barrier to estimate the 
effect of ‘the barrier dynamics on the tunneling probability, 
the tunneling current and on the relative magnitudes of the 
elastic and inelastic components of these quantities. 

In the present work we investigate tunneling through a 
dielectric barrier within such a model. The barrier is taken to 
be a dielectric film of thickness d lying in the xy plane, so 
that tunneling takes place in the z direction. The correspond- 
ing Hamiltonian is taken to be 

II. DETAILS OF THE MODEL 

H=H,,+HJ+-H,*-~) (1) 

H,,=-(A2/2m)VE,+U(z), (2) 

ff~=H,({Q)j, (3) 

Hel-B= U,(z>V({Q)), (4) 

where Y(z) is the static part of the barrier potential and HB 
isthe Hamiltonian of the polarization fluctuations denoted by 
a set of coordinates {Q}. The electron-medium coupling will 
be taken to be of the same form used for the electron solvent 
coupling in electron transfer theory; except that it is multi- 
plied by U&), a function which is different from zero only 
in the barrier region. In our particular application we take 

We now consider the model we use for the description of 
the effect of solvent polarization fluctuations on the electron 
tunneling through a thin dielectric film between two metals. 
We first focus on the Hamiltonian (l)-(4) and the physical 
parameters appearing in it. 

For the electrostatic interaction &-B’between the tun- 
neling electron and the solvent polarization in the dielectric 
we take 

1~ 

H+-B(rj= -U,(z) d3r’ P(r’).D(r’,rj. I 

Ul &-d/2 ’ 

U(z) = U d/2>z> -d/2, (5) 

u2 zBdl2 

Here, P(r) is the polarization of the solvent and D@,r) is the 
electrostatic displacement due to the presence of an electron 
at a point r=(z,r$ in the film between two metals. Form (7) 
is similar to that taken in dielectric theories of electron sol- 
vation and electron transfer, except that the interaction is 
assumed to vanish when the electron is outside the film. 
Also, the source displacement field D is taken in correspon- 
dence with the given geometry: D is derived from the poten- 
tial of a charged particle located at position r between two 
grounded metal platesI 

(6) 

(7) 
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D(r’,r)= -V,.,+(r’,r), 

+(r’,r)= i% C exp[iqll.(ri-rll)] 
sll 

xs’nh[4”(Z<+d/2)lsinh[qll(d12-z’)1 
411 siNca@) 

, (9) 

where S= L,L, is the surface area in the parallel direction, e 
is the electron charge, and z< and z> are the smaller and the 
larger of the values z and z’ . The sum is over q vectors in the 
xy plane. 

Since the electrostatic interaction between an external 
charge and a dielectric environment involves the induced 
longitudinal polarization, P(r) in Eq. (7) can be represented 
by 

P(r)=: 2 ew(WrMq); 

s=(4z41$ P(-q)=-P”(q). 00) 

Following common practice2’ we will assume that the nor- 
mal component of the polarization vanishes at the interfaces, 
namely, at z = 2 d/2. A convenient way to achieve this is to 
redefine P(q) in Eq. (10) so that 

P(r)=C -!- exp(iqll.rll)expCiq,(z+d/2)lP(q), 
g lql 

(104 

where qZ and 411 are the components of the wave vector in the 
directions perpendicular and parallel, to the metal surfaces, 
and to require that P( 911, - qZ) = P(qll ,cQ [and consequently 
P(--qll,qr)= --~*(~1,~~)]. This leads to 

P=PII+P,, 

x(1-i 8qz,o) cos[q,(z~+d~2)1, 

k, 
PL(r)=2iC C ~(q.kxp!~q-q) m 

qll q,*o 

Xsin[q,(z+d/2)], 

where qZ takes only discrete values, 

q,=mald, n=0,1,2 ,... . (114 

Substituting Eqs. (8), (9), and (11) into E$. (7) we obtain the 
following expression for the electron polarization interac- 
tion: 

f&l-B(r)= -8~eiUdd~ *Ti b 

x ( 1 - i S,;,,)f(q,z)P(q)exp(iql.‘i) 

with 

(12) 

f(q,z)=cos[q,(z+dl2)1 

sin&qll(d/2-z)]+(- 1)” sinh[ql$d/2+z)]- - 
sWql4 

(13) 

Equation (12) shows that the interaction Hamiltonian Hel-B 
depends on the position, (rll,z), of the electron inside the 
barrier. The term exp(iqll.r$ in H,,-,(f) causes deflection of 
the electron from its initial direction in the xy plane, from the 
incident wave vector k[ to t$e final wave vector ICY, with 
klf-kl’r=qll* 

The problem of electron tunneling in the presence of 
interaction (12) with underlying phonons is very compli- 
cated, and we resort to two simplifications which, though 
quite drastic, preserve the essential physics of the process. 
First we note that the most important contribution to the 
tunneling current comes from electrons with ki= 0 which are 
not deflected from the normal direction during the tunneling 
process. Deflected electrons wiIl encounter longer tunneling 
paths and therefore exponentially smaller tunneling prob- 
abilities. The tunneling probability for an electron with a 
given kll is essentially exp{ - [(2m/n2)( U- E,, 
+h2k~/2mj]*‘2}=exp( - Kd) Xexp(-k$d/2Kj, where 
K=[(2dfZ2)(~-~e,)]“2 and E, is the electron energy. 
This imposes a natural cutoff, A = (K/d) 1’2= K/( Kd) 1’2 on 
the 411 summation in Eq. (12). For Kd* 1 this limits this 
summation to small magnitudes of 911, and since the largest 
contribution to the tunneling current for a given total electron 
energy comes from the 411=0 term, we will approximate the 
term multiplying P(q) in Eq. (12) by its LQ=O value, i.e., 

b ( 1 - i s,i,0)Xs,r)P(*)exp(iqll.rll) 

-; (1-i $z,o)f(q,,LGYq~. 

where 

f(crz ~9 = cosCq,(z + d/2)1 

-[(d/2-z)+(-l)“(d/2+z)]/d. (15) 

For now we also make an additional simplilication of 
HeIpB(r) by replacing f(q, J) with a z independent con- 
stant. The simple procedure is to replace f(qZ ,zj by its av- 
erage over the barrier, 

U6) 

We later show that this is a reasonable approximation in the 
slow barrier limit, while for a fast barrier it can be used to 
obtain rough estimates of the tunneling probability. 

In Sec. IV the WKLB approximation is used to obtain the 
tunneling current without invoking approximation (16). In 
what follows we focus on the slow barrier case and adopt 
approximation (16). Note that f vanishes when qZ and there- 
fore n are zero. Thus finally, 

I 
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Hel-B(r)= -8miUB(z)i c if(g 
q) q,‘O L 

(17) 
n=(K/d)“‘. 

Next consider the solvent polarization fluctuations. Fol- 
lowing common practice”’ these will be described using the 
effective Hamiltonian method, whereupon the solvent is rep- 
resented by a set of harmonic oscillators with the frequencies 
wqV . It is assumed that the Fourier components of polariza- 
tion P(q) are linearly related to the dimensionless coordi- 
nates QqV = a$ + uqy of the effective oscillators with coeffi- 
cients A,, , i.e., P(q) = ZJ,,Q,,. This assumption leads 
to the following explicit forms for the bath Hamiltonian [Eq. 
(3)] and for the electron-bath coupling [Eq. (4)], 

HB=C fi~,d-&a,,, 
w 

(18) 

He,-,=Udz)C cqvQqv; Qqv=d,v+a-qv; 
w 

IBlll”A9 (19) 

where 

CvJ = -8meiAq, 

The parameters A,, and wqV are related to the nonlocal di- 
electric function of the solvent, E(q,w), by the summation 
rule22 

877%~ $$ g(o,,)= 1 ;“tzq;; g(w) da, (21) 
v B E 70 w 

where g(o) is any smooth function of o and V= Sd = L,L,d 
is the film volume. Within the.one-branch approximation for 
the polarization oscillators the summation over Y is sup- 
pressed and Eq. (21) leads to 

IAq12=2 A- &)* i (22) 

Here, est(q) and BP(q) are the static and the optical dielectric 
functions of the film. Note that in the spirit of approximation 
(14) the parameters A,, can be represented by the corre- 
sponding value obtained for q=(O,O,qZ). Also note that the 
structure of Eq. (22) implies that the dielectric response of 
the barrier includes an instantaneous component represented 
by q,op. The barrier height U introduced above includes the 
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effective reduction caused by this component, in the spirit 
discussed by Schmickler and Henderson.4 

III. TUNNELiNG RATE: THE INELASTIC BARDEEN’S 
FORMALISM 

In this section we extend the Bardeen transfer Hamil- 
tonian formalism17 to describe the effect of polarization flue- 
tuations on electron tunneling through dielectric barriers. For 
a static rectangular barrier Bardeen17 has obtained the fol- 
lowing golden rule type expression for the transition rate: 

(23) 

where I and F denote the initial (incident) and final (trans- 
mitted) electronic states and the transition matrix element JIF 
involves the z component of the current density operator (z is 
the tunneling direction) 

J~~=(ZIJ(ZJF)= - g a*; WF 24F -&- 1 
X 6(z-z,)d3r. (24) 

Here, z, is an arbitrary point in the barrier region, whose 
actual position in the barrier does not affect the matrix ele- 
ment. q1 and ?F are the eigenfunctions of auxiliary Hamil- 
tonians with semi-infinite barriers. Thus for the problem un- 
der consideration, for an electron tunneling from left to right 
q[ is an eigenfunction of the Hamiltonian with a potential 
given by Eqs. (5) and (6) only extended to +a [V’(z) = U1 
at z-C-d/2 and U’(z)= U at z> -d/2]. Similarly *F cor- 
responds to the Hamiltonian with the barrier extended to --c~3 
[UF(z) = U, for z>d/2 and UF(z)= U at z<d/2]. Evalua- 
tion of the right-hand side of Eq. (24) for a square barrier 
( U1 = U,) leads to 

(25) 

kI=; 42rn(Ef,,= U,); KI=; &i+%$, (26) 

where Ed, is the initial energy of the tunneling electron. The 
transmission probability P, is related to the transition rate 
by 

64 
WIF= PrFji= PIF z 9 

where ji is the incident flux and L is the normalization 
length, in the z direction, of the electronic functions. Using 
the density of final electron states p( EF) =mL/(2Tfi2kF) in 
Eq. (23), Eqs. (23), (25), and (27) lead to the conventional 
expression for the transmission probability. 

Consider now the case of the fluctuating barrier defined 
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by Eqs. (3) and (4), We assume that the characteristic time 
scales of the polarization variables (Q}, namely the inverse 
frequencies {osv} are much slower than that of the electron. 
The latter is determined by the tunneling time,= which, for 
elastic tunneling, is given by 

I dl2 
7= (28) 

-dl2 

We will also assume that the phonon energies r5iwq,, are much 
lower than the relative barrier height U--Ed,. In this case 
Eq. (28) provides a good estimate of the tunneiing time al- 
sofor inelastic tunneling events. These assumptions are valid 
when the barrier dynamics is dominated by nuclear (orienta- 
tional) polarization fluctuations. 

Under these assumptions the overall electron-phonon 
tunneling wave functions q\Ir, and QF may be written in the 
spirit of the Born-Oppenheimer approximation as 

9 r(F)= Il/r(F)(r,(Qqv},E’,IF))XIo)((eqV),E~6F)). (29) 

Here, #cm are the eigenfunctions of the electronic Hamilto- 
mans 

H;l”‘= -(n2/2m)V2 5 UzcF)(z) + U’,‘“‘(z)~ cqvQqv (30) 
q. y 

UJcF)(z) and U$F’ constitute semi-infinite barriers as de- 
scribed above and where the term containing Us is due to 
solvent polarization. The functions II/’ and fl can in turn be 
written as products of free waves in the direction parallel to 
the barrier and tunneling functions in the perpendicular di- 
rection. The latter will be denoted #(z) and f(z). They are 
given by 

I 

fp(z)=L-“2 
exp(ik,(zfd/2))+SI, exp(-ik1(z1+d/2)) at z<-d/2 

(1-SII)exp(~~r(z+d/2)) at z>-d/2 
2 (31) 

tf(z)=L-1’2 
(1 -SFF)exp(KF(z-d/2)) at z<d/2 

exp(-ikF(z-/2j)+SFF exp(ik,(z-d/2)) at z>d/2 ’ 
(32) 

where 

ik,+ K~ 

‘II~ik,- KI’ SFF= 
ik,+ K~ 

ik,- KF’ 

klo=; J2&(E’,IF)- u,(,)); ‘G(F)(~) = f ?I+ lJBc c~~Q~~--E~[~) 
q.v I 

I 

E$ and Ez are the electron energies in initial and final states, 
L is the normalization length and Q = {Q,,}. 

The Hamiltonian for the slow polarization subsystem 
which is characterized by the eigenfunctions d(F) has the 
form 

H;ka = H,, + ,z?;;~’ + 2 c,vQ,v(ti’“‘I u,(z)1 (CCcF’>. (34) 
9. lJ 

The matrix element ( #CF’(z)j U,(z) 1 @F’(z)) is propor- 
tional to LT * and vanishes as L--+m, where L is the normal- 
ization length in the z direction. As a result the polarization 
Hamiltonians have the same form in the initial and the final 
electronic states and differ only in their electronic energy 
origins. In this respect the present theory differs from usual 
models of electron transfer described by the same formalism. 
The net energy of the whole electron-phonon system 

(334 

(33b) 

(354 

Wb) 

is conserved in the tunneling process. 
The generalization of the Bardeen’s procedure for the 

present case which includes electron-phonon coupling is de- 
scribed in Appendix A. It leads again to the tunneling rate of 
the form (23), where p(EF) is the density of final states of 
the electron-phonon system and the matrix element J,F now 
given by 

JIF=(XIIJIF(Q)IXF)~ (36) 

where the matrix element .involves integration over all pho- 
non coordinates, and where J,F(Q) is given by 

I 

fi2 4k,kFtK,(Q)+KF(Q))exp[-!1/2!d(K(Q)l+KF(Q))] 
JIF(Q) = - 2mL 

(ik,-KI(Q))(-ikF-KF(Q)) 
(37) ! 
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In writing Eq. (37) we have neglected correction. terms of 
order (E$ _ E$IU (see Appendix A). 

Equation (37) is an expression for the electronic tunnel- 
ing matrix element, which is an operator in the polarization 
(phonon) space. Assuming that polarization fluctuations are 
initially in thermal equilibrium the’transition rate takes the 
form 

W[,T=~ i 
I 

dE:x exp( -PE$ 
I 

F 

XS(E’,,+E~~-E~-E~~)I)(E~),~“. 

where .Z is the canonical partition function 

z=6 exp(-PEih) 
I 

(38) 

. 

(39) 

and where the sums over I and F in Eqs. (38) and (39) are 
sums over phonon states only. Following- conventional pro- 
cedure, Eq. (38) can be rewritten in the form 

1 
lvlF = 9 

I J‘ 
dG dt exp(i(Ez-EL,)tlfi) ” -. 

X(JIF(o)J,,(t)),p!E~), (40) 

where JFI = JFF is given by Eq. (29b) with I and F inter- 
changed and 

J,,(t) = exP(iH&)JFr exP( - iH,,t) =JFz(Q(t)) (41) 

and where the symbol ( )r denotes the thermodynamic aver- 
aging over initial phonon states. 

Next, the current-current correlation function in Eq. 
(40) has to be evaluated. A simple tractable approximation to 
this function is obtained by expanding K~(Q) and KF(Q) in 
Eq. (37) as power series in Q, keeping the zero order terms 
K[= K~(Q=O) and K,F= K,v(Q=O) in the pre-exponential 
terms and up to first order terms in the exponent, i.e., 

= exp -!ci/2)(Kr++‘-~ bqvQqv 
qv 

b =(2m)1’2d 1 

( 

1 
w 4A (U-Ey’2 =I- (U~-E$‘/2 ‘q” ’ 

1 

c- (2m)l12d 2 
- 

46 (UIyJm cw- (42bj 

With this approximation, the resulting correlation function 
can be evaluated using standard methods, yielding 

WI,=& 1 dEsID12 exp[ c lbqvj2C2nqv+ 1)) 

I 
m 

X dt exp( i( Ez---Edl),tlh) 
-aI f 

xexp 1 c lbqv12[(n ,,+ ljexp(iwq,t)+nqu 

Xexp( -im,,t)l p&L I (43) 

where 

~qv={exp(pfi~qv>- ll-‘, (44) 

D= 
2k,kF(Kl+KF)exp[-(d/2)(Kr+ +)I $ 

(ikl-K&(-ikF- KF) 
(45) 

and where the density of final electron states will be approxi- 
mated by the free electron expression 

p(E;)=mll(2h’kF). (46) 

In what follows we limit our model to a single phonon 
branch and suppress the summation over V: Also the summa- 
tion over ‘q=(qil,qJ can be simplified by recalling that the 
summand can be approximated by its value for CJ~= 0; so that 

A 
c c S(sP$$ QTA” c S(q,). 
911 qz>o q,>o 

This leads to ,.- 
WIF=$ 1 dEzID12 exp c lbq12(2nq+ 1) 

qxl I 

x I m dt e%p(i(Bz--E$)tlh) 
-co 

Xexp C ]bq]2[(nq+l)exp(io,t)+n, 
i ,>O 

‘_ -:; 

Xexp(--%+)I d.G) 
1 

with [using Eqs. (20), (22), and (42b)] 

(47) 

Ib 4 12,2m2e2wq lbTa>12 
1 1 

h3K 1412 ( --~. 1 4q) %p(d ?. 

K=[(2m/h2)(U-&I)]1’2. 
(48) 

Note that for simplification of the notation we write ~7 instead 
ofq,. 

Next we consider several particular cases 
(I) The rigid barrier limit. In this limit (no phonons, 

b = O)., the rate, Eqs. (43) and (47) becomes WI, 
4;2 r/h) ID I 2p( Ed,). For the-symmetric case, U t = U2 using 
Eq. (27) leads to.the following expression for the transmis- 
sion probability: 

pIF= 
16ki~f exp(-2Kld) 

‘PYF (49) 
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which is the elastic tunneling result [cf. Eqs. (23), (25), and Accordingly, in this limit I 

@7)1. 
(2) Total tunneling probability. An approximate analyti- 

cal evaluation of the tunneling rate, Eq. (43) is possible if we Ch (53) 

assume that the main contribution to W,, comes from final 
electron energies Es not too different from the initial value while the elastic component, P$. takes the form 

E’,,. This assumption holds for small electron-phonon cou- 
pling ] b,12< 1. In this case we can disregard the dependence 
of the parameters D, (1 b,12} and p on Ez, then, assuming 

z k,Tx C, 
4 

that the energy of the tunneling electron is high enough 
above the Fermi energy of the accepting electrode, extend 
the integration over Ei to the whole (-w.w) axis to get 

(504 
Polarization fluctuations are seen to enhance both the total 
tunneling probability and its elastic component relative to the 

c=c wq 
i 

1 1 lf(a>12 
corresponding rigid barrier value. This enhancement may be 

--~ 
44) %lp(4) 8 

(1/2+n,). (50b) considerable at high enough temperatur;e. It is interesting to 
4 note that the assymptotic properties of the Bessel function 

Here we have approximated b, by taking E$ = Ed, in Eq. 
imply that PI, and P$ coincide in the limit 

(42b). The term in the exponent is positive, so Eq. (50) im- mkBT d2 
plies that independent of the values of system parameters 
(the strength of electron-polarization interaction, the tem- 

h’ u-g, chsl 

perature, the frequencies of polarization oscillations, etc.) the with exponential accuracy. (For T = 300 K, d = 10 A, and 
coupling of the tunneling electron to polarization fluctuations u- b$= 1 e~thisimplies5’10-5Ch~l,sothisinequal- 
in the barrier always causes an increase in the total tunneling ity is not satisfied in realistic situations.) It should be empha- 
probability compared with its rigid barrier value. This result sized m?t Eq. (43),?nd consequently Eqs. (53) and (54) are 
is intuitively expected, because the exponential dependence valid only provided that thermally activated overbarrier tran- 
of the tunneling probability on barrier height implies that sitions do not contribute appreciably to the overall current. 
averaging over height fluctuations about the static height Thus the divergence of these results for T-w is obviously 
value yields a larger result. Note that this holds also for the unphysical. 
zero points fluctuations at T= 0. Also note that this is char- 
acteristic of a model where the fluctuations appear only in 

(5J The low temperature limit. When Teho,lk, the to- 
tal and e&tic tunneling probabilities become 

the barrier region. When coupling to phonons exist also out- 
side the barrier region (for instance, in the case electron 
transfer reactions between two molecules) it can lead to ei- PIF=PY~ exp 

8m2e2 i 1 x Cl v 

ther -an increase or a decrease of the tunneling probability.24 
(3) The elasic component of the tunneling probability. 

This component can be obtained by limiting the integration 
over Ez in Eq. (43) to the interval (EL, - v,E6, f ~7) and tak- 
ing the limit ~0 at the end of the calculation. This proce- where 
dure yields (see Appendix B) 

P$= PyF exp * C 
( fi-i q “‘j&-&) 

Cl=; c OSC,~ (57) 4 
xl.f(~J12~1,2+nqj n I 4mae2 

1 ( X% 4 0 

1 1 
X ( --- 1 44) G,(4) &&qG--g 1 4 (51) 

In this limit the total tunneling current can be considerably 
larger than its elastic component, thus inelastic transitions (in 
which the electron loses energy) play an important role. Note 
that the functions Ch and C1 which determine the magnitude 
of the coupling of the tunneling system to polarization tluc- 
mations in the high and the low temperature limits respec- 
tively are different. 

Here, Z,(z) is the modified Bessel function of order zero. 
The inelastic part of the transition probabiIity, PE’ 
= PIF- P$ can be obtained from Eqs. (50) and (51). 

(4) The high temperature limit. When TSfiwqlkB the 
parameter C of Eq. (50b) becomes C = (k,T/R) Ch where 

1 c,=c -L---- IP(4;12=~ c 
4’ (52) 

4 ( 44) %pi4) 1 4 4 (58) 
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The above results can be generalized to account for 
many phonon.branches. In this case we find that the param- 
eters C [Eq. (50b)], Ch [Eq. (52)], and CI Eq. (57) take the 
forms 
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C/z=; T $ b=tq)12 .I” 
00 
-mdW h +-b4 

44ad41z’ 
and 

Ci=f T $ Ifts)12/;md~ ;c;;;jy: 

while the other equations above remain the same. 

(59) 

(60) 

IV. TUNNELING RATE: THE QUASICLASSICAL 
METHOD 

An alternative approach to the effect of barrier dynamics 
on quantum tunneling is based on a generalization of the 
WKB approximation for systems with many degrees of 
freedom.” It is valid provided that the usual conditions for 
validity of the one dimensional WKB approximation are sat- 
isfied, and in addition when the quasiclassical trajectory in 
the multidimensional space (z,{Q,,}) does not deviate too 
much from the z axis and when the phonon energies are 
small relative to (U - Ed,). When applied to systems which 
interact with the thermal environment throughout all space, 
the results of this approach compare well with those of the 
more familiar imaginary free energy method. Here the ther- 
mal interactions are restricted to the barrier region. In this 
section we briefly review this approach in the framework of 
our model, and compare the resulting tunneling probability 
to that obtained using the Bardeen’s formalism. We-show 
that in the relevant dynamical range, i.e., barrier dynamics 
slow relative to the tunneling rate, ( oqV7 C I), the two 
approaches, though based on different set of model assump- 
tions, yield essentially identical results. The WKB approach 
can describe the tunneling process also in the fast barrier 
limit, wqV~ > 1. This limit may be relevant for the consid- 
eration of the effect of electronic polarization in the barrier 
on the tunneling process. 

Application of WKB approach’*‘) to the system de- 
scribed by the Hamiltonian (l)-(4) yields the following ex- 
pression for the tunneling probability, (see Appendix C): 

PIF=%=P 1 C t2~,+Pqnq> . I (61) 

General expressions for a4 and p, are given in Ref. 18(b). 
Expressions for the rectangular barrier case are given by Eqs. 
(Cl)-(C5). These results indicate that approximation (16) 
replacing the electron-phonon coupling by a position inde- 
pendent constant has to be excercised with caution. In the 
slow barrier limit replacing f(k, ,z) by Eq. (16) is in fact a 
good approximation (see Appendix C). Using this approxi- 
mation for rectangular barrier with arbitrary dynamics leads 
to 

2e’K 
a,=w C, r- & (l-exp(-2aqr)) , 

1 1 (624 9 
2e2K 

&=~ih2~ Cqtexpt~q~)-expi-~q~))2, (62b) 
4 

where +ris the tunneling time determined by Eq. (28). For the 
case of slow polarization dynamics (6.1~~9 1) the quasiclas- 
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sical equation for tunneling probability reduces to Eq. (50) 
obtained above in the framework of Bardeen transfer Hamil- 
tonian formalism. [Note that the parameter md’l( U - Ed,) 
which appears in Eq. (50a) is equal to 272, cf. Eq. (28).] In 
the opposite limit ( wq+- 1) Eq. (61) becomes 

When the barrier is not slow relative to the tunneling elec- 
tron, e.g., when the dynamics of the electronic polarization in 
the barrier is important, Eqs. (62) and (63) can be used as 
rough estimates only. Alternatively, using the general rela- 
tions (Cl)-(C5) we can compute the tunneling probability 
without resorting to the averaging approximation (16). In 
particular, in the fast barrier limit ( oq+ 1) this leads to 
expressions (C13) and (C14) ,for CX~ and p, , respectively. 

To conclude this section we note that the quasiclassical 
approximation, as well as the Bardeen approach, is valid 
only when the oscillator energies Xw, are much lower than 
the barrier height U - Ed,. As a result Eq. (63), (C13), and 
(C 14) can be considered only as intermediate results, valid in 
the frequency interval l/r < wq < (17 - Ed,)lfi. See, how- 
ever, the discussion at the end of Sec. V. 

In the next section we provide some examples of model 
calculations for the behavior of the tunneling probability as a 
function of specific system parameters. 

V. NUMERICAL RESULTS AND DISCUSSION 

In what follows we provide the results of model calcu- 
lations in order to demonstrate the behavior of our tunneling 
model for a range of physical parameters. For simplicity we 
consider an “Einstein model” for the polarization modes, 
taking all the frequencies equal, wq= o. We also disregard 
the 4 dependence of est and eoP. Focussing on Eqs. (61)-(62) 
this implies 

c a,=g (-$--!--)[ T-- & (1-ew2T]s, (64) 
9 

where 

n=(ePk 1)-L, 

s=c lfy2; $; 1=1,2 )..., 
4 4 if3 

Using Eq. (16) for f(q). s is evaluated to yield 

s=d2/24. im 
The calculation of the elastic component of the tunneling 

probability within this approximation leads to the following 
expressions for Eqs. (C4) and (C18): 

2e2K 1 1 

i I[ 

I 
y2=jrp -g-g r+ w (emmwr- 1) s, 1 (68) 
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14 ~ ._.___._. . . ..*..........._....~...........~.d... “........“‘. 

-- 
, _ _ _ _ _ _ ________------ 

FIG. 1. Ratio between the tunneling probability P and the corresponding 
static barrier result P, as a function of the barrier thickness d, for a system 
with the standard parameters: @=I00 K, T=300 K, U--E= 1 eV, eSt=30, 
and a,r=2. Full line-the total probability, dotted line-the elastic tunneling 
probability, and dashed line-the inelastic tunneling probability. These re- 
sults were obtained using approximation (16). The dashed-dotted line 
shows the results for the total tunneling probability obtained from I!@. (70) 
and (71) without invoking approximation (16). 

(69) 

respectively. These equations are to be substituted in Eq. 
(C17). 

For the calculations that do not invoke approximation 
(16) we start from Eqs. (Cl)-(C5) and use wq= o and nq=lt 
to get 

2 aq=we-2wTC IG;(a>12+C 72iq) (70) 
4 4 (I 

and ‘7 

2 Pqnq=2noC le”‘~:(q)-e-“~~,(q)l~. (71) 
Y Q 

6 .-. 

d (A) 

FIG. 2. Same as Fig. 1, now for U-E=5 eV and 0=5000 K (other pa- 
rameters stay the same). These results wereobtained from Eqs. (70) and (71) 
without invoking approximation 116). 

FIG.~3. P/Pa as a function of temperature for a system with the “standard” 
parameters. Line notation is the same as in Fig. 1. [Approximation (16) was 
again used for the results represented by the lower three lines, but not for the 
dashed-dotted line.] .._ 

The sums over 9 = (Irrfd); I = 1,2,. . . of the expressions in- 
volving G,’ (4). and y2(q), I&. (C3) and (C4) are evaluated 
numerically. The corresponding elastic tunneling probabili- 
ties were calculated analogously using Eq. (C17). In particu- 
lar, in the fast barrier limit,~w,r% 1, substitution of,Eq. (15) 
in E$s. .(C13) and (C14) leads to the following expressions 
for Eqs. (70). and (71): 

c aq=g. <;;, 4 i .I 
2 pqnq=eydf;; ( &!Jz. 4 

(72) 

The results obtained in this way are displayed in Figs. 
l-5. We have considered a symmetric barrier, U1 = U2. Un- 
less -otherwise stated the following choice of parameters 
(henceforth referred to as “standard” was used: d = 10 A, 

_--- ______---._ --- ____ 
0.01 ---- -___-. 

0 3000 6000 9000 

FIG. 4. P/Pa as a function of phonons frequency. The standard parameters, 
the line notation-of Fig. 1 are used here. These results ate based on approxi- 
mation (16). 
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FIG. 5. Same as Fig. 4. Now the results are base on Eqs. (70) and (71) and 
the averaged coupling approximation (16) was not used. The dashed dotted 
horizontal line represents the assymptotic O-W limit. Note that on this scale 
the elastic and total probabilities are almost indistinguishable. 

T=300 K, a=100 K, ~=30, ~~~“2 and U-E= 1 eV. For 
this choice of d and U-E the electron tunneling time is 
F 1.69 fsZ 

Figure 1 shows the dependence of the ratio PIP, be- 
tween the actual tunneling probability P and the correspond- 
ing result for a rigid barrier PO as a function of the barrier 
thickness d. Also shown are the elastic and inelastic compo- 
nents of this quantity, i.e., Pe'lPo and Pine'lPo . These results 
were obtained using approximation (16) for the electron- 
phonon coupling, except the dashed-dotted line in Fig. .1(b) 
which represents to the total tunneling probability obtained 
from the general expressions (70) and (71). 

These general expressions [not invoking Eq. (16)] are 
also used for the dependence of the relative tunneling prob- 
ability on barrier thickness shown for a different choice of 
parameters in Fig. 2. Here, T= 300 K, U- E=5 eV, and 
w=5000 K (-3500 cm-‘). This choice of w corresponds to 
high frequency intramolecular vibrations. The tunneling time 
varies in the range 0.38-1.508 fs for this range of barrier 
thickness. 

Figure 3 shows the temperature dependence of the tun- 
neling probability and its elastic and inelastic components. 
Here again the averaging approximation (16) is used except 
in the results represented by the dashed-dotted line which 
shows the results for the total tunneling probability obtained 
without invoking this approximation. The strong dependence 
on the temperature observed here reflects the fact that low 
phonon frequency (o=lOO K) was used in this calculation. 

Finally, the dependence on the phonon frequency w is 
shown in Fig. 4. Here the elastic, inelastic and total relative 
tunneling probabilities at T= 300 K as functions of o were 
calculated using approximation (16). 

The following observations can be made based on these 
results: 

(1) An effect of the barrier dielectric-response on elec- 
tron tunneling is seen as a relative enhancement of the tun- 
neling probability. It should be emphasized that the “instan- 
taneous” part of the dielectric relaxation which renormalizes 
the barrier height4 has been already taken into account in the 

value of U, so here we talk about barrier response on the 
time scale of the tunneling process or slower. The enhance- 
ment is larger for faster dielectric relaxation, larger barrier 
thickness and higher temperature. 

(2) The use of a position independent electron-barrier 
polarization interaction, obtained from averaging the actual 
interaction over the barrier, is a reasonable approximation 
when the barrier dynamics is slow- In the case of fast barrier 
dynamics it underestimates the enhancement factor. This ob- 
servation is significant as earlier theoretical considerations of 
this problemI have assumed constant coupling. 

(3) Enhancement of the tunneling probability appears in 
the elastic component of the tunneling current, in addition to 
the opening of the inelastic channel. 

(4) The magnitude of the enhancement in the total tun- 
neling current is up to a factor 2 for the choice of parameters 
studied. This-choice covers much of the physically reason- 
able range for dielectric barriers. While not insignificant, en- 
hancement of this magnitude cannot account for the experi- 
mental observations -discussed in the introduction. A similar 
conclusion was reached by Sebastian and Doyen.15 

Finally, consider the O-W limit. Figure 5 displays the 
results for the tunneling probabilities obtained from the qua- 
siclassical approach for the “standard” parameters in the fre- 
quency range o=O-lo6 K. As discussed above the l3ardeen’s 
approach as formulated in Sec. III cannot be used in this 
limit. For a simple linear model of electron-phonon coupling 
it has been shown’* that the quasiclassical approach leads in 
this limit to tunneling with renormalized static barrier and 
electron mass. The results summarised in Appendix C and 
displayed in Fig. 5 correspond to the same picture: As w-@ 
the inelastic tunneling vanishes and the elastic tunneling~ap- 
proaches a new static barrier value. It should be noted, how- 
ever, that even though these results show the expected quali- 
tative behavior, they should not be regarded as quantitatively 
significant for two reasons: (a) When we focus on the effect 
of relatively slow polarization modes on the tunneling pro- 
cess we have assumed that the barrier function U(r) includes 
the normalization effect due to the fast (electronic) compo- 
nent of the barrier polarization. When w-+m the bare barrier 
should be used. (b) The renormalization of the barrier is 
associated with the solvation energy associated with the in- 
teraction between the electron and the fast polarization 
mode. For a point charge interacting with a continuum di- 
electric this energy diverges. The resolution of this difficulty 
is to take into account the discrete structure of the solvent, 
i.e., the associated cutoff in the q-space description of the 
polarization. The results of Fig. 5 also correspond to a finite 
solvation energy, however, this is due to the finite cutoff 
imposed in Sec. II on the possible value of 911, from consid- 
eration associated with the magnitude of the. tunneling prob- 
ability. Therefore the magnitude of the barrier hight renor- 
malization as reflected by the W-W limit of the tunneling 
probability shown in Fig. 5 does not necessarily reflect the 
correct physical value. 

VI. CONCLUSIONS 

Tunneling through dielectric barriers has been studied. 
The tunneling probability (both elastic and inelastic) is af- 
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on the z integration can be any value, zt , in this range. For 
E,=EF (expected by overall energy conservation) Eq. (A6) 
becomes 
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fected by the barrier dielectric respo~nse, resulting in an 
enhanced tunneling probability on top of the effective barrier 
lowering associated with the instantaneous part of the 
barrier dielectric response. The enhancement depends on 
the barrier geometry, on the temperature and on the rate 
of the barrier dynamical response. Our results indicate that 
high frequency intramolecular modes are considerably 
more effective in enhancing the tunneling probability, 
however, the enhancement factors are too small to account 
for reported observations. 

M,= 
I 

mdz drll dQ[q$H!P- qlHV!g] 
Zl 

= I mdz drll dQ[~~TU’r-~,T~~], (A7j 
Zl 

where T is the kinetic energy operator (electron and phononj 
part of H. In mass weighted coordinates &r-+r, 
J+Q. this is essentially the Laplacian V2 in the multi- 
dimensional (r,Q) space so that 

APPENDIX A: THE INELASTIC BARDEEN’S 
FORMALISM 

Here, we follow Bardeen’s evaluation of the tunneling 
rate through a rectangular barrier. The solutions to the corre- 
sponding semi-infinite barriers problems are q[(r,Q) and 
qF(r,Q) with r=(z,r$ denoting the electron, and Q 
= {Q,,)--the ph onon coordinates, respectively. The tunnel- 
ing occurs in the z direction aIong which the barrier and the 
semi-infinite barriers are defined. The locations of the barrier 
edges are denoted z, and zb (corresponding to -d/2 and d/2 
in the text). The genera1 solution to the S&r&linger equation 

bWr,Q,t) 
St = -iHW(r,Q,tj (Al) 

is written in the form 

w(r,Q,t)=Cl(t)~~(r,Q)e-‘EZ 

+ C,(t)W.,(r,Q)e-iEF’. L42) 
The Hamiltonian itself can be formally written as sums 

where Ho, and HOF correspond to the semi-infinite problems 
associated with q1 and P,, so that HoI!PI=E,VI and 
H,,Y!\Ir,=EFPF. Note that H,,=H for z<zb and H,,=H 
for z<z,. 

Inserting Eq. (A2) into Eq. (Al) and using, in the spirit 
of perturbation theory CI- 1, CF-0, dC,ldt-0, leads to 

U’CF i x,~Fe-iEFt=eviEytH q 
11 I. 

Multiplying by 9: and integrating yields 

b44j 

= I dr dQ %TrQW-&WArQ). 645) 
Since (H- HoI)7.1rI=(H-EI)~~=0 for z<zb, and 
(H-EF)qF=O for z>zb we can write Eq. (A5) in the form 

MIF= 
f 

mdz drll dQ[~~(H-EI)WI-~Ir,(H-EF)YI~]. 
zb 

G46) 
The integration in Eq. (A6) is taken over all IJI and Q, and 
over the specified range in z. Note that, since in the range 
z,<z<zb the integral in Eq. (A6) vanishes, the lower bound 

MIF- 
I 

mdz dq dQ[‘P;V”ql- qJ”q;] 
21 

= 
I 

mdz dq dQ V.[PgV9!,-‘PIVPj!]. m 
Zl 

Using the divergence theorem, assuming that ,W1 and/or WF 
and their derivatives vanish at Q+fa, rll-+fa and z-+00 
(the vanishing of 9r at z-+03 is related to the semi-infinite 
nature of the barrier) leads to 

MIF- - 
d a 

‘P’f & 91~~1 z *F z=zl’ (A9j 

Returning to the regular (not mass-weighted) coordinates 
yields 

752 d d 
MI, --- 

2m 
y’$ z *I-*[ z 9; (AlO) 

Now, if the wave function *(z,rll ,Q) is separable, T=$(zrll) 
x(Q) then Ml, can be rewritten as 

MIF= 
s 

dQ xF*(Q)MIF(Q~xT(Q), (Alla) 

MIF(x)=- g 4; G 41-41 g 4; . (Allb) 
Zl 

In particular, if processes in which the electron is deflected 
from the perpendicular direction are disregarded, the r-11 inte- 
gration is trivial and Eq. (Allb) becomes 

A.2 
( 

d 
MIF(Q)=--~ 4;(z) - 41(z) 

dZ 

-4rCz) g4Bk) , 
Zl 

(Allc) 

where 4!(z) and 4F(z) are given by Eq. (25). Using Eq. 
(25) in Eq. (Allc) leads to 

7%” 
MIF(Q) = - 

4hkF(+- KF) 

2mL (ik[+K[)(-ikF-KFj 
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A rigorous derivation should have yielded a result indepen- 
dent of the arbitrary point zt . The appearance of a (relatively 
weak) dependence on zi in Eq. (A12) is probably a result of 
the factorization 9=4x, which is exact only if there is no 
electron-phonon coupling, i.e., when K,= KF . In the present 
paper we note that under the model assumption U- Utc2) 
%lE z--Ed,1 wehave 

IKr-‘VI b%=-~:,l 
IKr+fd - Iu-b(2)l 41 (A13) 

and therefore disregard the factor containing zt in Eq. (A12). 
This leads to Eq. (37). 

APPENDIX B: THE ELASTIC COMPONENT OF THE 
TUNNELING PROBABILITY 

This component can be evaluated under the same as- 
sumptions that lead to Eq. (SO), i.e., lb,j2e 1 for all 4. Lim- 
iting the integration over Ez to the interval (EL, - 17, EL, 
-t v), (?yO), Eq. (47) takes the form 

dt exp(i(Ez--EdJtlK)C,i @I) 

with 

C lkJ2Vnq+ 1) II B-9 E,FI=EL1 
and 

C,,=exp C lb,12[(n,+ l)exp(iw,t) fn, 

Xexp(-iw,t)] . 
I 

(B3) 

Expanding the exponent in a power series and using the bi- 
nomial theorem lead to 

Ce,=H i lbq12& l (nq+ 1)2&l ¶ e wz-mqt 
9 1-Q z=o (j-Z)!Z! 

(B4) 

Inserting Eq. (B4) into Eq. (Bl) and using the identity (for 
any s#O) 

dt exp(i(Es- E’,,+ (2Z-j)s)tlh) 
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W$=y ID12p exp 
I 

C lb,12(2nq+.l) 
9. 1 

XI-I M4~,l’~) 
4 

(B7) 

which is to be evaluated for .I$ = E’, . The elastic transmis- 
sion probability P$ [Eqs. (50a) and (5Ob)] can be obtained 
substituting Eqs. (45), (46) and (B6) in Eq. (27). 

APPENDIX C: THE QUASICLASSICAL METHOD 

We follow Sumetskii’8(b) and refer to equations from 
Ref. 18(b) as (n.S) where iz is the equation number in that 
paper. The tunneling probability for the electron interacting 
with the set of oscillators, which are initially at thermal equi- 
librium is given by Eq. (57.S) or our Eq. (61). The quantities 
a9 and j3, appearing in Eq. (61) correspond to the influence 
of the zero point motions of the oscillators and of their ther- 
mal excitations, respectively, on the tunneling probability. 
These quantities are calculated from Eqs. (22.S), (23.S) and 
(43.S). It should be noted that the quantities a4 can be either 
positive or negative but the quantities p, are always positive. 
Consequently, the interaction with zero point oscillationscan 
either increase or decrease the tunneling probability while 
the temperature dependent terms increase the tunneling prob- 
ability. In the present model, where the electron-polarization 
interaction is localized in the barrier region, the coefficients 
Ai in Eqs. (43.S) vanish and cu,>O. This implies an in- 
crease of the tunneling probability relative to the rigid barrier 
case at any temperature. For a rectangular barrier and the 
electron-polarization interaction (12) and (13), (Ye and p, 
[Eqs. (43.S)] take the forms 

(rq=oqlG;12 exp(-2oqr)+y2, 

with the parameters G; and y2 given by 

m 
=i=k o,(z-d/2)/K 

xf(ca,z)dz, (C3) 

Di m2 d/2 

y2=20,K2 77 / 1 

c 
dz dz’ 

-d/2 -d/2 

XeXP ; uq(Z’-Z)lK f(4,Z)f(q,Z’), 1 (C4) 

and the definition of the modified Bessel function of order 
zero and argument z 

(C5) 

1 (z)‘g 
0 

02j 
d=o Cj!) 

finally leads to 

If the electron-polarization interaction is independent of the 
position of the electron inside the barrier, i.e., the case con- 
sidered in Sec. III, Eqs; (Cl) and (C2) reduce to Eqs. (62a) 
and (62b) in the text. For the position dependent interaction 
of Eqs. (12) and (13) a9 and p, can also be evaluated ana- 
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lytically. The results of these calculations are discussed in the where L:(x) is a Laguerre polynomial. The sum over 
Sec. V. Simpler expressions are obtained in the slow and fast them may be expressed in terms of a modified Bessel func- 
barrier limits. In the slow barrier case, ~~791, Eqs. (C3) tion of order zero and argument y, I,(y), using the following 
and (C4) become relation: 

m 
D, m d/2 

&=+-- 
2WqK fi 

f(q,z)dz(l + O(qg-)I, (C6) 
-d/2 

c w;(xN2z”=j$ 
n=o 

exp( -z)Zo(g). (C16) 

Y2=.& $ [ ~~$fGAzq211 +ob%r)), 

Thus Eq. (C1.5) becomes 
(C7) 

P$= P& exp C (2Y2- 4qnq> 
and i 4 i 

&‘K 1. 1 l.m12 07) 
“4=- i 

--- XII ~OC~l4,I>~ 
%t(q)* c&) 

---p--- ~q~Uf-wy)h 4 

03) where 

!J‘(4)12 q3-q 1 + O(wq7)). 
4 

(C9) 

We see that in this limit the tunneling probability is indeed 
determined by the average value of the electron-polarization 
interaction assumed in Sec. III. In this case the quasiclassical 
equation for tunneling probabiiity reduces to Eq. (50) ‘ob- 
tained from the Bardeen’s transfer Hamiltonian formalism. 

In the opposite fast barrier l&nit, ~~7% 1, Bqs. (C3) and 
(C4) take the forms 

q5,=4w,G;G;. W3) 

The slow barrier limit, w,,G 1, is obtained substituting Eqs. 
(C6) and (C7) in Eq. (C17). In this case Eq. (51) obtained 
from the Bardeen’s transfer Hamiltonian formalism is recov- 
ered. The opposite fast barrier limit, tiq~‘Q 1, may be ob- 
tained putting Eqs. (ClO), (Cll), and (C12) in Eq. (C17). 
Note that, since nq-+O when oq4c=3, the fast barrier limits 
of total tunneling probability, Eqs. (61), (C13), and (C14), 
and of its elastic component, Eqs. (17), (12), become identi- 
cal in this limit. 

Dq~ fi 
G”C===; 

Q 

D~fi 
Gg=+- 

20, m 

(lfO(ll6&)), (C10) ACKNOWLEDGMENT 
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(Cll) 

Di m d/2 
Y2= ; - 

b;K fi I (cm 
-d/2 

leading to 

dzcf(s.z>)2(1 + O( l/wqd), 03) 

D%K~ fi2 
P,=s 2 exP(2y-) (lfO(l/w,7)). 

9 
04) 

In this limit the averaging approximation (16) is not justified 
quantitatively. 

In order to calculate the elastic component of the tunnel- 
ing probability, Eq. (58.S) is to be evaluated for kj= nj for all 
j. The probability for elastic tunneling is given by 
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