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Hopping and diffusion models are extremely useful for describing processes occurring in extended systems, on 
time scales far longer than some underlying molecular time, such as a characteristic solvent vibrational time 
or (for crystals) an inverse Debye frequency. Most applications of hopping models to problems in chemistry 
and materials science assume the presence of two time scales, a residence time and hopping time, and that the 
time of residence is far longer than the time involved in hopping from one site to another. We describe a 
generalization of this model to deal with systems in which the underlying structure exhibits dynamical 
disorder-that is, in which in addition to the species undergoing hopping motions, the lattice itself is reorganizing 
in time. An important example is glass-forming liquids above their glass transition temperature, especially 
polymeric materials. In its simplest realization, this multiple time scale hopping model involves only two 
times-a hopping time and a renewal time TR characterizing the average relaxation time of the underlying 
lattice motions. One then is faced with the analysis of a problem involving motion on these two time scales, 
and with the application of that model to a number of systems. Experimentally, a model was originally developed 
to deal with polymer electrolyte materials, in which ionic diffusion occurs in polymer hosts well above their glass 
transition temperatures. In this case, the renewal time can be roughly correlated with the glass transition 
relaxation in the neat polymer host. The dynamic disorder hopping model, or dynamic bond percolation model, 
is closely related to other models used in solid-state theory, such as the continuous time random walk of Scher 
and Lax, or the stirred percolation model used in the study of microemulsions. It has a very simple chemical 
interpretation, since only two times are defined. We describe the nature of the dynamic disorder models, their 
solutions in particular cases, and their application to a number of physical systems. Particularly important 
results include formal proofs that, when dynamic disorder is present, percolation thresholds disappear and the 
system is always diffusive over times long compared to the renewal time. One can also derive generalized 
analytic continuation results relating the frequency-dependent diffusion in the dynamically renewing lattice to 
the frequency-dependent diffusion in the static lattice. While the model was originally developed to deal with 
ionic transport in polymer media, a number of interesting applications in other areas, including polymer viscosity 
and polymer dynamics, are also briefly discussed. 

Introduction 

Studies of chemical reactions and processes in the condensed 
phase, like those in isolated molecule vapor-phase chemistry, often 
focus on the interrelationship of structure and properties. In the 
past two decades, a great deal of activity has been devoted to 
research in the electroactive polymers-that is, polymeric systems 
that exhibit interesting conductivity and charge transport prop- 
erties. In the majority of these polymeric systems, the definition 
of structure is a complicated one. Even highly crystalline polymers 
exhibit substantial disorder, and in noncrystalline polymers, while 
short-range order and primary chemical structure are quite well- 
defined, typical radial distribution functions lose their structure 
after only a few repeat distances. Moreover, in polymers above 
the glass transition temperature, whatever average order there 
is evolves dynamically in time, due to structural relaxation 
processes in the polymer. In this sense, disorder in polymers 
above their glass transition temperatures is both static (only short- 
range order in the pair distribution functions) and dynamic 
(density at any point in the structure changes on characteristic 
relaxation time scales). The problem of charge transport in 
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polymers, then, involves systems that are characterized by either 
one or both kinds of structural disorder. 

This article is devoted to the definition and application of a 
dynamic disorder model for characterizing transport in polymeric 
systems. The motivation for the model came originally from the 
field of polymer electrolytes, in which charge is transported by 
ions.1J The obvious necessity for dealing with dynamic disorder 
is most clearly marked in these systems. At the same time, 
applications to other systems, such as diffusion of neutral species, 
conductivity by hopping electrons in polymeric systems, and 
impurity diffusion in a binary mixture or polymer physical 
properties, are conveniently discussed within the context of the 
dynamic disorder model, and the comparisons among the different 
transport processes illustrate the interplay between particle motion 
and host relaxation. 

Polymer electrolytes are most simply pictured as ionic solutions 
in an essentially immobile solvent. They are generally prepared 
by dissolving a 1 : 1 electrolyte, such as NaSCN, in a polymeric 
host such as poly(ethy1ene oxide). If the lattice energy of the 
parent salt is sufficiently low, and the solvating power of the 
polymeric solvent sufficiently high (for example, by complexation 
of the alkali cation by oxygen lone pairs on ether subunits), then 
a homogeneous, stable, and thermodynamically well-defined 
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Figure 1. Structure, deduced from fiber X-ray diffraction, of poly(ethy1ene 
oxide)/NaI, at a relative 0 1  concentration of 3:l. Note the high relative 
atomic concentration, or density, corresponding to the spacefilling fluid 
(from ref 31). 

solution phase, an ionic solution in the polymer host, can be 
prepared and studied. The ionic conductivity associated with 
such materials is of the order 10-8-1W S/cm at ambient 
temperatures. The materials are under very active study, partly 
because of promising applications as electrolytes in all-polymer, 
high energy density batteries.= 

Intrinsically, the polymer electrolytes are substantially chal- 
lenging because they are concentrated electrolytes (characteristic 
con6entrations 0 . 1 4  M). Since the solvent is a polymer of large 
molecular weight, diffusion of the polymer itself can be neglected. 
In this latter sense, the polymer electrolytes differ substantially 
from solutions (like sea water) in which small molecules form the 
solvent. As concentrated electrolytes, that exhibit ion pairing, 
crystallization at elevated temperatures, and ion transport, the 
polymer electrolytes are representative of strong electrolyte 
solutions that have challenged physical chemists since the time 
of Nernst and van? Hoff. 

Because conductivity is due solely to mobile charge carriers, 
the model which we focus on concentrates on such carriers. 
Moreover, it focuses on charge-carrier displacive motions, rather 
than local motions (vibrations or librations). Therefore, the 
characteristic time scales on which the model is valid are long 
compared to momentum relaxation times, and to characteristic 
vibration times. Therefore, the equations of motion assumed for 
the ions disregard local motions, including all inertial motions. 
In other words, charge carriers can be described in terms of 
diffusive motion in the host. Furthermore, the host is represented 
by a disordered lattice and the diffusion is analyzed in terms of 
a random walk process in this lattice. 

The model, which we call dynamic bond percolation (DBP) 
theor~,~-30 is one of several possible models for dynamic disorder 
hopping (DDH). It is based on four important physical 
assumptions: 

(1) The materials in which the transport is occurring are dense, 
and charge can move from site to site only if the path is open, 
or available. Polymer electrolytes are indeed dense materials, 
like liquid electrolytes-Figure 1 shows31 a Characteristic structure 
of a concentrated poly(ethy1ene oxide)-based electrolyte and 
demonstrates clearly that polymer strands completely fill the 
spaces around the ions (it also shows strong ion pairing). 

(2) Within this dense material, local sites exist on which the 
charge carriers reside. In polymer electrolytes, such sites 
correspond to local energy minima for the ion carriers. 

(3) Motion between sites involves at least two time scales. The 
first of these time scales is simply the hopping time for charge 
motion from one stable site to another and is characterized by 
hopping time Th. The second time scale is the characteristic 
structural relaxation time of the host, which we call the renewal 
time TR; in fact, relaxation in polymer systems occurs over many 
time scales, and therefore the renewal time is best thought of as 

a mean time for structural change of the local polymer segment 
around an ionic site. 

(4) The experimental time scale is at least as large as Th and 
long compared to time of local vibrational motion. 

Because we are interested in charge transport, the hopping 
particles are charged. In polymer electrolytes, they are simply 
ions. In conductive polymers such as polythiophenes or redox 
polymers, the hoppers can be electrons or holes, so long as the 
band is narrow enough that motion occurs by activated hopping 
(or variable-range hopping or any other sort of hopping), rather 
than by band conduction.32 Finally, while the model contains 
enough flexibility to allow interionic interactions, only short- 
range (nearest neighbor) interactions were included in the theory 
in the present stage of its development. 

If the four assumptions above are made, then one can write7 
an equation of motion for the charged particle in the form of a 
master equation (generalized first-order chemical kinetics) 

dPi(t) 
- = Cry - f(t)Pj - j(t)piI (1) 

dt j 

Here Pi is the probability of finding a hopping particle on site i 
and is time-dependent. The W, 1 are simply the frequencies of 
ion jumping from sitej to site i .  We have formally denoted these 
rates as dependent upon time, and it is this time dependence that 
distinguishes DBP from standard static percolation models.33 In 
both kinds of percolation theory, one assumes that intersite motion 
is characterized by only two possible values:' 
w,-, = 

0 when i and j are not neighbors 
0 when i and j are neighbors with broken (i j)  bond 
w when i andj are neighbors with available bond 

(2) 

(wi-j) = P W  (3) 

(The word "bond" in this context means a pathway between two 
sites on which a hopper can be located; it is not a chemical bond.) 

This states that the rate constant for motion between neighbor 
sites is either finite, with theprobabilityp, or 0, with a probability 
of 1 -p .  The static percolation model corresponds to, for example, 
electronic conductance in a square lattice (such as screening wire) 
in which bonds are randomly cut. Static percolation theory has 
been widely applied to transport processes in disordered materials 
and has proven an effective predictive and correlative tool.33 In 
polymers above their glass transition temperatures, however, 
because the structures are dynamically relaxing on a time scale 
TR that can be comparable to or shorter than experiment, the 
characteristic hopping rates W themselves evolve in time. It is 
this evolution that is taken into account in the dynamic disorder 
models and that makes them more general than, but closely related 
to, ordinary static percolation. 

We just stated the fundamental ideas, and essential equation, 
characterizing dynamic disorder hopping pictures. The most 
important characteristic feature is the use of a hopping model, 
and the fact that the transition rates are time-dependent. In the 
next section, we will discuss the different approaches to the 
dynamic disorder that have been taken by different authors and 
some of the problems to which the model has been applied. 
Following that, we discuss the renewal time approach itself, both 
the simplest picture and a more general model in which the renewal 
times are distributed rather than being single-valued. After 
discussion of solutions to the dynamic disorder hopping model, 
based either on the use of effective medium (mean field type) 
approximations or on the use of simulations, we survey the 
applications of dynamic disorder hopping models to ionic 



Feature Article The Journal of Physical Chemistry, Vol. 98, No. 7, 1994 1767 

conductivity, electronic conductivity, diffusion, and viscosity. 
Finally, some comments are made on the general applicability 
of the methods and areas in which they may be useful. 
Brief Review of Mathematical Approaches 

The problem of carrier motion in a dynamically disordered 
lattice was first posed by LaguWin connection with the electrical 
conductivity of microemulsions; Lagues termed this process 
“stirred percolation”. Druger, Nitzan, and Ratner (DNR) have’ 
presented the first exactly soluble problem of this kind as a model 
for ionic motion in polymer electrolytes above the glass transition 
temperature. In the DNR dynamic bond percolation theory 
(DBP), the random walk was described by eq 1, a master equation 
for the probability Pi(t) for the walker to be in site i ,  with time- 
dependent transition probability Wj + &). The Wt + are 
determined following eqs 2 and 3. The assignment of a bond (ij) 
as broken or available was taken to fluctuate in time Wi + = 
W(t),  where w(r) is a two-state (0 and w )  stochastic process such 
that ( W(t))  = wp. At random time intervals (characterized by 
an average renewal time TR)  this assignment is “renewed” through- 
out the lattice. This model is thus characterized by global dymmic 
disorder. These model assumptions lead to the following simple 
expression for the dc (o = 0) diffusion coefficient (d = space 
dimensionality) where ( r2) is the mean square distance traveled 
by the random walker during the average renewal time TR. 

(?LR 
(4) D I -  

2 d T ~  
The same model9 yields for the frequency-dependent diffusion 

the followirig remarkably simple result 

D(w,TR) Do( w - $) 
where Do(w) is the frequency-dependent diffusion coefficient 
associated with motion on the corresponding (same average bond 
availabilityp) static random lattice. Equation 6 provides a simple 
way to obtain the diffusion coefficient on the dynamically random 
lattice as an analytical continuation of the corresponding quantity 
associated with the static lattice. 

This approach has been extended and applied in several 
ways.lh22 In particular it has been shown13J6 that the original 
formulation of this theory corresponds to the case where the lattice 
renewal process is associated with a Poissonian waiting time 
distribution +(t)  = ( T R ) - ~  e-[/- (where +( t )  is the probability to 
wait an interval r between renewals). More details of this approach 
and its generalizations are given in the next section. 

A different approach to DBP was pre~ented3~ by Harrison and 
Zwanzig (HZ). In the HZ model the dynamic disorder is local. 
Each bond ( i j )  is taken to fluctuate between two states, broken 
and available, in a stochastic process which is uncorrelated with 
the other bonds. The master equation (1) is then rewritten in the 
form 

d 
-P = -W*P - C u a ( t ) V a . p  
dt a 

(7) 

where CY denotes the bond (ij) between nearest neighbor sites 
i and j, and where li> denotes a column vector with the ith 
entry equal to 1 and all others zero. Each “state” P of this 
system specifies the probability distribution of the tracer over 
all the lattice sites. The time-dependent hopping rate a,(‘) 
across the bond a is determined by the state u, = 0 or u, = 
1 of this bond. The probability &(oat) to be in the bond state 

u, evolves in time according to 

Equations 7-10 define the HZ model. This problem has been 
solved35*36 in the single-bond effective medium approximation 
(EMA) in which a single bond is assumed to fluctuate 
according to eq 10 in a lattice where all other lattice bonds 
are characterized by a uniform constant effective transition 
rate. The latter is determined by the usual EMA requirement 
that the averaged transition rate in this medium is equal to 
the predesignated effective rate. HZ thus provide an EMA 
solution to their dynamic percolation model which is analogous 
to the well-known EMA solution of the corresponding static 
netw0rk.~~?3* It is remarkable that their EMA result is identical 
to eq 6, with TR replaced by T of eq 10. It should be emphasized 
that this simple analytical continuation rule is obtained here 
and in the DNR global disorder model for the same reason: 
The dynamic disorder is associated with a single characteristic 
time. It has been shown16 that a necessary and sufficient 
condition for the validity of the analytical continuation rule 
(6) is that the velocity autocorrelation function (u(o)u(t ) )  of 
the diffusing particle in the dynamic environment is related 
to that ( (u(o)u( f ) )o)  in the static environment by 

(u(o)u(t ) )  = e-‘/T(u(o)u(t)>, (1 1) 
(see also ref 39). In the DNR model eq 1 1 is satisfied exactly, 
while in the HZ local disorder model the single-bond EMA 
approximation with the bond dynamics given by eq 10 appears 
to imply the same damping behavior for the velocity auto- 
correlation function. 

The HZ model was generalized by Granek and Nitzanzl to 
include the possibility of many bond states so that eq 10 is replaced 
by a larger set of kinetic equations for the bond states. The same 
extended formalism makes it possible to study clusters of bonds 
and therefore correlations among the states of several bonds. 
More details on the EMA approach and its application are given 
below in connection with actual computations. 

An interesting extension of the EMA approach in another 
direction was given by Zwanzig,M who presented an EMA solution 
to a model for diffusion in a dynamically disordered continuous 
medium. In this model the environment is made of a uniform 
background characterized by diffusioncoefficient D1 and spherical 
regions embedded in this background in which the diffusion 
coefficient is D2. These spheres appear and disappear at a 
characteristic rate subjected to a given average concentration (or 
volume fraction). 

In addition to these general approaches, exact solutions to 
models of dynamic disorder in Id systems (of both local and 
global nature) are available.4l The starting point of this approach 
is the Id analog of eq 1 with stochastic transition probabilities 

where E+(t) = E-(t) in the special case of symmetric diffusion. 
These are random processes taken to be Poisson white noise 
functions with zero mean 

I= 1 

where 8 is the average of {ut) and the value of X ensures $ = 0. 
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These parameters satisfy p L aXi3 so the transition probabilities 
in (1) arealways positive. When thenoisef(t) is site independent, 
eq 12 represents global dynamic disorder (note however that this 
global disorder is different from the DNR model where the 
transition probabilities are different for different bonds but the 
bond renewal process was implemented globally). If &(t) is site 
dependent, this is a local disorder model, similar to of that used 
by Harrison and Zwanzig. Note however that in this one- 
dimensional model the dynamic disorder is site, not bond, disorder. 
Hernandez-Garcia et al. derive an effective generalized master 
equation (with constant transition probabilities) for the averaged 
diffusion in the model described by eqs 12 and 13. Interestingly, 
the averaged equation for the global disorder models includes 
long-range hopping steps. In the local disorder model a regular 
master equation with nearest neighbor hopping (as in the original 
equation) is obtained. For example, for symmetric dynamic 
disorder (f+ = f ) ,  the effective master equations are 

Nitzan and Ratner 

2- - [ ( p -  2aO)(E+ + F- 2) + aP(n t )  
at 

X(errp(E++E--2)-  l)] P(n,t) (14) 

for global disorder and 

2- - aP(n t )  
at 

[ p - $(e-2aB - 1 + 2ai3)] (E+ + F - 2) P(n, t )  (1 5 )  

for local disorder. Clearly the propagator in eq 14 includes long- 
range hops. A solution for a global disorder model can be obtained 
using a multistate version of the continuous time random walk 
(CTRW) formal i~m.4~~s  

Dynamic disorder may be thought of as induced by some 
external noise source. In actual applications the noise is usually 
associated with some internal motion(s) in the system. Thus, in 
the application to polymer ionic conductors, 7 R  is associated with 
motions of the host polymer. More generally, in a system of 
interacting particles, each particle experiences dynamic disorder 
arising from its interaction with the other moving particles. 
Therefore all transport phenomena in many-body systems can be 
formulated as problems of motion in dynamic d i s ~ r d e r . ~ ~ ~ ~ . ~ ~  
An important issue here is the need to make the characteristic 
time associated with the dynamic disorder consistent with the 
calculated dynamics of the diffusing particles. This provides an 
approximate means of solving such problems. 

Another important issue is the behavior of the system near the 
percolation thresholdof the corresponding static system. Consider 
eq 4 for a system with p < pc (p is the bond availability, and pc 
is the percolation threshold). When TR is long relative to the 
time needed for the diffusive particle to explore the finite cluster, 
<r2>, becomes the mean square cluster size so thats1 

However, the actual dependence of D on p - pc near the static 
percolation threshold depends on whether or not TR itself shows 
a critical behavior near the threshold.50 Although possible 
implications of criticality of TR have been studied,s2 experiments 
donot show this criticality and seem to support the scaling ( 16).s1 

In the following two sections we describe in greater detail the 
models used in actual applications: the DNR and the HZ models 
and their generalizations. 

Dynamic Bond Percolation Tl~eory~-*~ 
A useful, exact solution of a simple DBP model was given by 

Druger, Nitzan, and Ratner.7-11 This most primitive DBP 
model7-11 involves the following 10 assumptions: (1) There exists 

a periodic array of sites, on which hoppers can be present. (2) 
The paths (called bonds, but to be distinguished from chemical 
bonds) among these sites exist in only two states, open (available) 
with probability p, and closed (unavailable) with probability 1 
-p .  (3) The probabilityp averaged over the entire lattice is fixed 
in time. (4) After a certain time interval, called the renewal 
time, all bonds in the lattice randomly change their state between 
open and closed, such that p remains constant (global renewal). 
( 5 )  The renewal process occurs in equal intervals of exactly TR, 

the renewal time. (6) There are no correlations in the renewal 
process-that is, there is no correlation between the renewal of 
onebond and another bond, either in space or in time. (7) Particles 
hop only to nearest neighbor sites, following the master equation 
(1). (8) The jump rate w (eq 2) is the inverse of the hopping time 
711, which is a constant (that is, after each interval Th, an ion tries 
to hop to a nearest neighbor site). (9) There are no correlations 
of the hopping particles; that is, there are no potentials acting 
between them, and double occupancy of sites is permitted. (10) 
No correlations exist between the motions of the hopper and the 
reassignment processes for the host bonds, except that hoppers 
cannot hop over bonds that are closed. The first six assumptions 
describe the host lattice on which hoppers are moving, and the 
last four describe the motion of the hoppers themselves. 

The model defined by these 10 assumptions is a generalization 
of ordinary percolation theory3) that takes into account the 
dynamic disorder of the host by permitting global reassignment 
of particular bonds as being open or available (Wi,, = w )  or 
closed or unavailable (Wi,-., = 0). If the renewal time TR, that 
describes how often individual bonds are reassigned as open or 
closed, is allowed to become infinite, then the dynamic percolation 
model becomes the standard bond percolation model, often used 
to describe hopping in rigid materials. 

The solution of the transport problem described by this model 
proceeds by writing a Markovian equation of motion for 
probability W+l ) ( r  + i ) ,  which is the probability for occupation 
of the site r + i at the end of the renewal period N + 1. Because 
of the sequential nature of hopping, this can depend only on 
pCm(i). The actual evolution equation, or Chapman-Kolmogorov 
equation, for the motion is then 

Using this equation of motion, one can derive results for the 
mean square displacement and determine diffusion coefficients 
for hoppers on the dynamically renewing lattice.’-l’ 

The most straightforward analysis proceeds by using the general 
linear response form for the diffusion coefficient as a function of 
frequency for any hopping model. This form, originally derived 
by Scher and Lax,S3 is given by eq 5 .  Several important results 
can be derivedg by computing the ( r*)  using the evolution equation 
(1 7): 

(A) As long as neither p nor w vanishes, the motion is always 
diffusive for time scales long compared to TR-that is, mean square 
displacement is always proportional to total elapsed time. No 
percolation threshold behavior occurs. This is in contrast to static 
percolation problems (TR becoming infinite), for which p must 
generally exceed some threshold value, pc, for diffusion to occur. 
Static thresholds for one-dimensional diffusion occur at p = 1, 
for diffusion on a square net in two dimensions, pc = 0.5, and 
other thresholds occur for different lattices in different dimen- 
sionalities. 

Qualitatively, one can understand this result quite 
straightforwardly: if a hopper starts to move on a lattice and 
encounters a blocked (unavailable) bond, its motion stops with 
static percolation. With dynamic percolation, on theother hand, 
that bond will eventually open, due to the renewal (reassignment) 
process of the host lattice. Therefore, for times much longer 
than the characteristic renewal time, no bond is ever blocked, and 
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Figure 2. Mean square displacement as a function of time, for a one- 
dimensional dynamic bond percolation calculation, with p = 0.2 and TR 
= 20. Note that although within each renewal period the mean square 
displacement becomes limited by finite boundaries, over many renewal 
periods themean square displacement is linear in time, indicating diffusive 
behavior (from ref 7). 

so the motion should be diffusive. Formally, this can be proved 
quite straightforwardly using the evolution equation (17). 

There are then three physical limits that one might consider, 
relating the mean observation time rob,, the renewal time TR, and 
the hopping time wl. These are 

(iii) to, >> W-' >> rR 
Case (ii) is simply static percolation theory, since renewal occurs 
on a time scale longer than that of a characteristic observation. 
In case (iii), the assignment of any given bond as open or closed 
is averaged many times before a hopper attempts to move; under 
these conditions, the effective diffusion coefficient Den is simply 
pwa2/2d, where a is a lattice spacing. This corresponds to simple 
diffusion with characteristic jumping rate pw. The most inter- 
esting regime is (i), in which renewal occurs after many jumps 
have been attempted but observations made only after many 
renewal sequences. For example, Figure 2 shows7 the mean square 
displacement calculated for a one-dimensional dynamic bond 
percolation problem, for p = 0.2, substantially below the static 
threshold, with 7, = 20w1. Note that over each small 
subinterval, of length 4, the hopper, while beginning with diffusive 
motion for short times, has reached a point at which its mean 
square displacement is effectively constant; that is, the hopper 
has essentially explored the connected network of local bonds, 
and its mean square displacement can no longer increase because 
it has saturated the connected network. After renewal occurs, 
however, a different network of connected bonds becomes available 
to the hopper, and it can move further. After each renewal, the 
same opening up of a new cluster occurs, and over long periods 
of time, the motion is clearly diffusive. 

This result occurs in regime (i) for any values of p ,  w, and TR 

in any spatial dimension. 
(B) The diffusion coefficient is related to the mean square 

displacement within a renewal time,denoted (r2)- ,  by eq 4. If 
the renewal time is sufficiently long that the particle's motion 
within that renewal epoch covers a connected cluster completely, 
so that the numerator of eq 4 becomes a constant related to the 
size of the local connected cluster, then the diffusion coefficient 
is inversely proportional to the renewal time. Under these 
conditions the diffusion, and therefore the conductivity, is 
determined largely by relaxation or renewal processes of the host. 

(C) The analytic continuation result (eq 6) holds, relating the 
diffusion coefficient as a function of frequency for the problem 
with renewal to the diffusion coefficient on a static lattice. This 

0 . 1  

f / T A U  
Figure 3. Mean square displacement as a function of inverse renewal 
time, for the same conditions as for Figure 2. For longest renewal times, 
mean sqare displacements become asymptotically fixed by the average 
connected domain size (from ref 7). 

i I  

:: 0 . 1  " $ I  Q 

0 . 0  

0 18 20 30 40 50 

I / T A U  
Figure 4. Diffusion coefficient as a function of inverse renewal time, for 
the same conditions as for Figure 2. Notice that the diffusion coefficient 
increases as renewal time gets shorter, finally becoming asymptotically 
flat in the limit of short renewal times (from ref 7). 

very useful formal result permits information gained (from 
simulation, experiment, or theory) for static percolation to be 
used to describe dynamic percolation. 

(D) Using eq 6 and the fact that mean square displacement 
at very short time is independent of renewal, one can derive a 
general result for the mean square displacement ('iz) in terms of 
( i.*)o, the displacement without renewal, aslS 

This result permits direct computation of a mean square 
displacement, knowing only the results for the static lattice and 
the renewal time, A-' = TR. 

As an illustration of the renewal time dependence for values 
of p below the percolation threshold, Figures 3 and 4 show the 
mean square displacement and the diffusion coefficient as a 
function of inverse renewal time, for p = 0.05. Note that, in 
Figure 3, the actual mean square displacement within a renewal 
epoch, the numerator of eq 4, is maximal at the longest renewal 
time, since the particle has time to explore a larger region of the 
lattice. Nevertheless, when the diffusion coefficient Dis computed 
(essentially by multiplying the two axes of Figure 3), Figure 4 
shows that D increases monotonically with increase in renewal 
rate (decrease in renewal time). 
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t l  t z  t 3  

1, t a  t 
time 

Figure 5. Mean square carrier displacement for a specified number of 
renewal events; this general continuous increase with renewal characterizes 
a growth law, whose mathematical description generalizes the simple 
dynamic percolation model (from ref 16). 

Generalized Dynamic Disorder Hopping Models1s16 

Many of the results just demonstrated for the simplest DBP 
model hold more generally. In particular, consider transport 
characterized by the behavior of Figure 5 ,  that shows general 
growth in an observable, here written as a mean square 
displacement, as a function of time. Mathematically, the behavior 
in Figure 5 can be written as15J6 

N 

Here F(T) is an unspecified observable, and the times TI, Tz, T3, 
and so forth are times during the period (0,T). Defining, then, 
Tj = Ti+, - Ti, the growth law given by eq 20 corresponds to that 
in Figure 5 .  Here the T~ are the times between successive renewal 
events, and g(0) =f(O) = O ; f ( T )  is the growth in F( T) that would 
be observed without further renewal starting from a previous 
renewal at time T = 0, and g( T )  is the corresponding growth that 
would be observed without further renewal from the arbitrary 
time TO = 0 for which random renewal had been an ongoing 
process. With this specification of a generalized growth law 
process, the important results just stated continue to hold. In 
particular, some of the assumptions stated above can be relaxed 
as f01lows:~~J~ 

(1) Periodic array of sites is not necessary. The important 
results in eqs 4, 6, and 19 hold off the lattice as well as on the 
lattice. Consequently, thecondition that hoppers jump to nearest 
neighbor sites can also be relaxed without significant change. 

(2) A generalized distribution of renewal times, subject to 
characteristic statistics, will not change the results significantly. 
In particular, and most importantly, the numerator and denom- 
inator of eq 4 must be averaged over the distribution of renewal 
times, as must the renewal frequency A. 

(3) Temporal correlations between the renewal events can be 
handled. 

(4) The renewal concept can be used to characterize motion 
in dynamically disordered media, whether that motion occurs by 
hopping, by a ballistic motion, or by band conductivity. In 
particular, quantum mechanical behavior can be straightforwardly 
included in the generalization of the modet.15J6,22 

One way to understand the results of this section is in terms 
of a transport process involving two characteristic times: one 
time corresponds to local motion, and the second corresponds to 
motion, on a longer time scale, that yields reinitialization of the 
distribution of transporting particles. A number of other similar 
two-time models for transport are current in the literaturesS4 The 
generality and precision of the dynamic disorder hopping models, 
such as the ones discussed here, make them attractive both for 
understanding and for analysis of real situations. 

To demonstrate the general scope, consider the linear response 
expression for the k,l spatial component of the frequency- 

b. 

time 
Figure 6. (a) Schematic renewal process, showing mean square dis- 
placement as a function of time following the general growth law of 
Figure 5 for diffusionlike situations, in which the mean square displacement 
is increased by the renewal process. Part b shows precisely the opposite 
behavior, corresponding to (for example) ballistic transport within each 
renewal time; here the renewal process reduccs the mean square 
displacement. General analytic continuation results discussed in the text 
hold for both sorts of growth law dynamics (from ref 15). 

dependent conductivity tensorSS 

where the temperature-dependent kernel Kk, is, in turn, 

Here j3 = ~ B T  and J k  is the kth component of the current density 
operator. Form 21 follows from the linearization of the equation 
of motion for the density operator; the convergence parameter 
e arises, formally, from the inclusion of a relaxation term - t (p 
-pal) in the equation for the time derivative of the density matrix. 
This term describes linear relaxation toward equilibrium, with 
c a rate constant. 

If the thermally averaged velocity correlation function obeys 
eq 1 1, then the analytic continuation formula (eq 6) followsdirectly 
from the formal linear response results, eqs 21 and 22, in both 
the quantum mechanical and the classical regime.15J6 This yields 
a formal understanding of the relationship of the renewal process 
and the time evolution of the system density matrix. The renewal 
process is an extra relaxation pathway, and the renewal rate X, 
just like 6, combines additively to the decay rate of the system 
toward equilibrium. Within the original DBP model involving 
global renewal at all places in the ensemble, the relaxation is 
uniform throughout the system, and the analytic continuation 
form follows exactly from eq 11. For spatially local renewal 
models such as the HZ model, the analytic continuation formula 
is valid only in the lowest order effective medium approximation. 

Similarly, when the renewals are temporally correlated, 
deviations from simple exponential decay of the correlation 
function can be observed, and therefore the analytic continuation 
formula does not hold exactly.16 

The analytic continuation formula (eq 6), and from it the 
relationship between mean renewal time and diffusion coefficient 
(eq 4), can therefore be used to describe diffusion of quantum 
and classical particles, since they can be derived from the general 
linear response (eq 21) if the correlation function decays following 
eq 11. It is useful to discuss the implications of this for several 
sorts of motion. For example, Figure 6 shows two sorts of behavior 
characterized by renewal, or reinitialization. In Figure 6a, the 
motion between renewal times is that characteristic of diffusion 
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example is the study of evaluation of reaction patterns in condensed 
media.ssa The characteristic two-time behavior of the dynamic 
disorder hopping model then manifests itself in terms of diffusivity 
within the cluster, and a rate of renewal of the cluster. While 
these results are only slightly modified by temporal correlation 
of the renewal process,16 interactions among the particles being 
transported result in substantive change in the transport process. 

Effective Medium Theory 
A very useful approach to motion in dynamically disordered 

systems is the dynamic effective medium theory DEMA.35 In 
what follows we outline a generalization of this approach due to 
Granek and Nitzan.21 

The starting points of this approach are eqs 7-10. In the 
Granek-Nitzan generalization eq 10 is replaced by its many- 
bond state analog 

below the percolation threshold, with the mean square displace- 
ment behaving concave downward, and tending toward a limit 
( r Z ) o  = constant. When renewals occur, thereinitialization results 
in a higher local curvature and a higher initial slope, such that 
the mean square displacement over times long compared to the 
renewal time is increased by renewal. Conversely, if the process 
is ballistic, or coherent, for short times, as shown in Figure 6b, 
reinitialization results in a smaller local slope and therefore 
reduction of (r2) compared to (r2)o. This characteristic shape 
defines bandlike motion, with the renewal process here corre- 
sponding to a scattering. 

Formally, one can begin from the Scher-Lax expression 

that relates the diffusion coefficient in the absence of renewal to 
the mean square displacement in the absence of renewal. If this 
equation is integrated by parts, and then the analytic continuation 
form of eq 6 is inserted, one obtains 

d2 
2d 0 dt2 

td" cos ot-(2), dt (24) z R e [ D ( o ) ]  d = - -s" 
for the dependence of diffusion coefficient, in the renewing system, 
on renewal time. Then if the short time behavior of (rZ)(t) is 
concave downward for short times, corresponding to hopping- 
like transport, the right-hand side will be positive, and renewal 
will increase the diffusion coefficient. This is precisely what is 
seen in Figure 6a. Conversely, in coherent-like transport, (r2) ( t )  
is concave upward, and the derivative is negative; under these 
conditions, scattering impedes transport for low frequencies 
(Figure 6b). 

The form of eq 4, relating mean square displacement, renewal 
time, and diffusion coefficient, can then be used to characterize 
diffusive behavior in three regimes, denoted by eq 25: 

Case (i) corresponds to ballistic or coherent motion, such as that 
of electrons in good conductors. Under these conditions, renewal 
impedes conduction, and from eq 4 the diffusion coefficient (and 
therefore the conductivity) is proportional to the renewal time. 
This is the Drude-like limit of conductivity, in which increased 
scattering time leads to increase in conduction and represents a 
characteristic quantum behavior. For hopping-like motion (of 
ions, electrons, or neutrals), the mean square displacement as a 
function of time within a renewal epoch will have different forms, 
depending on whether one is above or below the percolation 
threshold. Above the percolation threshold, the behavior is 
diffusive and characterized by (ii); it then follows from eq 4 that 
the diffusion coefficient is independent of renewal time and is in 
fact essentially thediffusion coefficient that holds within a renewal 
epoch. The existence of renewal does not change the effective 
motion in any substantive way. Below the percolation threshold, 
on the other hand, a mean square displacement within a renewal 
epoch is characterized by (iii), with A a characteristic dimension 
of a region connected by permitted bonds. Under these conditions, 
it follows from eq 4 that the diffusion coefficient is inversely 
proportional to the renewal time. This is exactly the limit that 
holds in most polymer electrolytes, in which the conductivity is 
directly proportional to the rate of renewal. 

Therefore the renewal concept is a powerful way to deal with 
diffusion and conductivity of noninteracting particles, be they 
quantum or classical, charged or uncharged, ballistic or diffusive, 
above or below the percolation threshold. The generality of the 
model makes it potentially useful in many applications. A recent 

Here &(u,t) is the probability that the bond a = (r'j) between 
nearest neighbor sites i and j is in state u (which characterizes 
the instantaneous transition rate through this bond (cf. eq 7). 

The joint probability distribution f(P,u,t) to find the walker 
distributed according to P and the bonds in state u = (u1,u2, ... u,, 
...) at time t satisfies the Liouville master equation 

iV= d(W.Pf i  + Qf 
at ap 

where, since all the bonds fluctuate independently, 

Q = pa 
a 

Here !la is the matrix of bond transition rates defined in eq 26. 
The partial average 

P(u,t) = J-dP'Pf(P',u,t) (29) 

satisfies the equation 

-- aP(u,t) - -WP(u,t) + QP(u,t) 
at  

Note that P(u,t) is a vector in site space which also depends on 
the collective state u of the bonds. Equation 30 gives the time 
evolution of P in terms of two contributions, one arising from the 
evolution of the walker state, the other from that of the bond 
states. The initial condition for f(P,u,t) is taken to be 

f(P,u,t = 0) = S(P - Po)p(u) (31) 
whence 

P(u,t = 0) = P q ( u )  
where p(u) is the equilibrium distribution of bond states, i.e. 

To solve eq 30, we first write the solution in terms of its Laplace 
transform ( t  - z): 

P(u,z) = g(u,z).P, (33) 

(34) 

with 

g(u,z) = [zl + W(U) - nl]-'p(u) 
(ill is a direct product of a unit operator in the site space and 
the operator s2 which operates in the space of the bonds.) 
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Averaging now over bond states leads to 0 .&e--. 
t- 

(&)) = C P ( u , z )  = &)*Po (35) 0 qlz e 
U 

U 0 ‘1/9 & 
We now assume that g(z) can be written in the form Figure 7. Two different bond dynamical processes: the renewal bond 

from open to closed, following the generalized behavior of eq 10, and the 
“flip” of a bond, changing the particular geometry of available bonds but 
leaving the total number unchanged. 

g(z) = (zl + W,(z))-’ (37) 
where 

Equations 37 and 38 describe the averaged propagator for the 
random walk in terms of a constant, uniform transition probability 
$(z) which is yet to be determined. In the (single bond) EMA 
we introduce a medium consisting of one fluctuating bond 
imbedded in this effective medium, so that the transition operator 
W becomes 

w =  J.OCV~ + blv1= w m  + (a1 - +(z))v, (39) 

n = n, (40) 

a+l 
and bond fluctuations occur only for bond 1 

The effective rate is then determined self-consistently by using 
eqs 39 and 40 in eq 34 and then performing the summation (36). 
If some technical details that may be found in ref 15 are skipped, 
this procedure leads to the requirement that the determinant of 
the following matrix M of order n, the number of bond states, 
vanish 

Mu = uj- rC, j = 1, ..., n (41) 

Mn, = 1 + (0,- $)h, n > 1, j = 1 ,..., n (42) 
where hj are scalars defined from 

V-’.HO).V = hjV (43) 

Hu, = [ ( z  + Xj)l + wm]-’ (44) 
and where A, are the eigenvalues of the bond transition matrix 
Qa(d,u) (with A/ = 0 corresponding to theequilibriumdistribution 
Pa) * 

The equation 

det)Ml = 0 (45) 
now yields the desired effective medium rate $. Before describing 
how these formal results may be applied to actual systems, we 
note that the z dependence of the resulting solution $(z) on the 
bond dynamics enters via the combination z + Aj, or (w - iAj; w 
= - iz ) , j  = 2,.,.,n. For the case n = 2 (eq 10) there is only one 
characteristic time for the bond dynamics and eq 6 is regained. 

This approach may be generalized further by considering a 
cluster of bonds rather than a single bond. “Bond states” u. are 
now replaced by “cluster states”, each cluster state is associated 
with a set of transition probabilities through the bonds associated 
with this cluster. The procedure continues in much the same way 
as before, and the final result is again expressed in terms of 
combinations of the form w - iAj where A, are now eigenvalues 
of the matrix Q which determine the transitions between different 
cluster states. 

As an example of this method, consider a dynamically 
disordered 2d square lattice where two different dynamical 
processes control thebondstate. These two processes aredepicted 
in Figure 7. Clearly the process shown in Figure 7a is that 
described by eq 10. The process shown in Figure 7b is a bond 

1.0, R 
2D-square 

r=10, 83.3 
A T = 1 0 ,  8140  

0.0 1 0.5 1.0 
pco PCl pco p 

Figure 8. DC effective medium rate for combined processcs of renewal 
and exchange. The rates arecalculated for different values of the renewal 
and exchange processes of Figure 7. The straight line with no markings 
is for very fast renewal. The open squares have B = 0.33, the hollow 
triangles have B = 40, and both of these have 1 /r = 0. The filled squares 
have l /r  = 0.1,B = 0.33; the filled triangles l / r  = 0.1,B = 40. Note 
the three different percolation thresholds that are observed (from ref 21). 

flip that does not change the overall number of available bonds. 
The bond dynamics are described by considering the cluster of 
two bonds shown in Figure 7b. This cluster can be in four states, 
00, l O , O l ,  and 1 1, when 0 denotes a broken bond and 1 an available 
one. Equation 26 for the present case is 

4 
7 

i: + i) 
1 - 
e 
e 
7 

4 
7 
1 - 
e 

i: + i) 
e 
7 

The effective transition rate obtained for this model is shown in 
Figure 8 as a function of the fraction p of available bonds. If 
both processes shown in Figure 7 were frozen (7.6 - a), we get 
the EMA result for a squarerandom bond lattice with a percolation 
threshold at pc = pc2 = 0.5. When 7 is infinite and 9 - 0, we 
get a new percolation threshold at pc = pCl N 0.34. When 7 is 
finite, the macroscopic diffusion rate is of course non-zero for all 
p > 0. 

Another application of this formalism is for random walk of 
interacting particles.*26.*~~~ This is an example of internal noise 
where the dynamic disorder experienced by a tracer particle arises 
from its interaction with other moving particles. DEMA provides 
a way to treat this problem with the effective medium approx- 
imation provided that a proper closure relation can be found 
which associates the characteristic time, T ,  of thedynamicdisorder 
with the motion under consideration (namely 7 in, e.g., eq 10 
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Figure 9. Effective medium hopping rate with differing assumed models 
fordiffusion of particles with blocking interactions on the 3d cubic lattice 
with static bond disorder. The different curves show results for different 
coverages: the full line was coverage 0.4, the dashed line coverage 0.2, 
the dotted line coverage 0.1, and the dasklotted line coverage 0.05. The 
points show results of Monte Carlo simulation, and the lines result in the 
approximation of eq 47 (from ref 26). 

should be expressed in terms of the effective medium hopping 
rate +). While no explicit general relations are available, several 
approximations are possible as discussed by Granek and N i t ~ a n . ~ ~  
In Figure 9 we show a comparison of the result from such a 
calculation26 for the diffusion of particles with blocking inter- 
actions only (double-site occupancy forbidden) on a 3d cubic 
lattice withstatic bond disorder. Shown is the calculated effective 
hopping rate as a function of p, for different concentrations of 
hopping, self-avoiding particles. The postulated relation between 
T and the dynamics of the hopping particles was 

P - P c  
T-’ = (Z- 1)- 

1 -Pc 
(47) 

where 2 is the lattice coordination number. The rationale for 
this choice is24 that the dynamic disorder for the present example 
is associated with density fluctuations of background particles on 
the sites neighboring the tracer. These density fluctuations are 
associated with the chemical diffusion coefficient, which for self- 
avoiding but otherwise noninteracting particles is equal to that 
in a system of completely noninteracting particles, and therefore 
is associated with the effective hopping rate + = @ - p c ) / (  1 - 
pc)  for a single particle moving on a statically disordered lattice. 
The factor 2 - 1 in (47) results from the fact that the lifetime 
of a blocking particle on a nearest neighbor to the tracer particle 
is associated with jumps into and out of its 2- 1 nearest neighbors 
(not including the occupied tracer site). As seen in Figure 9, this 
formalism with this choice of dynamic disorder time gives a good 
approximation (within EMA) to the coverage-dependent diffusion 
on the disordered lattice. An alternative choice, 7-1 = (2 - l)p, 
based on the mean field approximation, was also shownZ6 to give 
a reasonable approximation. 

Application of DEMA to polymer dynamics was recently 
presented by Loring and co-worker~.48.~9Z6 They focus on a single 
flexible linear polymer molecule which undergoes slithering along 
its contour (to mimic reptation) together with stochastic inde- 
pendent bead jumps (the Stockmayer %nk-jump” a l g ~ r i t h m ) . ~ ~  
The effect of the surrounding molecules is represented by the fact 
that a fixed fraction of the beads are immobilized by obstacles 
(presumably associated with entanglements) which appear and 
disappear with a characteristic rate. The calculation of the 
dynamical properties of this model was shown to be equivalent 
to the calculation of the propagator for a random walk on a 
dynamically disordered lattice similar to that introduced by 
Harrison and Zwanzig. The model can be made selfconsistentsoby 

taking the obstacle relaxation time to be the relaxation time 
associated with the slowest internal modes of the system. 
However, caution needs to be exercised in carrying out such a 
closure (as in the Granek and Nitzan application to diffusion of 
interacting particles) because of the inherent non-Markovian 
nature of this motion.5859 

Applications to Elastic Properties 

In the original introduction of DBPT, the model was designed 
to account for the fact that the charge carrier’s motion in a 
disordered host polymer environment is (as observed experimen- 
tally) strongly dependent on the dynamics of the host, represented 
in the model by the renewal time TR. On a somewhat more 
fundamental level one would like to associate this characteristic 
time for local segmental motion of the polymer host with its 
elastic properties. 

A simple model which makes it possible to associate TR with 
the viscosity 9 was proposed27 by Nitzan, Granek, and Ratner. 
In this model T R  is associated with the relaxation of local distortions 
in the dynamic random network representing the polymer host, 
and a simple argument leads to the following relation between 
TR and the shear viscosity 

2 

R 9 = MCP, 
a3 

Here m is a typical segment mass, c the speed of sound in the 
polymer, p the fraction of intact bonds (so 1 - p  is related to the 
free volume), and a is the typical linear segment size. Together 
with eq 4 for the ion diffusion coefficient D and with the Stokes- 
Einstein relation between D and the conductivity u 

ne2D 
kT 

fJ=- (49) 

(where n is the density of mobile charge carriers), this leads to 
a simple Walden-type relation between u or D and n. (Note that 
deviations from the Walden behavior are expected because the 
number of mobile charge carriers (e.g. unpaired ions) may change 
with temperature.)60 

A more sophisticated approach to obtaining viscoelastic 
properties from DBPT was recently described by Graneks6I He 
considers a random spring network of the kind studied before by 
Alexander, Orbach, and their co-worked2 and introduces 
dynamic randomness by allowing each spring frequency to 
fluctuate between zero and a finite value w. This model is solved 
within the DEMA and yields a generalization of the phonon- 
fracton theory of Alexander and Orbach to the case of dynamic 
disorder. 

Granek and Cates63 have examined the problem of stress 
relaxation in living polymers using a Poisson renewal model; they 
deal with polymers that can break and recombine on the time 
scale of their reptation, or even Rouse-like regimes. This work 
demonstrates quite clearly the ability of renewal models to deal 
with relaxation, as well as transport, properties in complex 
polymeric systems. 

Dynamic Percolation Models in Polymer Ionics 

The application of the dynamic percolation model to the 
understanding of polymeric ionic conductors has been discussed 
extensively elsewhere1-8J0Js22 and alluded to several times in the 
early sections of this paper. Polymer electrolytes conduct ions 
only above their glass transition temperature, T,. A number of 
early experimental investigations19M showed direct correlations 
between theconductivity and the physical properties of the polymer 
electrolyte. If interionic correlations are ignored, so that the 
diffusion coefficient is proportional to the conductivity, then the 
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Walden-like or Stokes-Einstein relationship 

Dq = constant (50) 
quantifies the relationship between the viscosity 4 and thediffusion 
coefficient. By and large, polymer electrolytes fit eq 50 rather 
well, though it is important to use the microviscosity, which is a 
measure of the local physical relaxation, rather than the shear 
viscosity which, for a polymer, can be determined by entangle- 
ments.65 

Empirically, the viscosity of glass-forming materials, including 
glass-forming polymers, in the range above the glass transition 
temperature fits the Doolittle result 

Nitzan and Ratner 

where B is a pseudoactivation energy and TO is a temperature, 
called the equilibrium glass transition temperature, that is 
substantially below the kinetically observed glass transition 
temperature (normally by about 50 K). By combining eqs 50 
and 51, we obtain 

D = Do exp(-B/ T - To) 

relating the diffusion coefficient and the temperature. All these 
results follow from empirical observations, quite apart from any 
modeling. 

The Walden relationshipof eq 5 1, however, is highly reminiscent 
of the DBP result, especially in limit (i) of eq 18. That is, the 
viscosity is proportional to the renewal time, and the diffusion 
coefficient is proportional to the inverse of the viscosity. This 
relationship between the microscopic relaxation processes of the 
material and its macroscopic transport processes provides an 
important link between the observed conductivity of polymer 
electrolytes and their microscopic relaxation properties. It is on 
this basis, in fact, that applications of the DBP model to polymer 
electrolytes were originally based. 

The DBP model has been used to discuss the frequency- 
dependent conductivity, the dielectric response, and the tem- 
perature dependence of polymer  electrolyte^.^-^^ Perhaps more 
importantly, it has been used to suggest design criteria for 
preparing better electrolytes: increased renewal rates, corre- 
sponding to decreased glass transition temperatures, should result 
in higher diffusion coefficients and therefore in higher conduc- 
tivities. On the basis of these ideas, Shriver, Allcock, and co- 
workers66 prepared phosphazene-based polymer electrolytes, 
which exhibited both the lowest Tg (and therefore the fastest 
renewal rates) and the highest room-temperature conductivities 
of any polymer electrolyte materials then known. Very recent 
work from the Northwestern g r o ~ p 6 ~  has used microwave 
conductivity measurements on both polymer electrolyte materials 
and the parent polymers to obtain information both on the renewal 
time itself and on the relationship between the glass transition 
relaxation in the parent polymer and the conductivity of the 
electrolyte. Figure 10 shows conductivity plotted in reduced 
coordinates (the temperature axis scaled by the glass transition 
temperature, and the conductivity and glass transition relaxation 
both plotted against this reduced scale). It is clear from this 
graph that there is a very close correlation between diffusivity on 
the one hand and the glass transition relaxation on the other. The 
glass transition relaxation is thought to describe the local 
segmental relaxation of the polymer host; it is precisely this that 
correlates with the renewal time. 

The renewal time is best thought of as describing the local 
structural relaxation of the polymer. One would expect the 
renewal time to increase substantially with salt concentration 
(due to transient cross-linking of the polymer), to decrease with 
increase in temperature, to scale essentially like the localviscosity, 
and to be largely independent of polymer chain length after 
sufficient length to achieve local entanglement. The dynamic 
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Figure 10. DC conductivity of the polymer electrolyte poly(propy1ene 
oxide)ls.NaI plotted against reduced temperature (Tg is the measured 
glass transition temperature). Also plotted is the maximum frequency 
wo for the so-called a-relaxation (glass transition relaxation) for the parent 
PPO host. The very similar temperature dependences of the physical 
relaxation and the conductivity indicate the dependence of ionic diffusion 
on polymer relaxation time, as suggested by the result of eq 4 (from ref 
67). 

percolation model then provides a theoretical understanding of 
the mobility, or diffusivity, of ions in the polymer electrolyte 
materials. 

Several simulations, and interpretations, have suggested that 
a number of transport processes in both static and dynamic 
disordered materials depend on two time scales, the first 
corresponding to hopping, the second to reinitialization or 
reorganization. The DBP model, by including this two time scale 
idea, provides a convenient language to interpret diffusion in a 
number of solid electrolyte materials. 

It is important to remember that the dynamic percolation model 
describes mobility, or diffusivity, rather than conduction. The 
conductivity is a collective property of all the ions, and in 
concentrated electrolytes (polymeric or small-molecule solvents), 
the interionic correlations result in substantial changes from an 
independent particle conduction picture. Indeed, correlation 
effects manifest themselves in two ways: the tracer diffusion 
coefficient is substantially modified by ionic correlations from 
the value it would have in the absence of such correlations, and 
the conductivity diffusion coefficient can differ substantially from 
the tracer, again due to correlations (in this case, multiparticle 
correlations). The understanding of conduction in polymer 
electrolytes on a quantitative basis, then, requires going beyond 
the simple dynamic percolation model and including the effects 
of interionic correlations. Recent calculations utilizing both 
molecular dynamics6888 and Monte Carlo simulations,68b.c in 
addition to experimental work based on Raman spectroscopy 
demonstrating temperature dependencies of ion pairing and 
clustering,68d.eillustrate the importance of these correlation effects 
in determining the conductivity of real polymer electrolyte 
materials. 

Polymeric materials, and other disordered media, including 
separation membranes and mixed membranes, can exhibit 
electronic charge-transfer phenomena that can be "gated", or 
controlled, by the motion of the ionic countercharges. As part 
of their extensive and important analysis of coupled charge and 
diffusion processes in electrochemical systems, Saveant and his 
collaborators70 have completed simulations on electron hopping 
coupled to the physical motion of charge carriers. This is a 
generalization of the Dahms-Ruff treatment and is relevant for 
considerations of electronic motion in redox polymers.71 They 
find that the mean field limit for bounded diffusion is reached 
when the rate of physical motion exceeds that of electron hopping, 
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and the range of this physical motion is sufficiently great to 
overcome interactions among neighboring redox molecules. 

Remarks 
Percolation processes involve transport in heterogeneous 

materials and structures. The dynamic percolation model deals 
with situations in which the structure is not only statically but 
also dynamically disordered. Under these conditions, the rate of 
transport candepend on both the averagestructureof thematerial 
and the dynamical evolution of that structure. In glass-forming 
materials above their glass transition temperature, for example, 
the excursion from the glass transition temperature changes the 
nature of the structural disorder, and therefore the transport. 

The dynamic percolation model is the simplest approach for 
understanding how transport, including diffusion and conductivity, 
m u r s  in these systems. As chemists focus more attention on 
polymeric, glassy, molecular, and heterogeneous materials, the 
concepts involved in this model will become even more relevant. 
The notion of transport determined by at least two characteristic 
times (one involving local motion, the other involving structural 
relaxation) seems to be an important one in a very large number 
of condensed-phase transport processes, including structure and 
diffusion in microemulsions,73 coupled electron/ion motion and 
physical displacement/charge hopping in redox polymersPg and 
ionic conductivity in polymer electrolytes. 
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