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Solvation and association of ions in polymer solvents used for polymer electrolytes is studied in the 
framework of the Guggenheim quasichemical approximation using a lattice model. The pure solvent 
is described using the mean-field approximation of Sanchez and Lacombe. The model accounts for 
the short range part of the ion-polymer interaction, in particular at specific interaction sites (such as 
the cation-oxygen attraction in polymer hosts), while long range dieletric effects are added as in the 
Born theory of solvation. We obtain expressions which relate thermodynamic quantities of solvation 
(free energy, entropy, enthalpy, and volume) to properties of the pure solvent. From these, the 
equilibrium constant for the ion pairing can be obtained as a function of temperature, pressure, and 
solvent properties. A consistent fit to the experimental data in poly(propylene oxide) (PPO) can be 
obtained if specific interaction sites for the cations are assumed. Dependence of the solvation and 
the equilibrium constant on the polymer chain length which is seen in the short chain limit saturates 
and disappears beyond a few monomer sizes. The relative roles of short range and of dielectric 
interactions is discussed. 

I. INTRODUCTION 

The increasing activity in studies of solid ionic conduc- 
tors, and more recently in polymeric ionic conductors, has 
renewed the interest on the long studied problems of ion 
dissociation-association equilibrium and ion mobility in 
electrolyte solutions. Polymeric ionic conductors are essen- 
tially solutions of salt in polymeric hosts. The conductivity 
and equilibrium properties of such systems are determined, 
as in other electrolyte solutions, by the ion-host and ion-ion 
interactions. 

This paper is a continuation of a previous work,’ referred 
to as paper I. Our studies were motivated by the recent series 
of papers of Tore11 and co-workers2-4 in which ion associa- 
tion and mobility in polymer-salt complexes based on poly- 
(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) 
were studied for several salts as functions of temperature, 
pressure, and molecular weight of the polymer. The follow- 
ing observations are relevant to our work: 

(1) Ion association increases with temperature, above the 
glass transition temperature of the system, for perchlor- 
ate and triflate salts of Li+ and Na+ in PEO and PPO. 
The temperature dependence is affected by the strength 
of the ion-ion and ion-host interactions. For example, 
ion association decreases with increasing temperature for 
complexes containing Nd3+ cations. 

(2) Detailed thermodynamic analysis by Schantz’ of the ion 
association equilibrium in the NaCF,SO,-PPO and 
LiClO,-PPO systems indicate that ion association in 
such systems is accompanied by a large positive entropy 
change (TAS’= 30+ 12 and 365 12 kJ/mol, respec- 
tively). This suggests that linking of the dissociated ions 
to the host matrix has a strong ordering effect on the 
system. 

(3) Ion association strongly depends on the pressure in these 
systems. For the LiCF3S03-PPO complex (O:M=32:1) 
the number of unpaired ions doubled when P increased 
from 1 atm to 3 kbar. This is in accordance with the 
expectation that the volume change AV associated with 
the M+ +A---tMA reaction in a dielectric solvent is 
positive because of the electrostriction effect which ac- 
companies ion solvation.6 

(4) The association constant KAssoc= ([MA]/[M+][A-1) de- 
pends on the molecular weight of the host polymer. In 
the recent studies with “endcapped chains”--CHs termi- 
nated PEO, KAssoc decreases with increasing size be- 
tween 4 and 8 repeat units. The coordination of the cat- 
ion to the electronegative oxygens is the main driving 
force for the dissociation reaction. At the same time 
cation-oxygens bonding may lead to transient crosslinks 
in the system, which will reduce the local flexibility of 
the host matrix. Such additional entropic effects may be- 
come important for longer chains and may alter the be- 
havior of the association equilibrium in such systems. 
Indeed KAssoc increases with increasing molecuhu 
weight for NaCFsSO, in polypropylene glycol (PPG) 
(PPO terminated with OH groups). Unfortunately no re- 
sults are available for long endcapped chain solvents. 

More details about the experimental observations are 
summarized in paper I. The observed increase in the concen- 
tration of associated ion-pairs in the monovalent salt- 
polymer systems with increasing T are observed in many 
electrolyte solutions.7-‘0 In paper I we review some con- 
tinuum dielectric theories of ion pairing”-‘3 and note that 
any theory that assumes that the free energy of the associa- 
tion reaction is negative and proportional to the inverse di- 
electric constant D- ’ , i.e., AG= -KID, (K>O), results in a 
change in enthalpy AH=AG+TAS=AG-T(dAG/dT) 
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= - ( KID)[ 1 + T(a In DlJT)] which is positive if the in- 
equality T(c? In DldT)<- 1 holds. For amorphous high mo- 
lecular weight PPO where D-5 and -(dDldT)==0.016 
(Ref. 14) we have argued in paper I that the temperature 
dependence of the dielectric constant is not enough to ex- 
plain the observed ionic association behavior. 

In the present study we develop a description of the 
equilibrium that includes the influence of the molecular size 
of the host solvent and the details of the ion-solvent inter- 
actions. We are particularly interested in the influence of the 
macromolecular structure of the solvent in the association- 
dissociation ionic equilibrium. 

Ionic equilibrium in solution can be discussed in terms 
of appropriate thermodynamic quantities. In particular, 
Gilkerson’” has divided the free energy of the ion association 
reaction M+ +A--+MA into two main contributions, the 
electrostatic part AGEL= - KID, where K is a constant which 
depends on the ion charge and size, and a part which ac- 
counts for specific ion-solvent short range interactions, 
(AGSH). The enthalpy change, AHEL, and the entropy 
change, AS,,, associated with the electrostatic part are cal- 
culated as described above. The present paper, as paper I 
before, focuses on the enthalpy, AHSH , the entropy, ASSH, 
and the free energy AGsn=AHsn-TASS,+ associated with 
the short range part of the solute-solvent interaction. This 
short range interaction is important in polyether salt com- 
plexes because of the strong selective binding of the cations 
to the ether oxygens. As mentioned above, the long range 
electrostatic interactions which incorporate the dielectric re- 
sponse of the solvent cannot account by themselves for the 
experimental observations. 

In paper I we have described a lattice model for ionic 
equilibrium in polymer hosts that focuses on the short range 
ion-solvent interaction. The model is characterized by the 
following features: (a) The system is described by a lattice of 
coordination number z, in which each component of type i 
occupies Ti lattice sites. The size of a lattice site is a constant, 
independent of the composition of the mixture. (b) Only site 
exclusion and nearest-neighbor interactions between the 
components of the mixture are considered. (c) The lattice 
contains empty sites. These vacancies “interact” with the 
other components only by site exclusion. The amount of 
empty sites is determined such that the system is at equilib- 
rium for the given pressure. 

In paper I the thermodynamic quantities AG, AH, AS, 
and AV were obtained for the ion solvation and association 
process using the Sanchez-Lacombe mean-field theory. This 
approach, which can successfully account for the thermody- 
namic properties of the pure polymer solvents as well as for 
polymer mixtures, is questionable for the present application 
where the solvent-solute interactions can be much stronger 
than kT. Indeed, using this approach to analyze the experi- 
mental results of Schantz’ for the dependence of ionic asso- 
ciation equilibrium in polymer solvents on the temperature, 
pressure, and molecular size have revealed serious flaws, 
which were attributed to the mean-field assumptions, even 
though it manages to reproduce the general trends of the 
system. 

In the present paper we continue our study of this model. 

Here the mean-field approximation (MFA) is replaced by the 
more realistic quasichemical approximation (QCA).16 The 
later accounts better than the MFA for correlations between 
the positions of interacting particles and has been used by 
Marcus8717 to calculate the standard Gibbs free energy of 
transfer of an ion between different solvents or solvent mix- 
tures. In our present application we describe the pure solvent 
at the MFA level of Sanchez and Lacombe and introduce the 
QCA to account for the strong solvent-solute interactions. 
Using the QCA, the standard free energy of solvation (at 
infinite dilution), which involves only short-range contribu- 
tions, is calculated and is used to evaluate the other thermo- 
dynamic quantities associated with ion solvation and associa- 
tion in polymer hosts. In addition we reassess the effect of 
the long range dieletric interactions on the association- 
dissociation equilibrium. 

In the following section the quasichemical formalism is 
described in detail, and is used to calculate the standard free 
energy of solvation at infinite dilution, within the lattice 
model described above. 

II. QUASICHEMICAL APPROXIMATION 

In the MFA the probability of finding solvent molecules 
on the sites nearest neighbor to the solute is taken identical to 
its value in the pure solvent. This assumption becomes ques- 
tionable when the solvent-solute interaction energy is large 
(in absolute value) relative to kT. Indeed, the MFA adopted 
in paper I could not account for all observations made on 
ionic equilibrium in polymer hosts in a consistent way. In 
this section we use the Guggenheim’s QCA approach’8*16 for 
a mixture of chain molecules of arbitrary sizes in an attempt 
to correct this problem. 

The model is the same as that used in paper I and de- 
scribed in the previous section. In what follows we first re- 
view the QCA for a general mixture and then apply it to our 
particular problem. The system considered consists of a mix- 
ture of Ni molecules of type i, (i = 0,. . . , k), where i denotes 
a particular component of the (k+ 1 )-component mixture 
and i= 0 refers to the empty sites. Each molecule in the 
mixture is made of ri identical “beads,” each occupying one 
site on a lattice of coordination number z. By definition 
ro= 1. The volume of the system is expressed by V= Mu *, 
where A4=zf==,riNi is the total number of sites and u* is 
the average volume of a lattice site in the mixture. In general 
u * is a function of the lattice site volumes {u”} of the pure 
components i, but in this simplified approach we take UT 
=u *, independent of i. Using a closed-packed volume, de- 
fined as V” = u *xF=, riNi , the reduced volume v” and the 
reduced density p are defined as u” = VI V* = 1 lp. The density 
of component i is defined as pi= riNi/M. pi is the average 
probability that a site is occupied by a segment of a molecule 
of type i. The correspondent density in a closed packed mix- 
ture is given by ~i=piIp. 

Let Nij be the number of nearest neighbor pairs of beads 
of types i and j (Nij= Nji) in the system with Ni molecules 
of types i. The number, KI, of configurations of the chains in 
the lattice for given sets {Ni} and {Nij} is given by 
Guggenheimi by the expression” 
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Equation (6) leads to the well known quasichemical relations 

4N..N..=e"'ij 'kTN? 
11 II rj' 

+C Z ln(qiNi)!+~N, 1,~. (1) 
i=O 

Equation (7) is in fact a derivative with respect to the number 
of vacancies No and leads to 

The parameter qi is defined by 

qj=[rj(Z-2)+2]lZ. (2) 

For an unbranched chain qiz is the number of nonbonded 
nearest neighbors to a molecule of type i.‘* Note that for 
empty sites qo= 1. The total number of nonbonded pairs 
(z/2)N, is defined as (~/2)N,=(zI2)C~=‘=,qiNi. 

Also in Eq. (l), the parameter Si is defined as the num- 
ber of ways that a chain that occupies ri consecutive sites 
can be arranged in the lattice after one of its monomers is 
fixed at a certain lattice site.” It is usually associated with 
the flexibility of the chain. The parameter (Ti is the symmetry 
number of the corresponding molecules. These two param- 
eters are related to the intrinsic configurational entropy of the 
chain molecules of kind i. 

Equation (9) is the QCA equation of state. It can be shown 
(see Appendix B) that it is reduced to the MFA equation of 
state of Sanchez and Lacombe [Eq. (32) below] in the limit 
Z+W, {cij}+O with {z~ij}+constants. 

The energy of the system, considering only nearest 
neighbor interactions, is given by 

Note that using the set of Eqs. (4), (8), and (9) the values 
of the amount of pairs {Nij} can be determined in terms of 
the temperature T, the pressure P, the amount of each com- 
ponent {Ni} (i # 0) and the energy parameters {A Eij}. It is 
useful for the calculations that follow to scale the amount of 
pairs Nij by the total number of pairs (z/2)N,, and the 
amount of binding sites of each kind 4iNi by the total num- 
ber of binding sites in the mixture N, . In terms of the scaled 
variables {Xij} and {cpi}, defined by 

E({Ni},{Nij})= - i C NijEij 7 (3) 
i=O jai 

Nii 1 Nij 
xiiG(z/2) N, 9 xij’z (z/2) N, 7 

,p,E4iNi 
1 N, 9 (lo) 

where - Eij( eij>O) is the (attractive) interaction energy be- 
tween particles (i.e., molecular beads) of types i and j. The 
interaction parameters { eij} are constant parameters of this 
theory. The interactions involving empty sites ({ eiO}) are 
taken zero. The quantities Ni and Nij are related by18 

Eqs. (4), (8), and (9) become 

Pi=Xii+ C Xij, (11) 
j(+i) 

2Nii+ C Nij=4izNi. (4) 
i(+i) 

Using Eq. (4), Eq. (3) can be rewritten in the form 

E(INi}v{Ni$)=-l $ 4iZNiE,i+i i C A~ijNij, 
r=O 1~0 j>i 

(5) 
where A eijs (pi; + Ejj - 2 Eij) . 

The average equilibrium values of the number of pairs 
{Nij} and the number of vacancies No, at given values of Ni 
(i= 1 , . . . ,k), and of P and T are obtained by minimizing the 
free energy G({Ni},{Nij}) =E({Ni}, {Nij})-kT 
Xln ~({Ni},{Nij}) + PV({Ni}) with respect to these param- 
eters, as well as with respect to the total volume 

aG({Ni),{Nij>) 1 r 
dNij 0, (6) T*P,{Nils{Nkm l+ij 

(7) 

(8) 

(9) 

These quantities satisfy CF=oqDi= 1, IVIN,=ZZ~=~(~J~~) 
X ~i=(c~=O(qilri)pi)-‘. In the random mixing limit, 
{ AgijlkT} = 0, Eqs. (11) and (12) above can be solved ex- 
actly in terms of {pi}, yielding Xij= qiqj for any i and j. (p. 
is then determined from Eq. (13) in terms of Pu *lkT, {ri}, z 
and { ~p~}+~. In general this set of equations has to be solved 
numerically and the relevant solution is the one in the range 
osVO, {Xii}< l- 

The chemical potential of molecules of kind i( #O) is 
obtained from the derivative of the free energy with respect 
to the amount of component i. This can be written in the 
form 
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l3G\ 
Pi= dN 

I I 
’ T*f’*INjI+o,i 

From Eqs. (6) and (7), the second and third terms on the 
right-hand side of Eq. (14) are zero at equilibrium. The de- 
rivative of the remaining first term yields 

pi= -5 qieii+kT ln s-1, 5 +5 
(Ti 

4i In 

+PV*rj. (1% 

In terms of the scaled variables defined by Eq. (10) this takes 
the form 

pi=kT In 
Ni 
G- kT In ~-~ qisii+5 qikT 

I 

+PV*rj. 

Our goal is to obtain the standard free energy of solva- 
tion, AG,, of a molecule of type Q in the given mixture of 
the other components. This can be identified as the infinite 
dilution limit, pDn+O, of the change in free energy associated 
with transferring a molecule a from an otherwise empty lat- 
tice to the lattice containing the solvent mixture. The first 
two terms in Eq. (16) do not contribute to this difference” 
and we get 

AG,= -p qaeaa+i qakT 
MO 

in z + lim In $! 
4 ‘pa-0 a 

+Pv*r=, (17) 

where the superscript 0 indicates quantities calculated for the 
pure solvent, i.e., with qa= 0 (while subscript 0 indicates 
properties evaluated for the “vacancy species”). We are left 
with the task of calculating the limit appearing in Eq. (17) in 
the presence of solvent. This limit can be calculated from 
Eqs. (11) and (12) using a generalization of the calculation of 
Hagemark*’ for a binary mixture with no empty sites. The 
detailed calculation is presented in Appendix A. The final 
result is 

k 

l im ln “,“J - -2 In C’e-(l/*)A~ailkT~ , 08) 
‘P.-O a i=O 

where Zf denotes summation over all i # a. Substituting Eq. 
(18) back in Eq. (17), one gets 
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AGO=: qakT{ In $2 ln~~~e(2~a~-E~i)‘2kT~i} 

+Pu*r,. (19) 

Note that for a molecule a in an empty lattice (i.e., in the 
absence of solvent) P = 0, e = @  = MO and Xoo= 1 so, since 
E,~= eoO= 0, AC,= 0 as should be. Equation (19) can be 
further simplified using that Xii exp( - EiilkT) = X~i/Xoo [cf. 
Eq. (12)] together with Eq. (13) for the pressure. The final 
result is 

AGa=i y.kT[ In s-2 ln[ i’e’ai’kTX&) +ln Xio] 

+Pu*r,=-kT (la ln(l-p”)+zqa 

x*n( i’e’JkT $$)I + PV*(r,-4,). (20) 

The values of p”, {X~i}, and & are functions of the pure 
solvent compositions { cpp} (i # 0), interaction energies 
{ Aeij}, pressure, and temperature. This can be easily seen for 
a single component solvent s which is described by a binary 
mixture of solvent particles and of vacancies. For this system 
the QCA equations 

xss+xos=(Ps~ (214 

Xoo+Xos=‘Po~ @ lb) 

xssxOO = e ~ss’kTxos , cw 

rpo+cps=*, (214 
are easily solved, yielding 

xos 29s 
-= 

PO 1+ Jl -4~o~o,( 1 -e’JkT) . (22) 

Equation (20), which for this case takes the form [using Eq. 
W -41, 

AG,=-kT 4a ln(l-p,)+zq, 

1 0 

Xln l+(e dkT- 1) 2 
II 

+Pu*(r,-q,), 

(23) 
can now be evaluated using Eq. (22) for Xoslcpo. 

Two more observations can be made concerning the re- 
sult (20). First, it is straightforward to show that it is reduced 
to the mean-field result [Eq. (59) of paper I] by taking 
{E,lkT}-+O and Z+m, Using dS0 ,Y’i+~o~i, qi-‘ri, 

cpp-+pp, while keeping the products {zE,i} constant. Sec- 
ondly, in the limit e,,lkT+O for all if a, Eq. (11) implies 
that the second term of Eq. (20) vanishes. Consequently, the 
remaining terms can be identified as the free energy of cavity 
formation, of the size needed to accommodate the impurity, 
in the solvent. The term that vanishes for E,i=O (all i#a) is 

J. Chem. Phys., Vol. 101, No. 3, 1 August 1994 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



then the free energy associated with the impurity interaction 
with the solvent. Note that this is the additional interaction, 
on the top of that responsible for the site exclusion. 

Equation (23) gives the free energy of solvation of the 
impurity a in a single component solvent. In a general many 
component solvent a numerical solution of Eqs. (ll)-(13) 
and (20) has to be used. If we make the reasonable assump- 
tion that the solvent-solvent interactions, Eij (iJ # a), are 
weak relative to kT we can evaluate the quantity X~iI(P~ 
needed in Eq. (20) as an expansion in the small parameters 
{EijlkT} (see Appendix B). This procedure leads to 

kT zq, ln( ge@T $) 

=kTzq, In C’e ( iI, 

qzo)q(+o)e ~eilkTz,c,p~q~ 
- 

c ,$oe ‘ai’kT’p7 1 ’ (24) 

Note that the first term on the right-hand side corresponds to 
the simplest (mean-field) approximation Xii= &(pp. The 
other terms are corrections associated with the solvent- 
solvent interactions. Using Eq. (24), Eq. (20) becomes 

AG,=AG;+AGI, (25) 

AGL=--q,kT ln(l-p”)--q, c ’ C ‘ZEijcpPqT 
i(+O) j(+O) 

%(+o)q(eo)e 
eaitkTz~ijq~q~ 

- Z~;koe”ai’kTq~ 1 +Pu*(r,-q,), 

(26) 
k 

AGz= -zq,kT In xte’aitkTqf . l 1 i=O 
(27) 

Expression (27) for AGZ is similar to the result [Eq. (12) 
of paper I] for the free energy of solvation in a solvent rep- 
resented by a noninteracting lattice gas. This result was ob- 
tained in paper I using the ansatz that the solvent concentra- 
tion at sites nearest to the solute is proportional to 
pi exp( e,JkT). Here the result is obtained from the QCA 
formalism without further assumptions. 

For normal pressures and temperatures, of the order of 1 
atm and 300 K, and for typical values for u* [e.g., 20 
cm3/mol (Ref. 22)], one gets that Pu*lkT=8 X 1 Om4, which 
is much smaller than the solvent-solvent interactions [typi- 
cally of the order of (z/2)e/kTw 1 .O (Ref. 22)]. Since the 
experimental data available are for these conditions, we dis- 
regard the term containing pressure in the following equa- 
tions. 

Equations (25)-(27) have to be supplemented by the 
equation of state (13) which determine the equilibrium num- 
ber of vacant sites, hence the volume M of the lattice. To first 
order in eijlkT, (i,j#u), we get (see Appendix B), 

z =1+ c c j$qj. 
i(#O) j(#O) 
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(28) 

Using this in Eq. (13) results in the equation of state 

Pv*+kT[ In po+[ I-l)ln( i z qi)] 

+; ,C C Eij~i~j'Oe (2% 
4#0) i(+O) 

We now follow Sanchez and Lacombe (and Flory) in 
taking the large z limit of Eqs. (26)-(29), i.e., Z+CQ, q-tr, 
cpi-+pi= lip, with {Z~ij} kept constant. In this limit there is 
a large body of data for the parameters (z/2) E, u *, and r 
obtained by Sanchez and Lacombe*’ by fitting PVT behavior 
of pure solvents to the equation of state (32) below (a similar 
procedure was used in paper I to determine these parameters 
for PEO and PPO). In this limit Eqs. (26) (without the term 
containing P) and (27) become 

AGL=-q, kT ln(l-p”)+ c ’ c ~~~~~~~~~ 
i(f0) j(#O) 

‘Cl&o)q(+o)e at CT .lkTZ $jpypi” - 
~~~oeCi’kTPP 1 (30) 

AGz= -zq,kT In 1 -p”+po 2 ‘e’JkT+i 1 i(#O) 

while Eq. (29) takes the form 

(31) 

Pu*+kT eijPiPj 

=Pu*+kT[h(l-p)+( I-i)p]+c*p*=O. (32) 

where E*~(Z/2)‘Ci(~O)~j(20)Eij~i~j and (l/r) 
~x~(+~)( +ilri). Note that in OUT application Eq. (32) is to be 
used in the zero impurity concentration limit, qa-+O. 

Further simplification is achieved for a single component 
solvent s. In this case Eqs. (30) and (31) become 

kT ln( 1 -ps)+zc,,p~ 
(l-p,)(l-e’JkT) 

1 -ps+e’bJkTps I ’ 
(33) 

AGI= -zq,kT ln( 1 -~~+p~e’as’~‘). (34) 

Here and henceforth we drop the superscript 0, keeping in 
mind that all quantities correspond to pure solvent. The 
changes in the other thermodynamic functions (e.g., entropy, 
enthalpy, and volume of solvation) can be readily obtained 
from the corresponding derivatives of the free energy, 

a( AG,/T) 
AH,=-T* aT [ 1 P 

(35) 
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Equations (33), (34), and (35) constitute the final results 
for the thermodynamic quantities of solvation of species a in 
solvent s. Note that the derivatives in Eq. (35) involve the 
temperature and pressure derivatives of ps , namely, the iso- 
baric expansivity LU, and the isothermal compressibility /?, of 
the pure solvent, obtained from Eq. (32) in the forms22,23 

as=-; E),=t [ kTp,(l;yij+2e*pj~ 
s 

(36) 

PC’ dp, 
Ps i dl.)‘=*ip,(~“~~i’,*p~ * (37) 

Simpler expressions are obtained if further approxima- 
tions are made. In the limit e,,lkTB 1 Eqs. (33)-(35) lead to 

AC,"= -4zEczs-w41-~s)l 

--Wl, ln Ps+qa 141 -PAI, (38) 

AH,“= -la[~as-~ss~s(l-~s)- ~ssTas(~s-2~:)] 

-kT2as 
PS 

la-q, lFp, , 
i 

hS~=l,~,,(p,-2p,2)cu,-kTa, 1,-q, -!?-- 
l-p, 

+k[l, ln Ps+qa Ml-Al, (40) 

AC=Ps laEss(Ps-2PZ)-kT 
PS 

la-q, - )I l-p, ’ 
(41) 

where the superscript a~ refers to this limit and where 
fa=zqa . The limit e,,lkT% 1 is relevant for ion solvation. 
Note that Eqs. (40) and (41) for the entropy and volume 
changes do not depend on ens. The reason for this is that for 
e,,lkT% 1 the occupation probability of sites nearest neigh- 
bor to the solute is 1. In this saturation limit, in the present 
model of only nearest neighbor interactions, the volume and 
entropy changes associated with the solvation are indepen- 
dent of E,, and depend only on the solvent properties and on 
the amount of available sites. 

It should be emphasized again that the model used to 
obtain the thermodynamic quantities of solvation, Eqs. (38)- 
(41), does not take into account long range electrostatic in- 
teractions. These can be accounted for, in principle, by con- 
sidering the solvation of a species which includes the ion and 
its first solvation shell in a continuum solvent characterized 
by the dielectric response of the polymer host. In what fol- 
lows we include the contribution of such terms parametri- 
cally in the calculation of the free energy of ionic association 
reaction. 

Consider now the ionic dissociation-association equilib- 
rium at infinite dilution. The equilibrium constant for the 
association reaction a + b+ab is given by 

(42) 
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where AG Assoc=AGSH+AGED=AGab-AGn-AGg 
+AG,. In a system with only nearest-neighbor solute- 
solvent interactions A GEL is the (negative) free energy of the 
association reaction in vacuum. In a realistic system AGEL 
contains also the contributions from long range solute- 
solvent interactions. In what follows we use AGEL as a pa- 
rameter of the theory, and do not dwell on its exact nature. In 
the limit of strong solute-solvent interactions we get, using 
Eq. (38), 

AGkc= AGEL-(labEab-s-laEas-lbEbs)+(lab-lb 

-Ia)E,,(PS-P5)-kT[(lab-la-Ib)ln PS 

f(qab-qa-qb)in(l -P,)I. (43) 

The first three terms in this equation are energetic. In par- 
ticular, the combination - ( l,b E,b - 5- 1, E,, - lb Ebs) corre- 
spond to the change in the interaction energy between the 
solutes and nearest neighbor solvent molecules due to the 
association reaction (recall that in this strong solute-solvent 
coupling limit all sites nearest neighbor to the solutes are 
occupied by solvent molecules). Together with AGEL these 
terms account for the energy change associated with the re- 
action in vacuum and, with the solute-solvent interactions 
(dielectric and short range). The term containing E,, corre- 
spond to the change in the solvent-solvent interaction en- 
ergy associated with the change in the solvent packing near 
the solutes resulting from the difference in their effective 
sizes (given by Z,, - 1, - lb). The other terms, proportional to 
kT are entropic in origin. For large z the dominant one is 
(l&-l,- Eb)ln ps , provided that ps is not too close to 1. 
(For PPO at T= 295 K and P= 1 atm we have found that 
p,=O.92.) For association, (lab- I,- lb) is expected to be 
negative and, since In ps < 0, this entropic term contribution 
is negative, encouraging association at higher temperature, in 
accordance with an argument given by de Gennes.24 

In what follows we disregard E,, , the solvent-solvent 
interaction term in AGAssoc , assuming that the ion-solvent 
interaction energies are much larger. We also neglect the en- 
tropic term containing qi relative to that containing li (i=a, 
b, ab). The final equations for the thermodynamic functions 
of the association reaction become 

AG,,,,= AGEL-(labEab-s-laEas-lbEbs) 

-kT(l,b-I,-l,)ln Ps, 

A wLcc = AH,- (labE,b-s-laE,,--bEbs) 

-kT*cY,(l,,,-la-lb), 

AGLlc = ASEL+k(lab-la-lb)(ln Ps-Tas), 

(44 

(45) 

(46) 

A~V”,,,,=-kTP,(lab-la-lb), (47) 

where AHE, and ASaL are obtained from AGEL using Eq. 
(35). If AGEL= -KID, where D is the dielectric response 
function and K is a temperature independent constant, then 
AS,=-(KID)(d,ln DldT) and AH,=AG,+TAS,. In 
Eq. (47) we have neglected the corresponding contribution to 
the electrostriction. Note that we have assumed that the in- 
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teraction energies E,b, E,, eb and the numbers of nearest 
neighbors I,, lb, and lab are temperature independent con- 
stants. 

Equations (44)-(47) can be written in terms of three 
parameters, SE=-AGEL+~ab-slab-~ala-~blbr the 
change in the reaction energy, Sl= lab - 1, - 1, , the change in 
the number of nearest neighbor of the reactants and K, which 
measures the strength of the long range interactions. These 
values will be used as fitting parameters, to be determined 
from the experimental values of AHAssoc and ASAssocr via 
Eqs. (45) and (46). 

NaCF3S0s-PPO at 295 K together with p,=O.9223, 
a,=7.205X10V4 K-‘,p,=6.122X10-satm-1 [obtained 
from Eqs. (32), (36) and (37), respectively, using the param- 
eters listed above and r= 10 0001 and u*= 11.41 X 10e3 
//mol, Eqs. (45) and (46) yield SE = 25.68 kJ/mol and SZ 
= - 56.9 for this system. A similar analysis for 
LiCIO,-PPO where, at 295 K, AH,,,,,=13 kJ/mol and 
hSAssoc = 122.0 J/(K mol) (Ref. 5) leads to SE= 2 1.04 kJ/ 
mol and Sl= - 65.3. It is immediately clear that these val- 
ues of SZ are unphysically large. 

III. IMPLICATIONS FOR POLYETHER ELECTROLYTES 

For pure long chain polymers (i.e., very large rs), the 
equation of state (32) depends only on the parameters 
(z/2) ~~~ and u *. These parameters are obtained** from a 
nonlinear fit of the thermodynamic properties of the polymer 
to those inferred from the equation of state. Here we take 
(2/2)~,,=1.127 kcal/molandu*=11.41 cm3/mol,thepa- 
rameters calculated in paper I for PPO. Using these param- 
eters, in the limit of large chain molecules (l/~-,-0), one 
gets from Eqs. (32), (36), and (37) the values of ps , a,, and 
/I,, respectively, for given temperature and pressure. 

Not enough is known about the molecular parameters to 
make the theory fully predictive. In the analysis of the ex- 
perimental results of Schantz,’ we assume that the coordina- 
tion number z is large, so that Eqs. (45) and (46) are used. 
We are then left with two unknown parameters, 6E and 61 
defined above, which can be fitted to the experimentally 
available AHAssoc and ASAs%. In what follows we compare 
the behavior of the model with experimental observations, in 
order to see whether a reasonable choice of parameters yields 
consistent results. 

There are three questionable features in the model con- 
sidered above. (a) All solvents sites were assumed to interact 
equally (with interaction energy E,,) with the solute. (b) The 
temperature dependence of AC,, was disregarded. (c) The 
use of the QCA does not account properly for the effect of 
ions on the polymer structure, specifically for the formation 
of ion mediated crosslinks. The latter approximation cannot 
be relaxed in the present treatment. In what follows we con- 
sider the possible effects of the first two approximations. 

Consider first the consequences of a generalization of the 
QCA that accounts for distinct interactions between different 
parts of the molecules in the mixture. As shown by Barker,25 
the equations obtained from the QCA for the number of pairs 
of molecules of each kind [cf. Eqs. (11) and (12)] can be 
generalized to treat specific interactions between different 
molecular segments. Such a model with site specific interac- 
tions seems to be particularly proper for solvents like poly- 
ethers where only the oxygen sites interact strongly with the 
dissolved cations. 

In order to use the data for A HAssw and ASAssoc provided 
by Schanb? we note (see also paper I) that these values were 
calculated from AGAssoc = - kT In fAssoc, with KAssoc cal- 
culated in units of //mol. KAssoc , Eq. (42), is dimensionless 
and is related to KAssoc by KAssoc=b * KAssoc . Therefore a 
term - kT In u* should be added to AGAssoc and a term 
k In u * should be added to ASAssoc in order to correspond to 
Schantz’s data, with u*, the volume per site, expressed in - 
//mol. In what follows we denote AGAssoc = AGAssoc 
-kTInu*=AH Assoc - T~ASSOC . 

In what follows we first disregard the temperature de- 
pendence of AGEL in Eqs. (44)-(46), as was done in paper I. 
In this case AS==0 and AHEL=AGEL so Eqs. (44)-(47) 
become 

The idea behind this version of the QCA is to treat each 
type of segment, characterized by specific interactions, as a 
separate entity i, with qi being the fraction of nonbonded 
neighbors associated with it. When treating the solvent in 
this picture the QCA is modified in an essential way because 
Eq. (2) has to be replaced by a proper generalization?’ How- 
ever since in the present application we adopt the simple 
mean-field description of the pure solvent, this fact has no 
consequences with regard to on our treatment. All the quan- 
tities associated with the pure solvent therefore retain their 
former meaning when the pure solvent is considered, how- 
ever the solute sees two kinds of solvents with different in- 
teractions. Denoting by 4, the fraction of solvent sites which 
strongly interact with the solute, assuming these interactions 
are much larger than kT and neglecting the other interac- 
tions, leads to 

AC:=-I,E,,-kT1, ln(4xps), (52) 

AG”Assoc= -SE-kTS1 lnp,, (4% 

A ff kc = - SE- kT*a,Sl, (49) 

ASL = k8l(ln ps- TctS), (50) 

A VmAssoc = -kT&cY. (51) 

Here, the thermodynamic quantities of solvation are ex- 
pressed in terms of two free parameters, SE and 81, which 
can be fitted to the experimental results. Using Schantz’s 
data,5 AH,,,=4 kJ/mol and ASAssoc = 10 1.7 J/(K mol) for 

where ps is the total density of the solvent which is calcu- 
lated from the equation of state (32) with the appropriate 
solvent-solvent interactions, and where we have also antici- 
pated the other approximations that led to Eqs. (44)-(47) 
(namely large z and small E,,) by disregarding the contribu- 
tion (26) to AC,, keeping only the term equivalent to Eq. 
(27). The enthalpy, entropy, and volume changes of solvation 
derived from the free energy (52) are given by (assuming 
that 4, is temperature independent) 

AH;= -laEax-kT2asla, (53) 
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AS,"=kl,[ln(~,p,)-Ta,l, (54) 

AC= -kT&l,. (55) 

As before these expressions do not contain contributions 
from the long range part of the electrostatic solvent-host 
interaction. These contributions are included (in the SE pa- 
rameter) in the expressions for the thermodynamic quantities 
of association which are now given, in analogy to Eqs. (48)- 
(51), by 

AGLC = - SE-kTGZ ln( @,p,), (56) 

A HL = - SE- kT2a,Sl, (57) 

wLx = kWln(cP,p,) - Tdr (58) 

w&Jc= -kT/l,Sl. (59) 

Again the temperature dependence of AGEL was disregarded 
in obtaining Eqs. (53)-(54). Comparing these equations with 
Eqs. (48)~(51), ‘t ’ I IS seen that the new parameter 4, appears 
only in the entropic part of the free energy. The equations for 
the changes in enthalpy and the volume remains unchanged 
in this limit of strong solute-solvent interactions, because in 
this limit the sites nearest to the solute are saturated, namely 
fully occupied by the specific solvent binding sites x. Note 
that SE now refers to interactions with this specific site. 

Repeating now the procedure of fitting these expressions 
to the experimental results of Schantz’ we keep the param- 
eters obtained for the pure PPO as before namely, 
(z/2)eSS= 1.127 kcal/mol and u*= 11.41 cm3/mol. For the 
experimental values of P= 1 atm, T=295 K, and 
rs= 10 000, these imply p,=O.9223, a,=7.205X low4 
K-‘, and p=6.122XlO-’ atm-‘. Taking +x= 1 in Eqs. 
(56)-(59) lead to Eqs. (48)-(51) above. In what follows we 
use also 4, = 0.25, corresponding to the ratio of oxygens to 
methylic groups (1:3) in the PPO molecule, in order to assess 
the effect of this parameter. Then using the Schantz’s data for 
AH and AS for NaCF,SO,-PPO we get from Eqs. (57) and 
(58) SE=I.18 kJ/mol and 61=-9.9, while for 
LiClO,-PPO, SE= - 7.11 kJ/mol and Sl= - 11.3 are ob- 
tained. Note that the Sl values obtained now for changes in 
the number of sites around the reactants and products are 
more reasonable than those obtained for the choice +x= 1. 
This estimate for 61 still looks large. The value of +x that 
yields a more reasonable value 6Z= -4 for the 
NaCF,SO -PPO system is found to be 4,= 0.02, seemingly 
too small. 26 Obviously further modifications to the model are 
possible, e.g., taking the strong solvent-solute coupling limit 
only for the solvent-cation interaction but not for the 
solvent-anion or solvent-pair interactions. 

Next consider the temperature dependence of A GEL, as- 
sumed to result from the temperature dependence of the sol- 
vent dielectric function D. In order to estimate the corre- 
sponding effect on the thermodynamic quantities of 
association we replace Eqs. (57)-(58) by 

AH;,,= - Sk- kT*a,SI, (60) 

AS;,,= kWn( +,P,) - 7’4 + AS,, (61) 

J. Chem. Phys., Vol. 101 

%” 40. 
1 

.____.___......~ . . . . . . . ..-.. 
__..___._........ 
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290 310 330 350 

-f(K) 

FIG. 1. Temperature dependence of the thermodynamic functions (enthalpy, 
entropy, and volume) of the association reaction, for constant r pressure 
(P = 1 atm) and solvent molecular size ( rp = 10 000). The solid and dotted 
lines correspond to c#J,= 1 and d,= 0.25, respectively. The dashed-dotted 
lines correspond to q&=0.25 and 6Z= -4. 

where &??= SE-TAS, and with Eqs. (56) and (59) un- 
changed. AS, can be identified with the electrostatic contri- 
bution AS,,= -( ~ID)(dln DldT) but we can also view it 
more generally as “any additional entropy change not ac- 
counted for by the original model.” For simplicity we as- 
sume that SI? and AS, are constant parameters. Together 
with 81 and 4, we now have four free parameters. Obviously 
with such a large number of free parameters getting a rea- 
sonable fit cannot be considered a success of the theory but 
only, at most, a test for its consistency. For example, the 
choice SZ = - 4 and 4, = 0.25 gives, by fitting to the experi- 
mental AH and AS for the NaCFsSOs-PPO system, 61% 
=-1.917 kJ/molandAS,=83.04 J/(Kmol).Ifweassume 
that all this “missing entropy” originates from the electro- 
static term, then from AS,= - ( KID)(~ In DlaT) together 
with D-5 and dDldT=-0.016 (Ref. 14) we get 
K= 129.75 kJ/mol. If we further take K= q2/R and chose q to 
be one electron charge we obtain R = 10.7 A, a possibly 
reasonable number for the effective separation within a con- 
tact ion-pair in this system. Obviously, this exercise in pa- 
rameter choice should not be taken too seriously; it may 
indicates the origin of possible flaws in the present model, 
however any attempt to use it in a quantitative manner would 

No. 3, 1 August 1994 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2346 R. Olender and A. Nitzan: Lattice theory of solvation. II 

2 
a 120 
a 

k% 
2 

4 100 

%  

80 

60 

=‘ 
0 BC 
0 

> 
a 

s4c 

,3 
Q 2c 

0 

I_ 

I_ 

I__ 

I- 

l. 

I. 

7- 
0.0 

_________.._..-....-.~..-....._._.____~_~ 
. . 

1.0 2.0 
h,(P/aW 

FIG. 2. Pressure dependence of the thermodynamic functions of the asso- FIG. 3. The dependence of the thermodynamic functions of the association 
ciation reaction, for constant temperature (T= 295 K) and solvent molecular reaction on the solvent size expressed by rr . Tbe temperature and the pres- 
size (r,= 10 000). The solid and dotted lines correspond to 4X= 1 and sure are T=295 K  and P= 1 atm. The solid and dotted lines correspond to 
~#1,=0.25, respectively. #X= 1 and +,=0.25, respectively. 

require a better theory for AS,, including its dependence on 
temperature, pressure, and solvent chain length. 

Next we consider the implications of our model with the 
values of 4, = I and 4, = 0.25 for the temperature, pressure 
and solvent molecular size dependence of the thermody- 
namic functions of the association reaction. Figures 1, 2, and 
3 show the change in enthalpy, entropy, and volume per 
association-mole as functions of T, P, and rs , respectively,27 
using the results for rpX= 1 (SE= 25.68 kJ/mol and SZ 
=-56.9), solid line, +,=0.25 (~%=I.18 kJ/mol and 61 
= -9.9), dotted line. The dashed-dotted lines in Figs. l(a)- 
(c) (and in Fig. 4) correspond to the model of Eqs. (60) and 
(61) with +,=0.25, 6Z=-4, SE=-1.917 kJ/mol, and 
AS,= 83.04 J/(K mol). Figures 4 and 5 show the tempera- 
ture dependence of the association constant at constant pres- 
sure and at constant volume respectively for a solvent of 
large molecular weight (r,= 10 000): Note that these fig- 
ures (as well as Figs. 6 and 7) show KAssoc=v*KAssoc. The 
pressure dependence of KAssa: is displayed for the same rs in 
Fig. 6. Finally, Fig. 7 shows the rs dependence of KAssoc at 
standard temperature and pressure. It should be emphasized 
that rs, the number of “chain units,” does not necessarily 
represent the number of real ether monomers in the chain. It 
is however proportional to this number. 

,1 
0 

From the results displayed in Figs. l-7 the following 
conclusions can be drawn: 

(a) The dependence on temperature, pressure, and solvent 

lL6 I 

10.4 I I I I I 1 I 
290 310 330 350 

T(K) 

FIG. 4. Temperature dependence of the association equilibrium constant at 
constant pressure, P = 1 atm, rr = 10 000. The solid and dotted lines corre- 
spond to 4X= 1 and qS,=O.25, respectively. The dashed-dotted line corre- 
sponds to 4X=O.25 and 6Z= -4. 
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FIG. 5. Temperature dependence of the association equilibrium constant at 
constant volume (i.e., constant solvent density). The value of p3 used is 
p,=O.92, which is the density calculated from Eq. (56) at P= 1 atm and 
T=295 K. Solvent size is rr= 10 000. The solid and dotted lines corre- 
spond to c$,= 1 and @,=0.25, respectively. 

(‘4 

(4 

(4 

molecular size calculated in the QCA show the same 
qualitative trends obtained from the mean-field treat- 
ment of paper I. 
The enthalpy and entropy of the association reaction 
vary in a reasonable range with temperature and pres- 
sure. The variations obtained for 4,== 1 are stronger 
than for &=0.25. It is interesting to note that for 
4x= 1, AH~ssoc changes sign with increasing pressure. 
This change in sign do not appear for 4, = 0.25. 
The volume change AV is smaller for smaller values of 
4, . The results obtained for 4, = 0.25 are closer to the 
typical values expected for the volume changes of an 
ionic association reaction, which is of the order of 10 
cm3/mol. 
The dependence of the thermodynamic functions of as- 
sociation on the solvent molecular size and in particu- 
lar the decrease of KAssoc with rs shown in Fig. 7, is 
consistent with the observation of Tore11 and 
co-workers4 on short (4-8) chain methyl caped PPO, 
but not with the observation of the opposite effect in 
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FIG. 7. Solvent size dependence of the association equilibrium constant at 
P= 1 atm and T=295 K. The solid and dotted lines correspond to +x= 1 
and bx = 0.25, respectively. 

longer chain PPG.3 Unfortunately there is no overlap 
between the size range of these two groups of experi- 
ments and the results of Fig. 7 suggest that the trend 
observed in PPG is due to chain-end effect as discussed 
in Ref. 4. 

(e) The somewhat larger than expected value obtained for 
the change 61 in the total solvent coordination associ- 
ated with the ion-association reaction may be related to 
a possible underestimate, in the present model, of the 
entropy of association. The source of this “additional 
entropy change” may be related to dielectric effects or 
to crosslink formation as discussed above. Obviously, 
using a smaller Sl with an additional constant entropy 
change AS, and associated enthalpy change SE will 
weaken the ?: P, and rs dependencies of the thermody- 
namic quantities of solvation and of the association 
equilibrium constant (as seen in Figs. 1 and 4). This 
simply reflect the choice of constant AS, and does not 
necessarily have any physical significance. 

IV. SUMMARY AND CONCLUSIONS 

IL0 ’ 

In this paper we have investigated the solvation of ionic 
species in polymer hosts such as polyethers, in a framework 
which distinguishes between the long range dielectric effect 
and between short range interactions of the ions with nearest 
neighbor specific solvent sites (such as the cation-oxygen 
interactions in polyether electrolytes). In particular we have 
focused on the effects of short range interactions using the 
quasichemical approximation within a lattice model. 

6.0 1 , I / I I I I 
0.0 1.0 2.0 3.0 

log,,(P/atm) 

FIG. 6. Pressure dependence of the association equilibrium constant at 
T= 295 K, for rr= 10 000. The solid and dotted lines correspond to &= 1 
and 4,=0.25, respectively. 

The model is obviously too simplified to be fully predic- I 
tive. It does provide a parametrized description of the ther- 
modynamic quantities (energy, volume, enthalpy, entropy, 
and free energy) which makes it possible to use a selected set 
of experimental dam in order to predict or interpret other 
experimental quantities. Thus we have found that available 
experimental results on the NaCF3S03-PPO and 
LiC104-PPO systems could not be accounted for in a con- 
sistent way unless the idea of selective cation-binding sites 
was included in the model. Furthermore the model calcula- 
tions clearly indicate that solvent molecular chain-length de- 
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pendence of the association dissociation equilibrium satu- 
rates at a relatively low solvent molecular weight, so that the 
observation of such dependence3 must have resulted from 
chain-end effects as has already been anticipated in Ref. 4. 

We have not done an exhaustive search of parameter 
space in order to find the best possible description of our 
systems. Thus, the parameters used to describe the polyether 
solvent were derived from data available for the pure high 
molecular weight polymers and was used as constants for all 
rs values.28 We expect that better fits could be obtained by 
using experimental input from both low and high molecular 
weight polymers. Similarly, dielectric data for these solvents 
(e.g., dielectric response as function of chain length) is 
needed in order to assess the role played by the long range 
part of the solute-solvent interaction. 

Even on the level of our present effort it appears that the 
model can account consistently for qualitative features in the 
behavior of the association-dissociation equilibrium in 
polyether-salt systems. Thus once the parameters of the pure 
solvent were determined from the dependence of the pure 
solvent density on temperature’ and once energetic param- 
eters associated with the solvation were fitted to the tempera- 
ture dependence data, correct trends and orders of magnitude 
(as compared to experiments4) were obtained for the pressure 
(Fig. 6) and chain length (Fig. 7) dependencies of the asso- 
ciation equilibrium constant. 

Our model leaves open the possible role played by the 
cross-linking effect of the ions. Ion mediated transient 
crosslinks between solvent chains show themselves in the 
profound effect of added salt on the solvent viscosity and 
mobility. Their possible contribution to the thermodynamics 
of the solvation cannot be accounted for on the level of the 
QCA. We are currently studying this issue using lattice 
Monte Carlo simulations. 
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APPENDIX A: CALCULATIONS OF THE INFINITE 
DILUTION LIMIT IN THE QCA 

Substituting cpi=Xii+~j(+i~Xij [Eq. (ll)] in Eq. (12) 
leads to the the following equations for {xii} (i Z-j): 

eAeij’kT&= p.- 2 x.k 
[ ’ k(#i) ‘I*[ ‘j-zj) ‘j-1 

= qi-xij- c Xik ’ pj-xij- 2 
k(+;i,j) I[ Xjm m(#i,i) 1 

(Al) 

which can be rewritten as 

642) 

Note that in the case of a binary mixture the set of Eqs. (A2) 
is reduced to a single quadratic equation for xij , with solu- 
tion given by Eq. (22). 

It is useful to note that performing the limit (P~-+O in 
Eq. (A2), for an arbitrary component a, the remaining non- 
zero terms yield the relation 
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(A3) 

Another useful expression that can be obtained in a similar 
way from Eq. (Al), is given by 

($[ lejza, z]}q 
n 

=,=i E)l 
a 

_n[ .P-::I:‘.:,,Yj 

(A4) 
which is valid for any i. Note that the left-hand side is, from 
Eq. (1 I), just (,Y~J~~)~,=~. In the expression above the 
superscript 0 indicates a mixture with (Pi= 0. Finally Eq. 
(A4) can be rewritten in the form 

(~)~_,=i(~).=o.e-A~ai’kT[.P-j~,i~X~j]]”2. 

a a 

(A5) 
Summing Eq. (A5) for the different values of j( # a) and 

using the identity (A3), one gets 

L46) 
e-(‘12)AGkT Jqp- ~~(+~,~~x$ 

a,=o=Xj(+.)e-(1'2'A'nj'kT~~~-~k(~a,j~x~k 
. (A7) 

Substituting Eq. (11) in Eq. (A6), Eq. (18) is finally obtained. 

APPENDIX B: EQUATION OF STATE IN THE WEAK 
INTERACTIONS LIMIT 

In order to obtain the limit of weak interactions of the 
equation of state (13), it is necessary to expand the scaled 
number of pairs ,yoo in terms of powers of the energy param- 
eters {eij}. It is straightforward to show that Eq. (12) can be 
rewritten in the form 

xiixjk=e[(“kT)(‘iif~j~-Eij-“ik)Ix,.x.k ‘I 1 
which for i=O, it is simplified to (Eoj=O, for any j), 

(Bl) 

,yoox .k= I e(‘dkT)xO J . .,yOk 032) 

Expanding to the first order in the energy Ejk, Eq. (B2) be- 
comes 
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(B3) 

Summing up Eqs. (B3) above for all values of the indi- 
ces k and j and using Eq. (ll), it simplifies to 

XOO=P~+ 2 c 2 xOjxOk* 
i(+W k(+O) 

(B4) 

Now we assume that the same kind of expansion (B4) is 
valid for any pair, that is, Xak can be written for, weak inter- 
aCtiOnS, as xOk= (po(pk + o({ Elm}), where the first term On 
the right-hand side is the solution of Eqs. (11) and (12) for 
zero interaction energies, and the second term is some ex- 
pansion in powers of the energies. Using this assumption in 
Eq. (B4) and keeping only terms that are first order in en- 
ergy, we finally get Eq. (28). 

An explicit form for xoj can be obtained by summing 
Eqs. (B3) for all values of the index k and substituting the 
value of xoo given by Eq. (28). The final result to first order 
in the energies is given by expression 

1+x c $qlpk- c ?rPk * 
l(#O) k(#O) k(#O) kT 1 

(B5) 

If one considers also the limit of large coordination of 
the lattice (i.e., ~--+a), we have 

where Eq. (2) was used for the fraction qilri in the equation 
above. Therefore, substituting the above limit in Eq. (29), 
neglecting terms of order 1 /z and using {(z/2) ejk} as con- 
stants, we get the mean-field equation of Sanchez and 
Lacombe,23 Eq. (32). 
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